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1 Introduction

Let M be a non-compact metric space in which every closed ball is compact, endowed with
its Borel σ-field M. We denote by G a semi-group of Lipschitz mappings of M and by G a
σ-field on G. We assume that the action of G on M is measurable, i.e. the map j defined
by j(g, y) = gy is measurable from (G×M, G ⊗M) to (M,M).

Let π be a probability distribution on G, and let (Yn)n≥1 be a sequence of independent G-
valued random variables (r.v.) identically distributed according to π, defined on a probability
space (Ω,F , IP ). The iterated random mappings Rn, n ≥ 0, are defined by

R0 = IdM , Rn = Yn · · ·Y1, n ≥ 1.

Let Z be a M-valued r.v. which is independent of the r.v. Yn, n ≥ 1. The sequence (Zn)n≥0

defined by
Zn = RnZ, n ≥ 0

is a Markov chain on M which is defined recursively by

Z0 = Z, Zn+1 = j(Yn+1, Zn) = Yn+1Zn, n ≥ 0.

Observe that we get here the general Lipschitz iterative model on M which has been consid-
ered by many authors, see Duflo (1997), Diaconis and Freedman (1999) to get an overview of
the subject. Consider particularly the case where M is the linear space IRq. The generalized
linear autoregressive model is obtained when G is the semi-group of affine mappings of M .
Replace in the preceding the linear part of the action by that of a fixed Lipschitz mapping f
of M . An element g of the semi-group G is now defined by a vector bg ∈M , and it acts on M
according to the formula gx = f(x)+ bg. In this context the probability distribution π on G
is simply defined by a distribution on M , thus we get the Lipschitz functional autoregressive
model.

Now let ξ be a real valued measurable function on G × M . The aim of this paper is to
establish a central limit theorem with a rate of convergence and a local central limit theorem
for the sequence of r.v.

(ξ(Yn, Zn−1))n≥1.

The interest of considering a function ξ of the couple (g, x) ∈ G×M rather than a function
only depending on x appears for example in the study of random matrices products.

From the stochastic view point, the context may be described as the study of the sequence
of r.v. obtained by composing the function ξ and the Markov chain (Xn)n≥0 with state space
G×M defined by

X0 = (IdM , Z), Xn = (Yn, Zn−1), n ≥ 1.

The main hypothesis will be a condition of contraction in the mean of the action on M of the
elements of G under the probability distribution π. This property enables us to make use
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of a refinement of the spectral method. Recall that the spectral method has been initiated
by Nagaev (1957), and then used and improved by many authors. It is fully described in
Hennion and Hervé (2001) where references are given. The spectral method is based on a
quasi-compactness property of the transition probability Q of the chain (Xn)n≥0, and on a
perturbation theorem ensuring that, for small |t|, the Fourier kernels Q(t) associated with
Q and ξ have spectral properties similar to those of Q. In the present setting, the use of the
standard perturbation theory for operators leads to assume moments of exponential type (cf.
Milhaud and Raugi (1989), Hennion and Hervé (2001) Chap. X, Sect 3). The main feature
of this paper is the use of a perturbation theorem of Keller and Liverani (1999) which is
adapted to operators verifying a Doeblin-Fortet inequality. By means of this theorem we get
the desired limit theorems under moments of polynomial types.
Notice that there are several methods to cope with central limit theorems for a function of a
Markov chain, mostly known are regeneration and splitting, use of central limit theorems for
martingale increments and Lindeberg techniques. As will be discussed later, when applied to
the present context, some of these methods can give a central limit theorem under hypotheses
which are weaker than ours ; however, it seems that these methods have not yet been
developped so far as to get the central limit theorem with a rate of convergence and the local
central limit theorem of this paper. See Section 3 below for more details.

2 Statements of results

For g ∈ G, we set

c(g) = sup
{

d(gx, gy)

d(x, y)
: x, y ∈M, x 6= y

}

,

by assumption c(g) < +∞.
For n ∈ IN∗ we denote by π∗n the distribution of Rn. We choose a fixed point x0 in M . For
η ≥ 1 and n ∈ IN∗, we define the integrals :

Mη =
∫

G

(

1 + c(g) + d(gx0, x0)
)η

dπ(g)

M′
η =

∫

G
c(g)

(

1 + c(g) + d(gx0, x0)
)η−1

dπ(g)

C(n)
η =

∫

G
c(g) max{c(g), 1}η−1dπ∗n(g).

Notice that, since c(·) is submultiplicative, M′
η < +∞ implies C(n)

η < +∞.
The statements below will appeal, on the one hand to the moment conditions Mη < +∞
and M′

η′ < +∞, on the other hand to the average contractivity condition C(n)
η′ < 1, for a

suitable choice of η, η′ ≥ 1.
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We consider a real valued measurable function ξ on G×M satisfying :

Condition (RS). There exist r, s ∈ IR+ and measurable non-negative functions R, S on G
such that, for all x, y ∈M and g ∈ G,

|ξ(g, x)| ≤ R(g)(1 + d(x, x0))
r

|ξ(g, x) − ξ(g, y)| ≤ S(g) d(x, y)
(

1 + d(x, x0) + d(y, x0)
)s

.

Observe that, if the second condition in (RS) holds, then the first one is also valid with
r = s+1 and R(g) = |ξ(g, x0)|+S(g). However, it is worth noticing that this condition may
be verified for a smaller exponent r ; this is the case, for example, when ξ is bounded. This
remark also shows that, without a significant loss of generality, we could add to condition
(RS) the inequality r ≤ s + 1 ; yet, we notice that, when r increases, R(g) decreases. The
case s = 0 and r = 1 corresponds to functions ξ such that ξ(g, ·) is Lipschitz for all g ∈ G.
At last, notice that, if α ∈]0, 1], then d(·, ·)α is a distance on M ; consequently Condition
(RS) involves the case of functions ξ such that ξ(g, ·) is locally α-Hölder for all g ∈ G.

As in the introduction, we denote by Z a r.v. in M defined on (Ω,F , P ), and independent
of the r.v. Yn, n ≥ 1. We set

SZ
n =

n
∑

k=1

ξ(Yk, Zk−1), n ≥ 1.

We now state central limit theorems for the sequence (SZ
n )n ; more precise results concerning

the behaviour of the sequence (RnZ, S
Z
n )n are given in Section 9.

A preliminary to all these statements is the existence of a probability distribution on M
which is preserved by the action of π. More precisely, the action on M of the sequence of
random mappings (Rn)n≥0 defines a Markov chain : for y0 ∈ M , the sequence (Rny0)n≥0 is
Markov with state space M , initial distribution δy0 , and transition probability P defined by

y ∈M, B ∈ M, P (y, B) =
∫

G
1B(gy)dπ(g).

Theorem I (invariant probability measure). Assume that there exist γ ≥ 0 and an

integer n0 ≥ 1 such that Mγ+1 < +∞ and C(n0)
γ+1 < 1.

Then there exists on (M,M) a unique P -invariant probability distribution ν. Moreover we
have ∫

M
d(x, x0)

γ+1dν(x) < +∞,

and the geometric ergodicity holds in the Prohorov distance dP . Namely, there exist positive
real numbers C and κ0 < 1, such that, for any probability distribution µ on M satisfying
µ(d(·, x0)) < +∞, and all n ≥ 1,

dP (µP n, ν) ≤ Cκ
n/2
0 .
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It must be noted that such an ergodicity result holds under much weaker hypotheses, see the
survey of Diaconis and Freedman (1999) and a recent result in Bhattacharya and Majumdar
(2002). In fact, the above statement is just the one which fits the general hypotheses of the
paper.

In the sequel our hypotheses will involve a parameter γ0 > 0 and

Condition H(γ0) :

Mγ0+1 < +∞, M′
2γ0+1 < +∞

there exists n0 ∈ IN∗ such that C(n0)
2γ0+1 < 1.

Since C(n0)
γ0+1 ≤ C(n0)

2γ0+1, if the above conditions hold, then the P -invariant distribution ν, whose
existence is ensured by Theorem I, is such that ν(d(·, x0)

γ0+1) < +∞ ; consequently, if the
number r and the function R in Condition (RS) verify r ≤ γ0

2
+ 1

2
and

∫

GR(g)2dπ(g) < +∞,
we have

∫

M

∫

G
ξ(g, x)2dπ(g)dν(x) < +∞.

From now on we shall assume that

m =
∫

M

∫

G
ξ(g, x)dπ(g)dν(x) = 0.

This causes no loss of generality since it is always possible to replace ξ by ξ −m.
Otherwise, we shall keep in mind that, if Z has the P -invariant distribution ν, then we have
IE[d(Z, x0)

γ0+1] < +∞. However, unless otherwise stated, in the sequel Z is not supposed
to be ν-distributed.

At last, we define for g ∈ G,

δ̃(g) = 1 + c(g) + d(gx0, x0),

and for τ > 0 and positive real valued measurable functions U , V on G, we set

J τ (U, V ) =
∫

G
U(g) c(g) δ̃(g)2τdπ(g) +

∫

G
V (g) δ̃(g)τ+1dπ(g),

or more shortly J τ (U, V ) = π(Uc δ̃2τ ) + π(V δ̃τ+1).

Theorem A (central limit).
Assume H(γ0) with γ0 > r + max{r, s+ 1} and that

∫

G
R2dπ < +∞, J γ0−r(R,R + S) < +∞.

Then there exists a real number σ2 ≥ 0 such that, under the condition IE[d(Z, x0)
γ0+1] < +∞,

the sequence (
SZ

n√
n

)n≥1 converges in distribution to a N (0, σ2)-distributed r.v.
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As already mentioned, this statement is not the best known one : using our spectral method,
it is a stage to the two following results.

Theorem B (central limit with a rate of convergence).
Assume H(γ0) with γ0 > 3r + max{r, s+ 1} and that

∫

G
R3dπ < +∞, J γ0−r(R,R + S) + J γ0−2r(R2, (R+ S)R) < +∞.

Then, if σ2 > 0, there exists a constant C such that, when Z verifies IE[d(Z, x0)
γ0+1] < +∞,

we have, for all n ≥ 1,

sup
u∈IR

∣

∣

∣

∣

IP
[

SZ
n ≤ uσ

√
n

]

−N (0, 1)(] −∞, u])
∣

∣

∣

∣

≤ C
1 + IE[d(Z, x0)

γ0+1]√
n

.

We denote by L the Lebesgue’s measure on IR. Furthermore, a complex valued function on
M is said to be locally Lipschitz if it is Lipschitz on every compact subset of M .

Theorem C (local central limit).
Assume that the conditions of Theorem A hold, and that ξ verifies the non-arithmeticity
condition : there is no t ∈ IR, t 6= 0, no λ ∈ C , |λ| = 1, no bounded locally Lipschitz
function w on M with non-zero constant modulus on the support Σν of ν, such that we have,
for all x ∈ Σν and all n ≥ 1,

eitSx
nw(Rnx) = λnw(x) IP − a.s.

Then, if σ2 > 0, and if Z is such that IE[d(Z, x0)
γ0+1] < +∞, we have, for every continuous

function h on IR such that lim
|u|→+∞

u2h(u) = 0,

lim
n
σ
√

2πn IE
[

h(SZ
n )

]

= L(h).

We end with a result which gives a criterion for σ2 > 0 and defines σ2 asymptotically.

Theorem S. Assume H(γ0) with γ0 > 2r + s + 1 and that

J γ0−r(R,R + S) + J γ0−2r(R2, (R+ S)R) < +∞.

(i) If σ2 = 0, then there exists a real valued locally Lipschitz function ξ̃1 on M satisfying
ν(ξ̃ 2

1 ) < +∞, and such that we have, with Z distributed according to ν,

ξ(Y1, Z) = ξ̃1(Z) − ξ̃1(Y1Z) IP − a.s.

(ii) If the distribution of Z verifies IE[d(Z, x0)
γ0+1] < +∞, then

σ2 = lim
n

1

n
IE[(SZ

n )2].
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It will be seen later on, Theorem C’ and S’ (§ 9), that the functions w and ξ̃1 in the two last
statements must not be merely locally Lipschitz, they must belong to certain spaces to be
defined in the sequel.

In the following section, we show how these theorems apply to some cases of interest. This
being done, the rest of the paper is devoted to the proofs ; the reader will find in Subsection
4.2 a brief outline of the subsequent work.

3 Applications.

3.1 Sequences of type χ(Zn))n

Let χ be a real valued locally Lipschitz function onM , and suppose that there exist C, s ∈ IR+

such that, for all x, y ∈M,

|χ(x) − χ(y)| ≤ Cd(x, y)(1 + d(x, x0) + d(y, x0))
s.

Using martingale methods, it is proved that the central limit theorem for (χ(Zn))n holds
for any initial distribution under the moment condition

∫

G d(gx0, x0))
4(s+1)dπ(g) < +∞ and

the contraction property
∫

G c(g)
4(s+1)dπ(g) < 1, See Duflo (1997). By means of similar

techniques, it is established in Benda (1998), that, when s = 0, the same result is valid
under the weaker hypotheses

∫

G c(g)
2dπ(g) < 1 and

∫

G d(gx0, x0)
2dπ(g) < +∞. Considering

the stationary chain with initial probability ν, Wu and Woodroofe (2000) have established
a central limit theorem for functions χ which are not Lipschitz and not even continuous.
Let us now apply the results of the preceding section : we set ξ(g, x) = χ(x). The moment
hypotheses of Theorem A are the same as those of Theorem C, so that it can be seen from
Theorem 3.1 below that they are stronger than the ones previously stated. However, to
our knowledge, Theorem B and C are new. They can be stated as follows. Recall that
δ̃(g) = 1 + c(g) + d(gx0, x0).

Theorem 3.1. Suppose that there exist ǫ > 0 and integers n0 ≥ 1, k ≥ 0 such that

π
(

δ̃k(s+1)+1+ ǫ
2 + c δ̃2k(s+1)+ǫ

)

< +∞, and π∗n0

(

c max{1, c}2k(s+1)+ǫ
)

< 1,

and assume that ν(χ) = 0, where ν is the P -invariant probability measure.
If k takes the values 4 and 3 respectively, then the assertions of Theorems B and S respectively

apply to SZ
n =

n
∑

k=1

χ(Zk−1).

Moreover, if χ is non-arithmetic and if the above integral conditions are satisfied for k = 2,
then the assertion of Theorem C holds.
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Proof. The function ξ on G×M defined by ξ(g, y) = χ(y) verifies Condition (RS) with the
exponents r = s+1 and s associated with constant functions R and S. These have moments
of all orders. Consequently the moment conditions of theorems B, S, and C reduce to H(γ0)
with γ0 = k(s+ 1) + ǫ

2
; this gives the desired results. 2

Let us point out that Pollicott (2001) has stated a central limit theorem with a rate of
convergence and a large deviations theorem in the case where the support of the probability
measure π is finite. However this study is based on the assertion without proof that, on a
suitable space of Lipschitz functions, the Fourier kernels P (t) (See § 4) are analytic perturbed
operators of P . Also notice that, if it is proved that the stationary chain with initial proba-
bility distribution ν is strongly mixing and Harris recurrent, then we can apply Bolthausen
(1982) to obtain a central limit theorem with a n−1/2 rate of convergence. However, on one
hand this requires some additional hypotheses on π (see Meyn and Tweedie (1993) p. 140
for a sufficient condition in the context of the following section), on the other hand this only
covers the stationary case.

3.2 Generalized autoregressive processes

Denote by G the semigroup of all affine mappings of M = IRq, q ≥ 1. An element g ∈ G
is identified with a couple (a(g), b(g)), where a(g) is an endomorphism of IRq and b(g) is a
vector in IRq. For y ∈M , we set gy = a(g)y+b(g). The associated generalized autoregressive
process (Zn)n≥0 is then defined by

Z0 = Z, Zn+1 = a(Yn+1)Zn + b(Yn+1), n ≥ 0.

Let ξ be a function from G × IRq to IR, and suppose that there exist a norm ‖ · ‖ on IRq,
α ∈]0, 1], r, s ∈ IR+ and non-negative measurable functions R and S on G such that, for all
g ∈ G and x, y ∈ IRq, we have

|ξ(g, x)| ≤ R(g)(1 + ‖x‖)αr, |ξ(g, x) − ξ(g, y)| ≤ S(g)‖x− y‖α(1 + ‖x‖ + ‖y‖)αs.

For instance, these properties hold with α = 1 when ξ is a polynomial function of the entries
of the matrix representing a(g) and of the coordinates of the vectors b(g) and x.

Let us consider the distance d defined on IRq by d(x, y) = ‖x − y‖α, and choose x0 =
0 ∈ IRq. We have c(g) = ‖a(g)‖α and d(gx0, x0) = ‖b(g)‖α. Then the statements B-C-S
apply straightforwardly. To compare with former results, let us rewrite Theorem B. Let
δ̃(g) = (1 + ‖a(g)‖ + ‖b(g)‖)α, then

Theorem 3.2. The hypotheses in central limit theorem with a rate of convergence (Th. B)
are satisfied if there exist γ0 > 3r + max{r, s+ 1} and n0 ∈ IN∗ such that

π
(

δ̃γ0+1 + ‖a‖α δ̃2γ0

)

< +∞, and π∗n0

(

‖a‖α max{1, ‖a‖}2γ0α
)

< 1,
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and when the functions R(·) and S(·) satisfy the moment conditions

∫

G
R3dπ < +∞, J γ0−r(R,R + S) + J γ0−2r(R2, (R+ S)R) < +∞.

In this context, convergence rates in the central limit theorem have already been established
by Milhaud and Raugi (1989), and by Cuny (2003). The spectral method used in Milhaud
and Raugi (1989) is, in substance, similar to the one developped here, but it appeals to the
standard perturbation theorem : for this reason (See § 6.1), the following conditions on a(·)
and b(·) are required : ‖a(·)‖ < 1 π-p.s, and there exist real numbers ρ > 0 and β ∈]0, 1]
such that we have the exponential moment condition

∫

G
eρ‖b(g)‖β

(R(g) + S(g))5 (1 − ‖a(g)‖β)−
5α
β

(1+max{r,s+1}) dπ(g) < +∞.

The hypotheses on both a(·) and b(·) are significantly less restrictive in Theorem 3.2. The
study in Cuny (2003) is based on martingale methods. The contraction condition is the same
as in Milhaud and Raugi (1989), and it is supposed that, for all ℓ ∈ IN ,

∫ ‖b(g)‖ℓdπ(g) < +∞.
Under these conditions, for functions ξ which are not necessarily Hölder of the variable x, it
is proved that the rate of convergence in the central limit theorem is n−p for every p < 1/2.

3.3 Products of positive random matrices

Let G be the semi-group of q × q matrices with non-negative entries which are allowable,
namely every row and every column contains a strictly positive element, and denote by G◦

the ideal of G composed of matrices with strictly positive entries.
For g ∈ G and w ∈ IRq, we denote by g(w) the image of w under g ; the cone

C = {w : w = (w1, . . . , wq) ∈ IRq, wk > 0, k = 1, . . . , q}
is invariant under all g ∈ G. Define M to be the intersection of the hyperplane
{w : w ∈ IRq,

∑q
k=1wk = 1} of IRq with C.

The linear space IRq is endowed with the norm ‖ · ‖ defined by
w = (w1, . . . , wq) ∈ IRq, ‖w‖ =

∑q
k=1 |wk|,

and, for each g ∈ G, we set
‖g‖ = sup{‖g(y)‖ : y ∈M}, v(g) = inf{‖g(y)‖ : y ∈M}.

The semi-group G being equipped with its Borel σ-field G, we consider a probability distri-
bution π on G for which there exists an integer n0 such that the support of the r.v. Rn0

contains a matrix of G◦. Denote by g∗ the adjoint of g, it is shown in Hennion (1997) that,
if

∫

G

(

| ln ‖g∗‖ | + | ln v(g∗)|
)2

dπ(g) < +∞,

then there exists γ1 ∈ IR such that, for y ∈ M , the sequence
( 1√

n
(ln ‖Rn(y)‖ − nγ1)

)

n≥1

converges to the N (0, σ2) distribution, moreover the case σ2 = 0 is investigated. Using
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Theorems B and C, it is possible to state a central limit theorem with a rate of convergence
and a local central limit theorem. Notice that similar theorems have already been given in
Hennion and Hervé (2001) Section X.5. but under more restrictive moment hypotheses.

To see how this case enters the present frame, we set for g ∈ G and y ∈M
gy = g(y)

‖g(y)‖ , a(g, y) = ln ‖g(y)‖,
It is easy to check that the first formula defines an action of G on M , while the function
defined by the second one verifies the property of additive cocycle associated with this action :

a(gg′, y) = a(g, g′y) + a(g′, y), g, g′ ∈ G, y ∈M .
Consequently, setting ξ(g, y) = a(g, y)− γ1, for (g, y) ∈ G×M , we can write, for y ∈M ,

ln ‖Rn(y)‖ − nγ1 =
n

∑

k=1

ξ(Yk, Rk−1y).

Furthermore, when M is endowed with a suitable metric dH called the Hilbert metric, see
Bapat and Raghavan (1997), every g ∈ G is Lipschitz with constant c(g) ≤ 1, and we have
c(g) < 1 if and only if all entries of g are strictly positive. Therefore, if the support of Rn0

contains such a matrix g, we have C(n0)
η =

∫

G c(g)dπ
∗n0(g) < 1 for all η ≥ 1.

For η ≥ 0, set

Lη =
∫

G

(

| ln ‖g‖ | + | ln v(g) |+ | ln v(g∗) |
)η

dπ(g).

Theorem 3.3. Suppose that there exists an integer n0 such that the support of the r.v. Rn0

contains a matrix of G◦, and let ǫ > 0.

(i) Assume L4+ǫ < +∞, then, if σ2 > 0, there exists a non-negative constant C such that,
in case the r.v. Z of M verifies IE[dH(Z, x0)

2+ ǫ
2 ] < +∞, we have, for all n ≥ 1,

sup
u∈IR

∣

∣

∣

∣

IP
[

ln ‖Rn(Z)‖ − nγ1 ≤ uσ
√
n

]

−N (0, 1)(] −∞, u])
∣

∣

∣

∣

≤ C
1 + IE[dH(Z, x0)

2+ ǫ
2 ]√

n
.

(ii) Assume L3+ǫ < +∞, σ2 > 0, and that the support of Rn0 contains two matrices g1, g2 ∈
G◦ whose spectral radii ρ1, ρ2 verify ln ρ2

ρ1
/∈ Q . Then, if IE[dH(Z, x0)

2+ ǫ
2 ] < +∞, we have,

for any real valued continuous function h on IR such that lim
|u|→+∞

u2h(u) = 0,

lim
n
σ
√

2πn IE
[

h( ln ‖Rn(Z)‖ − nγ1)
]

= L(h).

Proof. First notice that the number ‖g∗‖ associated to any endomorphism g of IRq defines
a new norm which is equivalent to the one already considered. Consequently there exists a
constant C such that, for every g ∈ G, we have | ln ‖g∗‖ | ≤ C + | ln ‖g‖ |.
We denote by (ek)

q
k=1 and by < ·, · > the canonical basis and scalar product on IRq. If

y, y′ ∈M , we set

mH(y, y′) = min{< y, ek >

< y′, ek >
: k = 1, . . . , q}, dH(y, y′) = − ln(mH(y, y′)mH(y′, y)),
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dH is the Hilbert distance on M , see Bapat and Raghavan (1997). The space (M, dH) is not
compact, but each closed ball in it is compact. Set x0 = (1/q, . . . , 1/q) ∈M , we have

d(gx0, x0) = ln
maxi < gx0, ei >

minj < gx0, ej >
= ln

maxi ‖g∗ei‖
minj ‖g∗ej‖

= ln
‖g∗‖
v(g∗)

≤ C + | ln ‖g‖ |+ | ln v(g∗) |.

The function ξ(g, ·) is bounded by |γ1| + | ln ‖g‖| + | ln v(g)|. From ‖gy‖ ≥ mH(y, y′)‖gy′‖
we deduce that S(g) = 1 ans s = 0, see Hennion (1997) Lemma 5.3. Therefore Condition
(RS) is verified with R(g) = 2(| ln ‖g‖|+ | ln v(g)|), r = 0, and S(g) = 1, s = 0.
The above estimations prove that the required moment conditions of theorems B and C hold
if we have respectively L4+ǫ < +∞ and L3+ǫ < +∞.

It remains to prove that the additional hypothesis in (ii) implies the non-arithmeticity of
ξ. Let k = 1, 2. It follows from the Perron-Frobenius’ Theorem that ρk > 0 and that, for
all ℓ ≥ 1, we have gℓ

k = ρℓ
k(pk + hℓ

k), where pk ∈ G◦ and the endomorphism hk of IRq has
a spectral radius < 1. Consequently, for any x ∈ M , we have ln ‖gℓ

kx‖ = ℓ ln ρk + rk,ℓ(x),
with limℓ rk,ℓ(x) = ln ‖pk(x)‖. Suppose that there exist t ∈ IR, t 6= 0, λ ∈ C , |λ| = 1, and a
bounded locally Lipschitz function w on M which has a non-zero constant modulus on the
support Σν of ν, and such that we have, for all x ∈ Σν and all n ≥ 1,

λn w(x) = eitSx
nw(Rnx) = eit(ln ‖Rn(x)‖−nγ1)w(Rnx) IP − a.s.

From the continuity of the functions used in the two members, we deduce that, for any ℓ ≥ 1
and x ∈ Σµ, we have

eit(ln ‖gℓ
k
(x)‖−n0ℓγ1)w(gℓ

kx) = λn0ℓw(x).

It follows that

e
itℓ ln

ρ2
ρ1 =

w(gℓ
1x)

w(gℓ
2x)

eit(r1,n0ℓ(x)−r2,n0ℓ(x)).

The second member converges when ℓ→+∞, while the countable set of complex numbers
defined by the first one is dense in {z : z ∈ C , |z| = 1}. This contradiction completes the
proof. 2

4 Preliminaries

4.1 P -invariant probability measure (proof of Theorem I)

Here the hypotheses are those of Theorem I : Mγ+1 < +∞, C(n0)
γ+1 < 1 (γ ≥ 0, n0 ∈ IN∗).

For λ ∈]0, 1], x ∈M , and g ∈ G, we set

pλ(x) = 1+λd(x, x0), δλ(g) = max{c(g), 1}+λ d(gx0, x0), and δ̃(g) = 1+c(g)+d(gx0, x0).
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Lemma 4.1. We have for all g ∈ G and 0 ≤ λ ≤ 1

sup
x∈M

pλ(gx)

pλ(x)
≤ δλ(g) ≤ δ̃(g).

The functions c(·) and δ̃(·) are submultiplicative.

Proof. Let x ∈M and g ∈ G, then

pλ(gx)

pλ(x)
=

1 + λd(gx, x0) − λd(gx0, x0)

1 + λd(x, x0)
+

λd(gx0, x0)

1 + λd(x, x0)

≤ 1 + λd(gx, gx0)

1 + λd(x, x0)
+ λd(gx0, x0) ≤ 1 + λc(g)d(x, x0)

1 + λd(x, x0)
+ λd(gx0, x0)

≤ max{1, c(g)}+ λd(gx0, x0).

The fact that c(·) is submultiplicative is obvious. Finaly for h, g ∈ G, we get

δ̃(hg) ≤ 1 + c(h)c(g) + [d(hgx0, x0) − d(hx0, x0)] + d(hx0, x0)

≤ 1 + c(h)c(g) + c(h)d(gx0, x0) + d(hx0, x0) ≤ δ̃(h)δ̃(g). 2

Recall that, for n ∈ IN∗, π∗n denotes the law of Rn.

Lemma 4.2. Let φλ(x) = d(x, x0)pλ(x)
γ for λ ∈ [0, 1]. Then

(a) For all n ≥ 1 and x ∈M , we have P nφλ(x) < +∞.
(b) For λ0 ∈]0, 1] small enough, we have

∫

G c(g)δλ0(g)
γdπ∗n0(g) < 1.

(c) There exist constants ε ∈]0, 1[, C ∈ IR+ such that

P n0φλ0 ≤ C + εφλ0.

Proof. (a) For n ≥ 1 and x ∈M , we have

P nφλ(x) =
∫

G
d(gx, x0)pλ(gx)

γdπ∗n(g)

≤
∫

G
d(gx0, x0)pλ(gx)

γdπ∗n(g) +
∫

G
[d(gx, x0) − d(gx0, x0)]pλ(gx)

γdπ∗n(g)

≤ pλ(x)
γ

∫

G
d(gx0, x0)δλ(g)

γdπ∗n(g) + d(x, x0)pλ(x)
γ

∫

G
c(g)δλ(g)

γdπ∗n(g).

The functions in the two integrals above are dominated by δ̃(·)γ+1. Since this function is
submultiplicative and π-integrable, Fubini’s theorem ensures that these integrals are finite.
Thus P nφλ(x) < +∞.
Since c δγ

λ0
≤ δ̃γ+1 and δ̃ is submultiplicative, Assertion (b) is a direct consequence of Hy-

potheses and Lebesgue’s theorem.
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Set ε′ =
∫

G c(g)δλ0(g)
γdπ∗n0(g). From the above inequality applied with λ = λ0 and n = n0,

there exists a constant D0 such that

P n0φλ0 ≤ D0p
γ
λ0

+ ε′φλ0 .

Using continuity and lim
d(x,x0)→+∞

pλ0(x)
γ

φλ0(x)
= 0, we see that there exists a constant C such that

D0p
γ
λ0

≤ C + 1−ε′

2
φλ0. Hence P n0φλ0 ≤ C + εφλ0 with ε = 1+ε′

2
. 2

Now let us prove Theorem I. For convenience we set φ = φλ0 . By induction and Lemma 4.2,
we obtain, for every q ≥ 1, P qn0φ ≤ εqφ+C(1+ε+· · · εq−1) ≤ φ+ C

1−ε
. Let n ∈ IN∗. Writting

n = qn0 + r with r ∈ {0, . . . , n0 − 1} and setting E = max{P kφ(x0), k = 0, . . . , n0 − 1}, we
get P nφ(x0) ≤ E + C

1−ε
. Therefore the sequence (P nφ(x0))n is bounded by a constant, say

K. For n ≥ 1, let νn be the probability measure on (M,M) defined by

B ∈ M, νn(B) =
1

n

n−1
∑

k=0

(P k1B)(x0).

Observe that, for each n ≥ 1, we have νn(φ) ≤ K. Since lim
d(x,x0)→+∞

φ(x) = ∞, the subset

[φ ≤ α] is compact for each α > 0. The Markov’s inequality implies that, for all n ≥ 1, we

have νn([φ > α]) ≤ νn(φ)
α

≤ K
α

, so that the sequence (νn)n is tight. Therefore we can select a
subsequence (νnk

)k converging to a probability measure ν. It is clear that ν is P -invariant.

For p ∈ IN∗, set φp(·) = min(φ(·), p). For k ≥ 0 and p ≥ 0, we have νnk
(φp) ≤ νnk

(φ) ≤ K,
consequently, for all p ≥ 0, limk νnk

(φp) = ν(φp) ≤ K. The monotone convergence theorem
gives ν(φ) < +∞, that is ν(d(·, x0)

γ+1) < +∞.

Now let us prove that ν is the unique P -invariant probability distribution. First observe
that, since IE[ln c(Rn0)] ≤ ln IE[c(Rn0)] = ln C(n0)

1 < 0, the law of large numbers as-

serts that lim supq c(Rqn0)
1
q ≤ limq(

∏q
ℓ=1 c(Yℓn0 · · ·Y(ℓ−1)n0+1))

1/q < 1 on a set Ω1 such that
IP (Ω1) = 1. For x, y ∈M and q ≥ 1, we can write d(Rqn0x,Rqn0y) ≤ c(Rqn0) d(x, y), so that
limq d(Rqn0x,Rqn0y) = 0 on Ω1. Let ν ′ be a P -invariant probability distribution on M . For
each bounded continuous function f on M , we have

ν ′(f) − ν(f) =
∫

M
E[f(Rqn0x) − f(Rqn0y)]dν

′(x)dν(y),

passing to the limit, we get ν ′(f) − ν(f) = 0. We conclude that ν ′ = ν.

It remains to establish the geometric ergodicity in the Prohorov distance dP . Let f be a
bounded uniformly lipschitz function on M . Then, for all x, y ∈M and n ≥ 1, we have

|P nf(x) − P nf(y)| ≤
∫

G
|f(gx) − f(gy)|dπ∗n(g) ≤ m0(f)d(x, y)

∫

G

d(gx, gy)

d(x, y)
dπ∗n(g)

≤ m0(f)d(x, y) C(n)
1
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where m0(f) = sup{|f(x) − f(y)|
d(x, y)

, x, y ∈ M, x 6= y}. Let µ be the law of Z, and assume

that φ0(·) = d(·, x0) is µ-integrable. By integrating the previous inequality with respect to

both dν(x) and dµ(y), it follows that |ν(f) − µP n(f)| ≤ C(n)
1 m0(f)(ν(φ0) + µ(φ0)). This

bound proves that ν − µP n is a continuous linear functional on the space of all bounded
uniformly lipschitz functions on M endowed with its canonical norm. Moreover we have
‖ν −µP n‖ ≤ C ′C(n)

1 with C ′ = ν(φ0) + µ(φ0). Writting n = qn0 + r with r ∈ {0, . . . , n0 − 1}
and using the fact that c(·) is submultiplicative, we easily see that C(n)

1 ≤ C ′′(C(n0)
1 )

n
n0 . Since

dp(ν, µP
n) ≤ 2‖ν − µP n‖ 1

2 , see Dudley (1989), the last assertion of Theorem I follows with

κ0 = (C(n0)
1 )

1
n0 . 2

4.2 Outlines of the method

As mentionned in Introduction, the main idea of this work consists in applying the method
described in Hennion and Hervé (2001) to the function ξ and to the Markov chain (Xn)n≥0

with the state space G×M and the transition probability Q defined by

(g, y) ∈ G×M, B ∈ G ×M, Q((g, y), B) =
∫

G
1B(h, gy)dπ(h).

However, we observed in Chapter X of Hennion and Hervé (2001) devoted to Lipschitz
kernels, that, because of the special form of Q, the essential part of the study can be per-
formed with the help of the transition probability P and of the Fourier kernels P (t), t ∈ IR,
associated to P and ξ, which are defined, for any bounded measurable function f on M , by

y ∈M, P (t)f(y) =
∫

G
eitξ(g,y)f(gy)dπ(g).

This is due to the fact that, for all functions f as above, we have Q(f ◦ j) = (Pf) ◦ j, where
j is the action of G on M . Then, in the sequel, we shall only use the kernels P (t) ; the next
statement indicates that these kernels are sufficient for our purpose.

Basic Lemma. Let f be a bounded measurable function on M , and denote by µ the distri-
bution of Z. Then we have for n ≥ 1, t ∈ IR

IE
[

f(RnZ)eitSZ
n

]

= µ(P (t)nf).

Proof. Set SZ
0 = 0. For n ≥ 1, we have

IE
[

f(RnZ)eitSZ
n

]

= IE
[

f(YnRn−1Z)eit(SZ
n−1+ξ(Yn,Rn−1Z))

]

.

Since (Z, Y1, . . . , Yn−1) and Yn are independent r.v., Fubini’s theorem gives

IE
[

f(RnZ)eitSZ
n

]

= IE
[

eitSZ
n−1

∫

G
f(gRn−1Z)eitξ(g,Rn−1Z)dπ(g)

]

= IE
[

eitSZ
n−1(P (t)f)(Rn−1Z)

]

.
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The desired formula for n = 1 holds because the second member equals IE[P (t)f(Z)] =
µ(P (t)f). Suppose now that the stated formula is valid at rank n − 1, n ≥ 2. Then, from
the previous relation and the fact that P (t)f is a bounded measurable function on M , we

conclude that IE[f(RnZ)eitSZ
n ] = µ(P (t)n−1(P (t)f)). This completes the proof. 2

Theorems A-B-C-S will be direct consequences of the extensions A’-B’-C’-S’ stated in Section
9. The outline of the argumentation is the following. In Section 5, we shall introduce spaces
Bγ , which depend on a real parameter γ > 0 and are composed of locally Lipschitz functions
on M . Three norms denoted by N∞,γ, Nγ and N1,γ , will be defined on Bγ , it will be proved
that they are equivalent, but each of them will be suited to a part of the proof. In this
way, in Section 5.3, we shall see that the use of Nγ is convenient to establish that, for
suitable γ, P is quasi-compact on Bγ , and furthermore that the number 1 is the unique
peripheral eigenvalue of P . In Section 6 the norms N∞,γ will be helpful for the study of
the behaviour of the function P (t) near t = 0. For this purpose, it will be worth noticing
that, for γ′ < γ, P (t) may be viewed as a bounded linear map from Bγ′ to Bγ ; indeed
the derivative kernels of P (t), which in general do not define bounded endomorphisms of
(Bγ , N∞,γ), can be considered on the other hand as bounded linear maps from Bγ′ to Bγ

for suitable γ′ < γ, ; of course this will be a less restricting property because the space Bγ

strictly contains Bγ′ and is endowed with a weaker norm. In Section 7, the norm N1,γ will
be an essential tool to apply a perturbation Theorem due to G. Keller and C. Liverani from
which it will follow that P (t) are perturbed operators of P for small |t|. The interest of
this perturbation theorem is that it only requires P (·) to be continuous as a map taking
values in the space of bounded linear map from (Bγ , N1,γ) to (Bγ, ν(| · |)) ; this is the key
point of this study, See § 6.1. In particular this theorem ensures that, for small |t|, P (t) has
only one dominating simple eigenvalue, λ(t), on Bγ , and we shall establish in Section 8 that
the Taylor’s expansions for P (t) at t = 0 obtained in Section 6 lead to expansions of the
eigenelements belonging to λ(t). Then, in Section 9, by using the previous preparation and
by applying the method described in Hennion and Hervé (2001), we shall be in a position to
prove limit theorems. Notice that renewal and large deviations theorems for the sequence
(SZ

n )n≥1 might be derived from similar techniques.

5 The space Bγ and quasi-compactness of P

5.1 Conventions and notations

From now on, we fix γ0 > 0 and n0 ∈ IN∗ such that Condition H(γ0) holds, that is :

Mγ0+1 = π(δ̃γ0+1) < +∞, M′
2γ0+1 = π(c δ̃2γ0) < +∞, C(n0)

2γ0+1 = π∗n0(c max{c, 1}2γ0) < 1.

According to the subsequent statements, some additional conditions will be imposed on γ0.
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Lemma 5.1. There exists a real number λ0 ∈]0, 1] such that

ϑ0 =
∫

G
c(g)

(

max{c(g), 1}+ λ0d(gx0, x0)
)2γ0

dπ∗n0(g) < 1.

Proof. Since c(g) (max{c(g), 1} + λ0d(gx0, x0))
2γ0 ≤ c(g) δ̃(g)2γ0 , and the functions c, δ̃ are

submultiplicative, the lemma follows from the two last conditions of H(γ0) and Lebesgue’s
theorem. 2

Now we fix a λ0 ∈]0, 1] satisfying the previous inequality.

For x, y ∈M , g ∈ G, we set

• p(x) = 1 + λ0d(x, x0)

• δ(g) = max{c(g), 1} + λ0d(gx0, x0).

Notice that p ≤ 1 + d(·, x0) ≤ 1
λ0
p, and δ ≤ δ̃ ≤ 2

λ0
δ. Besides, for γ > 0, let us write

• ∆γ(x, y) = d(x, y)p(x)γp(y)γ.

With the help of these elements, we now define the space Bγ composed of locally Lipschitz
functions on M , and we define four equivalent norms on this space. Such spaces, introduced
in Le Page (1983), have already been used by several authors in order to prove the quasi-
compactness of probability kernels having a contracting property, See Milhaud and Raugi
(1989), Peigné (1993) ; a similar statement will be established in Section 5.3.

5.2 Definitions of Bγ and of the norms N∞,γ, N∞,γ,γ̃, Nγ and N1,γ

For γ > 0, we denote by Bγ the space of all complex valued locally Lipschitz functions on
M such that

mγ(f) = sup
{ |f(x) − f(y)|

∆γ(x, y)
, x, y ∈M, x 6= y

}

< +∞.

The inequality ∆γ(x, x0) = d(x, x0)p(x)
γ ≤ 1

λ0
p(x)γ+1 ensures that, for all f ∈ Bγ , we have

|f(x)| ≤ |f(x0)| + 1
λ0
mγ(f)p(x)γ+1, thus supx∈M

|f(x)|
p(x)γ+1 < +∞. Consequently Bγ can be

equipped with the norm

• N∞,γ(f) = mγ(f) + |f |γ, where |f |γ = sup{ |f(x)|
p(x)γ+1

, x ∈M}.

Let γ̃ > γ. As pγ̃+1 ≥ pγ+1, we have, for f ∈ Bγ, |f |γ̃ = supx∈M
|f(x)|

p(x)γ̃+1 < +∞, we set

• N∞,γ,γ̃(f) = mγ(f) + |f |γ̃.
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Since Mγ0+1 < +∞ and C(n0)
γ0+1 ≤ C(n0)

2γ0+1 < 1, the P -invariant probability measure, ν, whose
existence is ascertained by Theorem I, is such that

∫

M
d(x, x0)

γ0+1dν(x) < +∞.

Therefore, for every γ ∈]0, γ0], ν integrates pγ+1, and thus integrates all the functions of Bγ ,
so that we can define on Bγ the following norms

• Nγ(f) = mγ(f) + |ν(f)|
• N1,γ(f) = mγ(f) + ν(|f |)

Proposition 5.2. Let γ, 0 < γ ≤ γ0. The four norms N∞,γ, N∞,γ,γ̃, Nγ and N1,γ are
equivalent on Bγ. When equipped with one of these norms, Bγ is a Banach space.

Proof. The fact that (Bγ , N∞,γ) is a Banach space is well-known.
- N∞,γ and N∞,γ,γ̃ are equivalent. Since |f |γ̃ ≤ |f |γ, we have N∞,γ,γ̃(f) ≤ N∞,γ(f). Con-
versely, for x ∈M ,

|f(x)|
p(x)γ+1

≤
|f(x0)| + 1

λ0
mγ(f)p(x)γ+1

p(x)γ+1
≤ |f(x0)| +

1

λ0
mγ(f).

The bounds |f(x0)| ≤ |f |γ̃ and 1 ≤ λ−1
0 prove that |f |γ ≤ λ−1

0 N∞,γ,γ̃(f), consequently
N∞,γ(f) ≤ (1 + λ−1

0 )N∞,γ,γ̃(f).
To establish that Nγ(·) and N∞,γ(·) are equivalent, we proceed as in Hennion and Hervé
(2001) (Chap. X).

Lemma 5.3. (Bγ , Nγ) is a Banach space.

Proof. Let (fn)n be a Cauchy sequence in (Bγ , Nγ). Set gn = fn − fn(y0), where y0 is any
point of M . We have |gq(x)− gp(x)| ≤ mγ(gq − gp)∆γ(x, y0) = mγ(fq − fp)∆γ(x, y0) because
gn(y0) = 0. Hence ν(|gq − gp|) ≤ ν(∆γ(·, y0)) mγ(fq − fp). Recall that ν(pγ+1) < +∞, so
that ν(∆γ(·, y0)) < +∞.
Consequently (gn)n is a Cauchy sequence in the Lebesgue space IL1(ν); therefore it converges
in this space, and (ν(gn))n converges in C . Moreover, (ν(fn))n converges in C because,
by asumption, it is a Cauchy sequence. It follows that (fn(y0))n converges to a complex
number, say f(y0), and then that (fn)n converges in IL1(ν). Because y0 is arbitrary, (fn)n

converges pointwise to f . We have limn→+∞ ν(f − fn) = 0. The properties f ∈ Bγ and
limn→+∞mγ(f − fn) = 0 are obtained by standard arguments. 2

- Nγ and N∞,γ are equivalent. For f ∈ Bγ , we have |ν(f)| ≤ ν(|f |) ≤ |f |γν(pγ+1). Thus
Nγ(f) ≤ (1 + ν(pγ+1))N∞,γ(f). Since (Bγ , Nγ) and (Bγ, N∞,γ) are Banach spaces, the open
mapping theorem yields the claimed equivalence, see Dunford and Schwartz (1958).

- N1,γ and N∞,γ are equivalent. We have |f(y)| ≤ |f(x)| + mγ(f)d(x, y)p(x)γp(y)γ for all
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x, y ∈M . By integrating this inequality with respect to the measure ν, we obtain

|f(y)| ≤ ν(|f |) +mγ(f)p(y)γ
∫

M
d(x, x0)p(x)

γdν(x)

+ mγ(f)d(y, x0)p(y)
γ

∫

M
p(x)γdν(x)

≤ ν(|f |) + 2λ−1
0 mγ(f)p(y)γ+1ν(pγ+1),

hence N∞,γ(f) ≤ (1 + 2λ−1
0 ν(pγ+1))N1,γ(f).

Finally we have N1,γ(f) = mγ(f)+ ν(|f |) ≤ mγ(f)+ |f |γν(pγ+1) ≤ (1+ ν(pγ+1))N∞,γ(f). 2

We conclude this subsection by giving a statement that will be useful for the spectral study
of P (t).

Lemma 5.4.
(i) For 0 < γ < γ̃, the canonical embedding from (Bγ, N∞,γ,γ̃) into (Bγ , | · |γ̃) is compact.
(ii) For γ ∈]0, γ0], the canonical embedding from (Bγ , N1,γ) into (Bγ , ν(| · |)) is compact.

Proof. (i) Let (fn)n be a sequence of functions in Bγ such that N∞,γ,γ̃(fn) ≤ 1 for all n.
Then (fn)n is equicontinuous on every compact set of M , and the diagonal process ensures
that there exists a subsequence (fφ(n))n which converges uniformly on every compact set of
M to a function f ∈ Bγ satisfying N∞,γ,γ̃(f) ≤ 1. To prove (i), it suffices now to show that
limn |f − fφ(n)|γ̃ = 0. Observe that |f − fn|γ ≤ λ−1

0 N∞,γ,γ̃(f − fn) ≤ 2λ−1
0 (proof of Prop.

5.2). Let ε > 0. As γ < γ̃, there exists a positive constant c such that, for all n ∈ IN and

for all x ∈ M satisfying d(x, x0) > c, we have
|f(x) − fn(x)|

p(x)γ̃+1
≤ 2λ−1

0 p(x)γ+1

p(x)γ̃+1
≤ ε. Besides,

on the compact set Mc = {x : x ∈ M, d(x, x0) ≤ c}, (fφ(n))n converges uniformly to f , thus

there exists N ∈ IN such that, for all n ≥ N and all x ∈ Mc, we have
|f(x)−fφ(n)(x)|

p(x)γ̃+1 ≤ ε.

Consequently, for n ≥ N , we obtain |f − fφ(n)|γ̃ ≤ ε.

(ii) Now let (fn)n be a sequence of functions in Bγ such that N1,γ(fn) ≤ 1. Since N1,γ and
N∞,γ are equivalent (Prop. 5.2), the sequence (fn)n is bounded in (Bγ , N∞,γ) by a constant
c′. As above we can check that there exits a subsequence (fφ(n))n which converges pointwise
to a function f ∈ Bγ . Since |fn| ≤ c′pγ+1 and pγ+1 is ν-integrable, the Lebesgue theorem
ensures that limn ν(|f − fφ(n)|) = 0. 2

5.3 Quasi-compactness of P on Bγ

The following statement shows that, for γ ∈]0, γ0], P is a quasi-compact operator on Bγ .
This property will also follow from arguments given in Section 7 ; but Theorem 5.5 below
provides a precise description of the peripheral spectrum of P : 1 is a simple eigenvalue and
it is the unique peripheral spectral value of P .
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Theorem 5.5. For every γ ∈]0, γ0], P is a bounded linear operator on Bγ, and we have the
following decomposition

Bγ = (C · 1) ⊕Hγ,

where Hγ = {f : f ∈ Bγ , ν(f) = 0} is a closed P -invariant subspace of Bγ such that

r(P|Hγ
) ≤ (ϑ0)

1
n0 < 1 ; the real number ϑ0 < 1 has been defined in Lemma 5.1, and r(P|Hγ

)
is the spectral radius of the restriction of P to Hγ.

Proof. Here it is convenient to consider Bγ equipped with the norm Nγ . We have for all
k ≥ 1

∫

G

∆γ(gx, gy)

∆γ(x, y)
dπ∗k(g) =

∫

G

d(gx, gy)

d(x, y)

(

p(gx)

p(x)

)γ(

p(gy)

p(y)

)γ

dπ∗k(g)

≤
∫

G
c(g) δ(g)2γdπ∗k(g) = Dk(γ).

Since δ ≤ δ̃, and c and δ̃ are submultiplicative (Lemma 4.1), Hypothesis M′
2γ0+1 < +∞ and

Fubini’s theorem ensure that Dk(γ) < +∞. Let f ∈ Bγ . We have for x, y ∈M ,

|P kf(x) − P kf(y)| ≤
∫

G
|f(gx) − f(gy)|dπ∗k(g)

≤ mγ(f)∆γ(x, y)
∫

G

∆γ(gx, gy)

∆γ(x, y)
dπ∗k(g) ≤ mγ(f)∆γ(x, y)Dk(γ).

With k = 1 the previous proves that Pf ∈ Bγ , and mγ(Pf) ≤ D1(γ) mγ(f). Since ν(Pf) =
ν(f), we see that P is a bounded linear operator on (Bγ , Nγ). As ν(pγ+1) < +∞, the
distribution ν defines a continuous linear functional on Bγ , consequently Hγ = Ker ν is a
closed subspace ; it is P -invariant because νP = ν.
On the other hand, with k = n0, since Dn0(γ) ≤ ϑ0 (Lemma 5.1), we get mγ(P

n0f) ≤
ϑ0mγ(f), and by induction mγ(P

qn0f) ≤ ϑq
0mγ(f) for every q ≥ 0. In particular, if h ∈ Hγ,

then, for every q ≥ 1, we have ν(P qn0h) = ν(h) = 0, thus Nγ(P
qn0h) = mγ(P

qn0h) ≤
ϑq

0mγ(h) = ϑq
0Nγ(h). Thus r(P|Hγ

) = (r(P n0

|Hγ
))

1
n0 ≤ (ϑ0)

1
n0 .

The identity f = ν(f) · 1 + (f − ν(f) · 1) leads to the stated decomposition. 2

6 Fourier operators on Bγ

Recall that the Fourier kernels P (t), t ∈ IR, associated to P and ξ are defined by

(P (t)f)(x) =
∫

G
eitξ(g,x)f(gx)dπ(g),

and that ξ is a real valued function on G×M satisfying Condition (RS) of Section 2.
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We shall prove that, for suitable η′, P (t) acts continuously on Bη′ . But, for 0 < η′ < η, it will
also be convenient to see P (t) as a bounded linear map from Bη′ to Bη ; this is true by virtue
of the following topological embedding that will be exploited repeatedly in the sequel :

if 0 < η′ < η, we have Bη′ ⊂ Bη, and, for all f ∈ Bη′ , N∞,η(f) ≤ N∞,η′(f).

Let L(Bη′ ,Bη) be the space of all bounded linear maps from (Bη′ , N∞,η′) to (Bη, N∞,η). We
denote by ‖·‖η′,η the operator norm on L(Bη′ ,Bη) ; when η′ = η, we merely set ‖·‖η = ‖·‖η,η.

6.1 Preliminary remarks about the function P (·)

As already mentionned in Section 2, the spectral method described in Hennion and Hervé
(2001) consists in applying perturbation theory to P (t), so that the map P (·) has to be
sufficiently regular.
In order to understand what are the restrictions imposed here by this property, suppose that
Condition (RS) holds with r > 0, and let us study the quantity |P (t)f − Pf |γ for f ∈ Bγ .
Let ε ∈]0, 1]. From the inequality |eiu−1| ≤ 2|u|ε, Condition (RS), and Lemma 4.1, we have
for all x ∈M ,

|P (t)f(x) − Pf(x)| ≤
∫

G
|eitξ(g,x) − 1||f(gx)|dπ(g)

≤ 2|t|ε(1 + d(x, x0))
rε|f |γp(x)γ+1

∫

G
R(g)ε p(gx)

γ+1

p(x)γ+1
dπ(g) (I ′)

≤ 2C|t|ε |f |γp(x)γ+1(1 + d(x, x0))
rε (I)

with C =
∫

GR(g)εδ(g)γ+1dπ(g). Because (1+d(·, x0))
rε is not bounded onM , this estimation

does not imply that limt→ 0 |P (t)f − Pf |γ = 0. Similar complications appear when one
considers mγ(P (t)f − Pf).

To get round these difficulties in the special case of autoregressive processes (§ 3), Milhaud
and Raugi (1989) have used a space of locally Lipschitz functions similar to Bγ , which is
defined by replacing p(·)γ+1 with p(·)γ+1eλd(·,x0), where λ is a positive parameter. In this
case, provided that the strict contraction and exponential moment conditions given in the
above mentioned paper are satisfied, one can verify that the right member of (I’) is bounded,
and more generally, that P (·) is a regular function from a neighbourhood of t = 0 to L(Bγ).

In this paper, we use another method which enables us to weaken the contraction and moment
hypotheses considered in previous papers ; this method is based on the two following facts :

1. By integrating (I) with respect to the measure ν, we obtain ν(|P (t)f−Pf |) ≤ C ′|t|εN1,γ(f).
This weak continuity property will be sufficient to apply to P (t) a perturbation theorem of
Keller and Liverani (1999).
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2. Let 0 < η′ < η. For f ∈ Bη′ , we have

|P (t)f(x) − Pf(x)| ≤ 2Cλ−rε
0 |t|ε |f |η′ p(x)η′+rε+1,

so that, if η′ + rε ≤ η, we get |P (t)f − Pf |η ≤ 2Cλ−rε
0 |t|ε|f |η′. This leads to investigate the

continuity and, more generally, the existence of Taylor’s expansions of P (t) at t = 0 when
P (·) is viewed as a L(Bη′ ,Bη)-valued map (instead of a L(Bη′)-valued map) ; this is the aim
of Sections 6.2 and 6.3. Let us mention that similar methods are used in Le Page (1989) and
Hennion (1991) for other purposes.

6.2 Taylor’s expansions of P (t) at t = 0

For τ > 0 and any non-negative measurable functions U , V on G, we set

Iτ (U, V ) =
∫

G
U(g) c(g) δ(g)2τdπ(g) +

∫

G
V (g) δ(g)τ+1dπ(g).

Iτ (U, V ) is an additive positively homogeneous function of both U and V , and an increasing
function of the variable τ because δ(·) ≥ 1.
Observe that, for 0 < γ ≤ γ0, we have Iγ(1, 1) ≤ M′

2γ0+1 + Mγ0+1 < +∞.

Let us state the three main results of this section.

Proposition 6.1. Suppose s+ 1 ≤ γ0, and let γ be a real number such that s+ 1 ≤ γ ≤ γ0

and
Iγ(0, S) =

∫

G
S(g)δ(g)γ+1dπ(g) < +∞.

Then, for all t ∈ IR, P (t) ∈ L(Bγ). Besides there exists a constant C such that we have, for
all f ∈ Bγ,

|P (t)n0f |γ ≤ Iγ(0, 1) |f |γ, mγ(P (t)n0f) ≤ ϑ0mγ(f) + C |t| Iγ(0, S) |f |γ,

where ϑ0 < 1 is the real number defined in Lemma 5.1.

Proposition 6.2. Suppose that the following condition holds

U0(η
′, η) : 0 < η′ ≤ γ0, η′ < η, s+ 1 ≤ η, Iη′

(0, S) < +∞.

Then lim
|t|→0

‖P (t) − P‖η′,η = 0.

With the view of obtaining Taylor’s expansions of P (t) at t = 0, let us introduce, for k ∈ IN∗,
the kernels

(Lkf)(x) =
∫

G
(iξ(g, x))kf(gx)dπ(g).

Proposition 6.3. Let n ≥ 1. Suppose that the following condition holds
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Un(η′, η) : 0 < η′ ≤ γ0, η′ +nr < η, s+1+(n−1)r < η, Iη′

(Rn, (R+S)Rn−1) < +∞.

Then, for k = 1, . . . , n, Lk ∈ L(Bη′ ,Bη) and

lim
|t|→0

1

|t|n
∥

∥

∥

∥

P (t) − P −
n

∑

k=1

tk

k!
Lk

∥

∥

∥

∥

η′,η
= 0.

6.3 Proofs of Propositions 6.1-6.2-6.3

The main tool is Lemma 6.4 below which will be stated in the next technical context.

Let k ∈ IN∗. Consider a complex valued measurable function q on Gk ×M .

Let α, β ∈ IR+, and let A,B be non-negative measurable functions on Gk ×M . We shall say
that the inequalities (AB) are satisfied if, for all h ∈ Gk and for all (x, y) ∈ M2 satisfying
d(x0, y) ≤ d(x0, x), we have

(A) |q(h, x)| ≤ A(h, x) p(x)α

(B) |q(h, x) − q(h, y)| ≤ B(h, x)d(x, y) p(x)β.

For x ∈ M , we denote by Ax and Bx the non-negative functions defined on Gk by Ax(h) =
A(h, x) and Bx(h) = B(h, x).
For h = (h1, . . . , hk) ∈ Gk, we set h⋆ = h1 · · ·hk, and we denote by π⊗k the product measure
on Gk. If x ∈ M and if f is a measurable function on M such that h 7→ q(h, x)f(h⋆x) is
π⊗k-integrable, then we set

(Kf)(x) =
∫

Gk
q(h, x)f(h⋆x)dπ⊗k(h).

For τ > 0 and for any non-negative measurable functions U , V on Gk, we set

Iτ
k (U, V ) =

∫

Gk
U(h) c(h⋆) δ(h⋆)2τdπ⊗k(h) +

∫

Gk
V (h) δ(h⋆)τ+1dπ⊗k(h).

This integral only occurs in the following technical lemma ; notice that it equals Iτ (U, V )
when k = 1.

Lemma 6.4. Let 0 < η′ ≤ η. Suppose that, for all x ∈M , we have Iη′

k (Ax, Ax +Bx) < +∞.
Then, for f ∈ Bη′ and x ∈ M , Kf(x) is defined ; moreover, for x, y ∈ M such that x 6= y
and d(y, x0) ≤ d(x, x0), we have the inequalities

|Kf(x)|
p(x)η+1

≤ Iη′

k (0, Ax)

p(x)η−η′−α
|f |η′

|Kf(x) −Kf(y)|
∆η(x, y)

≤ Iη′

k (Ax, 0)

p(x)η−η′−α
mη′(f) +

Iη′

k (0, Bx)

p(x)η−β−1
|f |η′.
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To apply this lemma, it will be worth noticing that, for η > 0 and for any function f onM , we

have, owing to symetry, mη(f) = sup
{ |f(x) − f(y)|

∆η(x, y)
, x, y ∈M, x 6= y, d(y, x0) ≤ d(x, x0)

}

.

Proof of the lemma. We shall use the inequalities supx∈M
p(gx)
p(x)

≤ δ(g) (Lemma 4.1) and

|f(g ·)| ≤ |f |η′p(g ·)η′+1. Let f , x and y as in the statement. We have

∫

Gk
|q(h, x) f(h⋆x)|dπ⊗k(h) ≤ p(x)α|f |η′

∫

Gk
A(h, x)p(h⋆x)η′+1dπ⊗k(h)

≤ p(x)α+η′+1|f |η′Iη′

k (0, Ax).

It follows that Kf(x) is defined and verifies the first stated inequality.
To prove the second one, let us write

|Kf(x) −Kf(y)| ≤ A1(x, y) + A2(x, y)

with A1(x, y) =
∫

Gk
|q(h, x)| |f(h⋆x) − f(h⋆y)| dπ⊗k(h)

A2(x, y) =
∫

Gk
|f(h⋆y)| |q(h, x) − q(h, y)| dπ⊗k(h).

Then

A1(x, y)

∆η(x, y)
≤ mη′(f)p(x)α

∫

Gk
A(h, x)

d(h⋆x, h⋆y) p(h⋆x)η′

p(h⋆y)η′

d(x, y) p(x)ηp(y)η
dπ⊗k(h)

≤ mη′(f)
(

p(x)α

p(x)η−η′

)(

1

p(y)η−η′

)
∫

Gk
A(h, x) c(h⋆) δ(h⋆)2η′

dπ⊗k(h)

≤ Iη′

k (Ax, 0)

p(x)η−η′−α
mη′(f) (because p(y)η−η′ ≥ 1) (M1)

Consider now the quantity A2(x, y). By using the inequality d(y, x0) ≤ d(x, x0), we obtain

A2(x, y) ≤ |f |η′d(x, y)p(x)β
∫

Gk
B(h, x)p(h⋆y)η′+1dπ⊗k(h)

≤ |f |η′ d(x, y) p(x)β p(y)η′+1 Iη′

k (0, Bx)

≤ |f |η′ d(x, y) p(x)β+1 p(y)η′ Iη′

k (0, Bx), (M′2)

and from p(y)η′ ≤ p(y)η, we get

A2(x, y)

∆η(x, y)
≤ Iη′

k (0, Bx)

p(x)η−β−1
|f |η′ (M2).

We conclude by combining (M1) and (M2). 2

We shall also need the next bounds.
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Lemma 6.5. For n ∈ IN and x ∈ IR, we set φn(x) = eix −
n

∑

k=0

(ix)k

k!
.

For all x, y ∈ IR, we have

1. |φn(x)| ≤ 2|x|n min{1, |x|},
2. |eiy − eix| ≤ |y − x|,
3. for n ≥ 1, |φn(y) − φn(x)| ≤ 2|y − x|

(

|x|n−1 min{1, |x|} + |y|n−1 min{1, |y|}
)

,

Proof. The assertion 2 is clear, and it implies that |φ0(x)| ≤ min{2, |x|} ≤ 2 min{1, |x|}.

Let n ≥ 1. The Taylor’s formula to the orders n and n − 1 with integral remainder shows

that |φn(x)| ≤
|x|n+1

(n+ 1)!
and |φn(x)| = |φn−1(x) −

(ix)n

n!
| ≤ 2

|x|n
n!

. Hence

|φn(x)| ≤ min{2|x|n
n!

,
|x|n+1

(n+ 1)!
} ≤ 2|x|n min{1, |x|}.

Since φ′
n(x) = iφn−1(x) for n ≥ 1, we have |φn(x)−φn(y)| ≤ |x−y| sup{|φn−1(t)| : t ∈ [x, y]}.

This inequality and point 1 prove Assertion 3. 2

Now let us prove Propositions 6.1-6.3.

Proof of Proposition 6.1. Let k ∈ IN∗. By induction we easily prove that

(P (t)kf)(x) =
∫

Gk
eitξk(h,x)f(h⋆x)dπ⊗k(h),

with ξk(h, x) = ξ(hk, x)+ξ(hk−1, hkx)+· · ·+ξ(h1, h2 · · ·hkx), for all h = (h1, . . . , hk) ∈ Gk.

Therefore K = P (t)k is associated to the kernel q(h, x) = eitξk(h,x). We have |q(h, x)| = 1 ;
Condition (RS) and Lemma 4.1 give for g1, g2 ∈ G

|ξ(g1, g2x) − ξ(g1, g2y)| ≤ S(g1) d(g2x, g2y) (1 + d(g2x, x0) + d(g2y, x0))
s

≤ λ−s
0 d(x, y)S(g1) c(g2) (p(g2x) + p(g2y))

s

≤ λ−s
0 d(x, y)S(g1) c(g2)δ(g2)

s(p(x) + p(y))s,

hence, if d(x0, y) ≤ d(x0, x), we get

|ξ(g1, g2x) − ξ(g1, g2y)| ≤ 2sλ−s
0 d(x, y)S(g1) c(g2)δ(g2)

sp(x)s.

Finally, by using Lemma 6.5 (Ass. 2) and the facts that δ(·) ≤ δ̃(·) and that c(·), δ̃(·) are
submultiplicative (Lemma 4.1), we obtain that q(h, x) verifies the inequalities (AB) with :

A(h, x) = 1, α = 0, B(h, x) = 2sλ−s
0 |t|Bk(h), β = s,

where Bk(h) =
k

∑

i=1

S(hi) c(hi+1) · · · c(hk) δ̃(hi+1)
s · · · δ̃(hk)

s. We have

Iη
k (A,A+B) = Iη

k (1, 1 + 2sλ−s
0 |t|Bk) ≤ Iγ0

k (1, 1) + 2sλ−s
0 |t|Iγ0

k (0, Bk).
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Since c δ2γ0 ≤ c δ̃2γ0 , δγ0+1 ≤ δ̃γ0+1, and the functions c, δ̃ are submultiplicative, Hypotheses
Mγ0+1 < +∞, M′

2γ0+1 < +∞, and Fubini’s theorem imply that Iγ0

k (1, 1) < +∞. Besides
we have

Iγ
k (0, Bk) ≤

k
∑

i=1

∫

Gk
S(hi)c(hi+1) · · · c(hk)δ̃(hi+1)

s · · · δ̃(hk)
s δ̃(h1)

γ+1 · · · δ̃(hk)
γ+1dπ⊗k(h).

We have δ̃ ≤ 2
λ0
δ, and

∫

G S(g)δ(g)γ+1dπ(g) < +∞, thus
∫

G S(g)δ̃(g)γ+1dπ(g) < +∞. More-

over we have c(g)δ̃(g)γ+1+s ≤ c(g) δ̃(g)2γ0 . It follows from Hypothesis M′
2γ0+1 < +∞ and

Fubini’s theorem that Iγ
k (0, Bk) < +∞.

Now let us apply Lemma 6.4 with η′ = η = γ ≤ γ0.
For k = 1, we get for all f ∈ Bγ

|P (t)f |γ ≤ Iγ(0, 1) |f |γ.

On the other hand, since γ ≥ s+ 1, we have p(x)γ−s−1 ≥ 1, hence, since B1 = S,

mγ(P (t)) ≤ Iγ(1, 0)mγ(f) + 2sλ−s
0 |t| Iγ(0, S)|f |γ.

This proves that P (t) ∈ L(Bγ).
For k = n0, the first inequality is still valid for P (t)n0, while the second one becomes

mγ(P (t)n0f) ≤ Iγ
n0

(1, 0)mγ(f) + 2sλ−s
0 |t| Iγ

n0
(0, Bn0) |f |γ,

with Iγ
n0

(1, 0) ≤ Iγ0
n0

(1, 0) =
∫

G c(h)δ(h)
2γ0dπ∗n0(h) = ϑ0. 2

To establish Propositions 6.2 and 6.3, we shall employ the notation

τ(t, g, x) = min{1, |t|R(g)(1 + d(x0, x))
r}.

Lemma 6.6. Let η > 0 and let U , V be non-negative measurable functions on G such that
Iη(U, V ) < +∞. Then, for all ǫ > 0,

lim
|t|→0

(

sup
x∈M

Iη

(

U(·) τ(t, ·, x), V (·) τ(t, ·, x)
)

(1 + d(x, x0))ǫ

)

= 0.

Proof. Let ρ > 0. We have τ ≤ 1 and, for 1 + d(x0, x) ≤ ρ, we can write τ(t, g, x) ≤
min{1, |t|R(g)ρr} = τρ(t, g). Therefore, comparing ρ with 1 + d(x0, x), we obtain, for all
x ∈M ,

Iη

(

U(·) τ(t, ·, x), V (·) τ(t, ·, x)
)

(1 + d(x, x0))ǫ
≤ ρ−ǫIη(U, V ) + Iη(U(·) τρ(t, ·), V (·) τρ(t, ·)).
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Since lim|t|→0 τρ(t, g) = 0 and τρ ≤ 1, the dominated convergence theorem implies that

lim sup
|t|→0

(

sup
x∈M

Iη

(

U(·) τ(t, ·, x), V (·) τ(t, ·, x)
)

(1 + d(x, x0))ǫ

)

≤ ρ−ǫIη(U, V ).

Since ρ is arbitrary, this provides the desired statement. 2

Proof of Proposition 6.2. Let us consider the kernel q(g, x) = eitξ(g,x) − 1, x ∈M, g ∈ G,
which defines the operator Kt = P (t) − P . By Lemma 6.5 (Ass. 1. with n = 0, and then
Ass. 2.), we have for x ∈M and g ∈ G

|q(g, x)| = |eitξ(g,x) − 1| ≤ 2 min{1, |t| |ξ(g, x)|} ≤ 2τ(t, g, x),

and, if d(y, x0) ≤ d(x, x0),

|q(g, x) − q(g, y)| ≤ |t| |ξ(g, x)− ξ(g, y)| ≤ 2s|t|S(g)d(x, y)(1 + d(x0, x))
s.

Lemma 6.4 applied with k = 1, and

A(g, x) = 2τ(t, g, x), α = 0, B(g, x) = 2sλ−s
0 |t|S(g), β = s,

yields
|Ktf(x)|
p(x)η+1

≤ 2λη′−η
0

Iη′

(0, τ(t, ·, x))
(1 + d(x, x0))η−η′

|f |η′

|Ktf(x) −Ktf(y)|
∆η(x, y)

≤ 2λη′−η
0

Iη′

(τ(t, ·, x), 0)

(1 + d(x, x0))η−η′
mη′(f) + 2sλ1−η

0 |t| Iη′

(0, S(·))
(1 + d(x, x0))η−s−1

|f |η′ .

Since η − η′ > 0, η − s − 1 > 0, Iη′

(0, 1) ≤ Mγ0+1 < +∞, and Iη′

(1, 0) ≤ M′
2γ0+1 < +∞,

we conclude by using Lemma 6.6 with (U, V ) = (0, 1) and (U, V ) = (1, 0). 2

Proof of Proposition 6.3. Let us consider the kernel q(g, x) = eitξ(g,x) −
n

∑

k=0

(itξ(g, x))k

k!
,

and set Kt = P (t) − P −
n

∑

k=1

tk

k!
Lk.

Assertion 1 of Lemma 6.5 implies that we have, for x ∈M and g ∈ G

|q(g, x)| ≤ 2|t|n|ξ(g, x)|n min{1, |t| |ξ(g, x)|} ≤ 2|t|nR(g)n (1 + d(x0, x))
nr τ(t, g, x),

while Assertion 3 shows that, for d(x0, y) ≤ d(x0, x),

|q(g, x) − q(g, y)| ≤ 2|t|n|ξ(g, x) − ξ(g, y)|
×

(

|ξ(g, x)|n−1 min{1, |t| |ξ(g, x))|}+ |ξ(g, y)|n−1 min{1, |t| |ξ(g, y))|}
)

≤ 2s+2|t|nS(g)d(x, y)R(g)n−1
(

1 + d(x0, x)
)s+(n−1)r

τ(t, g, x).
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Therefore the inequalities (AB) hold with k = 1, and

A(g, x) = 2λ−nr
0 |t|nRn(g) τ(t, g, x), α = nr,

B(g, x) = 2s+2λ−β
0 |t|nS(g)Rn−1(g) τ(t, g, x), β = s+ (n− 1)r.

From Lemma 6.4 with k = 1, it follows that

|Ktf(x)|
p(x)η+1

≤ 2λη′−η
0 |t|n Iη′

(0, Rn(·)τ(t, ·, x))
(1 + d(x, x0))η−η′−nr

|f |η′

|Ktf(x) −Ktf(y)|
∆η(x, y)

≤ 2λη′−η
0 |t|n Iη′

(Rn(·)τ(t, ·, x), 0)

(1 + d(x, x0))η−η′−nr
mη′(f)

+ 2s+2λ1−η
0 |t|n Iη′

(0, S(·)Rn−1(·)τ(t, ·, x))
(1 + d(x, x0))η−β−1

|f |η′.

Since η−η′−rn > 0, η−β−1 = η−s− (n−1)r−1 > 0, and Iη′

(Rn, (R+S)Rn−1) < +∞,
the previous inequalities imply that Kt ∈ L(Bη′ ,Bη) ; then, by using Lemma 6.6, we get

lim
|t|→0

1

|t|n‖Kt‖η′,η = 0.

Finally it remains to prove that, for k = 1, . . . , n, Lk ∈ L(Bη′ ,Bη). This derives from the
following : on the one hand, P, P (t) ∈ L(Bη′ ,Bη) (Prop. 6.2), and on the other hand, by the

above, we have P (t) − P − ∑n′

k=1
tk

k!
Lk ∈ L(Bη′ ,Bη) for n′ = 0, . . . , n. 2

To end this section, we give an additional statement which completes Proposition 6.1 and
will be helpful in the proof of Proposition 7.4.

Proposition 6.7. Assume s+1 < γ0, and let η and η̃ be such that s+1+(η̃−η) ≤ η < η̃ < γ0

and
I η̃(0, S) < +∞.

Then there exists a constant C such that we have, for all t ∈ IR and f ∈ Bη,

mη(P (t)n0f) ≤ ϑ0mη(f) + C|t| |f |η̃.

Proof. First we establish the following with the notations of Lemma 6.4.

Lemma 6.8. Suppose that the inequalities (AB) hold. Let 0 < η < η̃.
If α = 0, β + 1 + η̃ < 2η, and if, for all x ∈M , Iη

k (Ax, 0) + I η̃
k (0, Bx) < +∞, then we have,

for all f ∈ Bη,
mη(Kf) ≤ Iη

k (Ax, 0)mη(f) + I η̃
k (0, Bx) |f |η̃.

Proof of Lemma 6.8. Let us write, as in the proof of Lemma 6.4, |Kf(x) − Kf(y)| ≤
A1(x, y) + A2(x, y), and let us return to inequalities (M1) and (M’2).

With η′ = η and α = 0, (M1) gives
A1(x, y)

∆η(x, y)
≤ Iη

k (Ax, 0)mη(f).
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The inequality (M’2) holds for any η′ > 0, in particular it is satisfied with η′ = η̃. Besides,
if d(y, x0) ≤ d(x, x0), we have p(y)η̃ = p(y)η̃−ηp(y)η ≤ p(x)η̃−ηp(y)η. Hence A2(x, y) ≤
|f |η̃ d(x, y)p(x)β+1+η̃−ηp(y)η I η̃

k (0, Bx). Since β + 1 + η̃ − η < η, we obtain

A2(x, y)

∆η(x, y)
≤ I η̃

k (0, Bx) |f |η̃.

We conclude by combining the two previous bounds. 2

Let us now prove the proposition. Consider the kernel q(g, x) = eitξn0 (h,x), h ∈ Gn0, x ∈M ,
defining P (t)n0 (see proof of Prop. 6.1) ; it verifies the inequalities (AB) with k = n0, and
α, β, A,B given in the proof of Proposition 6.1. Lemma 6.8 applies to this kernel because
β+1+ η̃ = s+1+ η̃ ≤ 2η, Iη

n0
(Ax, 0) = Iγ0

n0
(1, 0) ≤ ϑ0, and I η̃

n0
(0, Bx) < +∞ ; this last point

can be shown by using Hypothesis I η̃(0, S) < +∞ and a method similar to that employed
in the proof of Proposition 6.1. This proves the proposition. 2

7 The spectrum of P (t) acting on Bγ

We use the standard notations σ(T ) and r(T ) to name the spectrum and the spectral radius
of an operator T , see Dunford and Schwartz (1958). We denote by B′

γ the topological dual
space of Bγ , and by 〈·, ·〉 the canonical bilinear functional on B′

γ × Bγ .

For γ ≤ γ0, the P -invariant probability distribution ν defines an element of B′
γ , and Theorem

5.5 shows that P ∈ L(Bγ), that

σ(P ) ⊂ {1} ∪ {z : z ∈ C , |z| ≤ κ0}, with κ0 = ϑ
1

n0
0 < 1.

and that there exists N(γ) ∈ L(Bγ), with spectral radius r(N(γ)) ≤ κ0 < 1, such that, for
n ≥ 1 and f ∈ Bγ ,

P nf = 〈ν, f〉1 +N n
(γ)f.

The following statement which is obtained by applying to P (·) a perturbation theorem of
Keller and Liverani (1999), asserts firstly that, for small |t|, the spectrum of P (t) is close
to that of P , secondly that a spectral decomposition of the preceding type is still valid for
P (t), and thirdly that the resolvents are uniformly bounded in t for z ranging outside a
neighbourhood of the spectrum of P .

We shall use the following notations.
Let κ′0 and κ′′0 be real numbers such that 0 < κ0 < κ′0 < κ′′0 < 1. Let D0 and D1 be the open
discs of the complex plane defined by

D0 = {z : z ∈ C , |z| < κ′0} D1 = {z : z ∈ C , |z − 1| < 1 − κ′′0}.
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We denote by Γ0 and Γ1 the oriented circles defined respectively as the boundaries of D0

and of Dc
1. We set

R = C \ (D0 ∪ D1) = {z : z ∈ C , |z| ≥ κ′0, |z − 1| ≥ 1 − κ′′0}.

Proposition 7.1. Assume that s+ 1 ≤ γ0. Let γ be such that s+ 1 ≤ γ ≤ γ0 and

Iγ(0, S) =
∫

G
S(g)δ(g)γ+1dπ(g) < +∞.

Then, for all t ∈ IR, P (t) ∈ L(Bγ). Moreover there exists an open interval Iγ containing
t = 0 such that we have the following spectral properties, for t ∈ Iγ, and for P (t) acting on
Bγ :

(a) σ(P (t)) ⊂ D0 ∪ D1, and there exists λ(γ)(t) ∈ C such that σ(P (t)) ∩ D1 = {λ(γ)(t)},

(b) there exists a unique function v(γ)(t), belonging to Bγ, such that we have 〈ν, v(γ)(t)〉 = 1
and P (t))v(γ)(t) = λ(γ)(t)v(γ)(t),

(c) we have Mγ = sup
{

‖(z − P (t))−1‖γ, t ∈ Iγ, z ∈ R
}

< +∞,

(d) there exist φ(γ)(t) ∈ B′
γ and N(γ)(t) ∈ L(Bγ) such that

∀f ∈ Bγ, ∀n ∈ IN∗, P (t)nf = λ(γ)(t)
n〈φ(γ)(t), f〉v(γ)(t) +N(γ)(t)

nf.

with ‖N(γ)(t)
n‖γ ≤ Mγ

2π
(κ′0)

n.

Notice that, for t = 0, we have λ(γ)(0) = 1, v(γ)(0) = 1, φ(γ)(0) = ν, and N(γ)(0) = N(γ).
From the inclusion Bγ′ ⊂ Bγ , for 0 < γ′ < γ, and from Proposition 7.1, we deduce the
following corollary.

Corollary 7.2. Under the conditions of Proposition 7.1, if s + 1 ≤ γ′ < γ ≤ γ0, then, for
all t ∈ Iγ′ ∩ Iγ, we have

λ(γ)(t) = λ(γ′)(t), v(γ)(t) = v(γ′)(t), φ(γ)(t)|Bγ′
= φ(γ′)(t), N(γ)(t)|Bγ′

= N(γ′)(t).

Notations. In accordance with this corollary, when Proposition 7.1 applies to P (t) acting
on Bγ , we set

λ(t) = λ(γ)(t), v(t) = v(γ)(t), φ(t) = φ(γ)(t), N(t) = N(γ)(t).

It will follow from the proof of Proposition 7.1 that we have the following :

Corollary 7.2’. Under the conditions of Proposition 7.1, for s+1 ≤ γ ≤ γ0 and for t ∈ Iγ,
the elements N(t), v(t), φ(t) are given by the following formulae in which integration is
considered in the space L(Bγ)

N(t) =
1

2iπ

∫

Γ0

(z − P (t))−1dz, v(t) =
1

ν(Π(t)1)
Π(t)1, φ(t) = Π(t)∗ν,
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where Π(t) =
1

2iπ

∫

Γ1

(z − P (t))−1dz.

Moreover we have N(t)n =
1

2iπ

∫

Γ0

zn(z − P (t))−1dz and ‖N(t)n‖γ ≤ Mγ

2π
(κ′0)

n.

Proof of Proposition 7.1. The hypotheses are those of Proposition 6.1. Consequently, for all
t ∈ IR, P (t) ∈ L(Bγ).
To establish the assertions (a) to (d), we shall use the results of Keller and Liverani (1999).
Let us specify the context of this paper : the space (here Bγ) on which the collection of
operators (here P (t), t ∈ IR) acts , is endowed with a norm (here N1,γ, § 5.2) with respect
to which the space is complete, and with an auxiliary norm which is dominated by the
preceding one. An easy adaption shows that the results of Keller and Liverani (1999) are
still valid with an auxiliary semi-norm (here ν(| · |)). The lemma below proves that the
required hypotheses are fulfilled.

Lemma 7.3. Under the hypotheses of the proposition :
1. for t ∈ IR, n ∈ IN∗ and f ∈ Bγ, we have ν(|P (t)nf |) ≤ ν(|f |),
2. there exist J ∈ IR+ and an open interval Iγ containing t = 0 such that, for t ∈ Iγ, we
have

∀f ∈ Bγ , N1,γ(P (t)n0f) ≤ (κ′0)
n0N1,γ(f) + J ν(|f |),

3. for all t ∈ Iγ, the essential spectral radius of P (t) is ≤ κ′0,
4. there exists a positive continuous function ϕ, vanishing at t = 0, such that we have, for
all f ∈ Bγ, ν(|P (t)f − Pf |) ≤ ϕ(t)N1,γ(f).

We refer to Hennion and Hervé (2001), Chap. XIV, for the notion of essential spectral radius
of an operator. The property 4 above means that, in a weak sense, for small |t|, P (t) is a
perturbation of P .

Proof of the lemma. 1. As P is non-negative, we get |P (t)nf | ≤ P n|f |, hence the inequality
of point 1, since ν is P -invariant.
2. From Proposition 6.1, we have, for all f ∈ Bγ ,

mγ(P (t)n0f) ≤ κn0
0 mγ(f) + C|t| Iγ(0, S) |f |γ.

As a consequence of the equivalence of the norms N∞,γ and N1,γ , we get a constant K ′,
such that, for all f ∈ Bγ , we have

mγ(P (t)n0f) ≤ κn0
0 mγ(f) +K ′|t|N1,γ(f) =

(

κn0
0 +K ′|t|

)

mγ(f) +K ′|t|ν(|f |).

so that, for |t| ≤ κ
′n0
0 −κ

n0
0

K ′
, we obtain

mγ(P (t)n0f) ≤ (κ′0)
n0mγ(f) + (κ′n0

0 − κn0
0 )ν(|f |).

Using point 1, we get N1,γ(P (t)n0f) ≤ (κ′0)
n0N1,γ(f) + Jν(|f |) with J = κ′n0

0 − κn0
0 + 1.

30



3. Recall that the essential spectral radius of an operator is smaller than its spectral radius,
consequently, point 3 is clear when r(P (t)) ≤ κ′0.
Assume that r(P (t)) > κ′0. Then, from point 1 and the Doeblin-Fortet inequality established
in point 2, and from the fact that the canonical embedding of (Bγ , N1,γ) into (Bγ , ν(| · |)) is
compact (Lemma 5.4), we deduce by means of the Ionescu-Tulcea and Marinescu theorem

or more precisely of Corollary 1 in Hennion (1993) that, for |t| ≤ κ
′n0
0 −κ

n0
0

K ′
, P (t) is quasi-

compact, and that its essential spectral radius is ≤ κ′0.

4. Using the inequality |f(gx)| ≤ |f |γp(gx)γ+1 ≤ |f |γ δ̃(g)γ+1 p(x)γ+1 (Lemma 4.1), we

obtain ν(|P (t)f − Pf |) ≤
∫

G

∫

M
|eitξ(g,x) − 1| |f(gx)|dπ(g)dν(x) ≤ |f |γ ε(t), with

ε(t) =
∫

G

∫

M
|eitξ(g,x) − 1| δ̃(g)γ+1 p(x)γ+1 dπ(g)dν(x).

Since ν(pγ+1) < +∞ and π(δ̃γ+1) = Mγ+1 ≤ Mγ0+1 < +∞, it follows From Lebesgue’s
theorem that ε is a continuous function on IR, which vanishes at t = 0. Point 4 is deduced
from the above inequality and the equivalence of the norms N∞,γ and N1,γ . 2

Now the assertions (a) and (c) of Proposition 7.1 follow directely from the results of Keller
and Liverani (1999) which moreover assert that

Π(γ)(t) =
1

2iπ

∫

Γ1

(z − P (t))−1dz

is a rank 1 bounded projection from Bγ onto Ker(P (t) − λ(t)), and that
ν(|Π(γ)(t)1 − Π(γ)(0)1|) = ν(|Π(γ)(t)1 − 1|) converges to 0 with t.
Therefore, for sufficiently small |t|, we have ν(Π(γ)(t)1) 6= 0, and we can set

v(γ)(t) =
1

ν(Π(γ)(t)1)
Π(γ)(t)1,

this function verifies the condition (b) of Proposition 7.1. The assertion (d) and Corollary
7.2’ also follow from Keller and Liverani (1999). 2

We conclude this section with a result that will be useful for the study of the non-arithmeticity
of ξ (cf. § 9).

Proposition 7.4. Assume that the conditions of Proposition 7.1 are satisfied and reinforced
by s + 1 < γ < γ0 and by the existence of γ̃, γ < γ̃ < γ0, such that I γ̃(0, S) < +∞. Let
t ∈ IR be such that, for P (t) acting on Bγ, we have r(P (t)) ≥ 1. Then r(P (t)) = 1 and P (t)
is quasi-compact on Bγ.

Proof. Since s + 1 < γ < γ0, we can suppose that γ̃ verifies s + 1 + (γ̃ − γ) ≤ γ. For
convenience, we set Ñ(f) = N∞,γ,γ̃(f) = mγ(f) + |f |γ̃ (§ 5.2).
The first inequality of Proposition 6.1, when applied to γ̃ and to the kernel q(g, x) = eitξ(g,x),
shows that

|P (t)f |γ̃ ≤ I γ̃(0, 1)|f |γ̃,
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with I γ̃(0, 1) ≤ Iγ0(0, 1) < +∞. Moreover Proposition 6.7 applied to the couple (γ, γ̃) =
(η, η̃) asserts that there exists a constant C such that, for t ∈ IR and f ∈ Bγ , we have

mγ(P (t)n0f) ≤ κn0
0 mγ(f) + C|t||f |γ̃.

Setting C ′ = C|t| + I η̃(0, 1), we get

Ñ(P (t)n0f) ≤ κn0
0 Ñ(f) + C ′|f |γ̃.

From the fact that P (t) is bounded on (Bγ, | · |γ̃), and since the canonical imbedding of
(Bγ , Ñ) in (Bγ , | · |γ̃) is compact (Lemma 5.4), we deduce by means of Corollary 1 of Hennion
(1993) that, under the condition r(P (t)) ≥ 1, P (t) is quasi-compact on Bγ , and that its
essential spectral radius is ≤ κ0 < κ′0. Consequently there exists an eigenvalue λ of P (t)
such that |λ| = r(P (t)). Let w ∈ Bγ be an eigenfunction associated with λ. For n ≥ 1 we
have |λnw| = |P (t)nw| ≤ P n|w|, hence |λn| |w|γ ≤ |P n|w| |γ ≤ ‖P n|w| ‖∞,γ. The spectral
decomposition in Theorem 5.5 together with the equivalence of the considered norms on Bγ

yield supn ‖P n|w| ‖∞,γ < +∞. Hence |λ| ≤ 1, and at last r(P (t)) = 1. 2

8 Taylor’s expansions for v(·), φ(·), N(·)

The hypotheses in the subsequent statements will imply those of Proposition 7.1 and of its
corollaries ; thus, for small |t|, the eigenelements of the spectral decomposition described in
Proposition 7.1 are defined. We are going to use the Taylor’s expansions of P (·) written in
Proposition 6.3 to obtain Taylor’s expansions for v(·), φ(·), and N(·).

Proposition 8.1. (First order Taylor’s expansions)
Suppose that, for η′ < η, the following condition holds

V1(η
′, η) : s+ 1 ≤ η′ ≤ η′ + r < η ≤ γ0 Iη−r(R,R + S) < +∞.

Then Proposition 7.1 applies to P (t) acting on Bη′ , and the functions v(·), φ(·), and N(·)
from Iη′ in (Bη′ , N∞,η), B′

η′, and L(Bη′ ,Bη) respectively, have a derivative at t = 0. Moreover
there exists a constant K1 such that

∀n ≥ 1, ∀t ∈ Iη′ , ‖N(t)n −N(0)n‖η′,η ≤ K1|t|(κ′0)n.

Proposition 8.2. (Second order Taylor’s expansions)

Suppose that, for η′ < η, the following condition holds

V2(η
′, η) : s+ 1 ≤ η′ ≤ η′ + 2r < η ≤ γ0, Iη−r(R,R + S) + Iη′

(R2, (R+ S)R) < +∞.

Then Proposition 7.1 applies to P (t) acting on Bη′ , and the functions v(·), φ(·) and N(·),
from Iη′ in (Bη′ , N∞,η), B′

η′, and L(Bη′ ,Bη) respectively, have second order Taylor’s expan-
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sions at t = 0. Moreover we have, for all t ∈ Iη′ and n ≥ 1,

N(t)n = N(0)n + tN1,n +
t2

2
N2,n + t2εn(t),

with N1,n, N2,n, εn(t) ∈ L(Bη′ ,Bη), lim
t→ 0

sup
n≥1

‖εn(t)‖η′,η = 0, and sup
n≥1

‖Nj,n‖η′,η < +∞ for

j = 1, 2.

The rest of this section is devoted to the proofs of these propositions. Recall that
R = {z : z ∈ C , |z| ≥ κ′0, |z − 1| ≥ 1 − κ′′0}. For γ ∈]0, γ0], we set

Jγ = sup
z∈R

‖(z − P )−1‖γ < + ∞ (Theorem 5.5).

Under conditions V1(η
′, η) or V2(η

′, η), we have Iη′

(0, S) ≤ Iη−r(0, S) < +∞ and s + 1 ≤
η′ ≤ γ0. Consequently Proposition 7.1 applies to P (t) acting on Bη′ . In particular, for t ∈ Iη′

and for z ∈ R, (z − P (t)) is invertible on Bη′ , and we have

Mη′ = sup
{

‖(z − P (t))−1‖η′ , t ∈ Iη′ , z ∈ R
}

< +∞.

We shall need the following formula. Let B be a Banach space. If U and V are bounded
operators on B such that U and U − V are invertible, we have

(∗) (U − V )−1 =
n

∑

k=0

(U−1V )kU−1 + (U−1V )n+1(U − V )−1.

Actually, if W ∈ L(B), we have I − W n+1 =
∑n

k=0W
k (I − W ), and hence, if I − W is

invertible,

(I −W )−1 =
n

∑

k=0

W k +W n+1(I −W )−1.

The claimed formula follows from the relation (U −V )−1 = (I−U−1V )−1U−1 and the above
equality.
In the proofs below we shall apply (∗) with U = z − P , V = P (t) − P , and thus U − V =
z − P (t). Observe that, in the sequel, all the space parameters γ are between s+ 1 and γ0,
so that conditions U0(η

′, η) and Un(η′, η), n ≥ 1, of Propositions 6.2 and 6.3 can be rewritten
as

U0(η
′, η) : η′ < η, Iη′

(0, S) < +∞.
Un(η′, η) : η′ + nr < η, Iη′

(Rn, (R+ S)Rn−1) < +∞.
Otherwise notice that, if η′ < η1 < η and if T ∈ L(Bη1 ,Bη), then T ∈ L(Bη′ ,Bη) and
‖T‖η′,η ≤ ‖T‖η1,η.

Proof of Proposition 8.1. The next lemma gives a first order Taylor’s expansion for the
resolvent (z − P (t))−1. We set R(z, t) = (z − P (t))−1 and R(z) = R(z, 0) = (z − P )−1.
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Lemma 8.3. Under condition V1(η
′, η), there exists a continuous function R′

· from R to
L(Bη′ ,Bη), such that we have,

lim
t→0

1

|t| sup
z∈R

∥

∥

∥

∥

(z − P (t))−1 − (z − P )−1 − tR′
z

∥

∥

∥

∥

η′,η
= 0.

Proof. Setting n to 1 and U and V to the values indicated a few lines above, the formula
(∗) gives, for z ∈ R and t ∈ Iη′ ,

R(z, t) = R(z) +R(z)(P (t) − P )R(z) +R(z)(P (t) − P )R(z)(P (t) − P )R(z, t).

As, by assumption, η′ + r < η, we can choose η1 such that η′ < η1 ≤ η1 + r < η.
Condition U0(η

′, η1) is verified because η′ < η1 and Iη′

(0, S) ≤ Iη−r(0, S) < +∞, hence
lim
t→0

‖P (t) − P‖η′,η1 = 0. Condition U1(η1, η) holds because η1 + r < η and Iη1(R,R + S) ≤
Iη−r(R,R + S) < +∞, hence P (t) − P = tL1 + Υ1(t), with L1,Υ1(t) ∈ L(Bη1 ,Bη) and
lim
t→0

|t|−1‖Υ1(t)‖η1,η = 0 (Prop. 6.3). Now we write

R(z, t) = R(z) + tR′
z + Θ1(z, t) + Θ2(z, t),

with R′
z = R(z)L1R(z), and

Θ1(z, t) = R(z)Υ1(t)R(z), Θ2(z, t) = R(z)(P (t) − P )R(z)(P (t) − P )R(z, t).

Since L1 ∈ L(Bη1 ,Bη) ⊂ L(Bη′ ,Bη) and since R(·) is continuous from R to both L(Bη′) and
L(Bη), R

′
· is continuous from R to L(Bη′ ,Bη). For t ∈ Iη′ , 0 < |t| ≤ 1, and z ∈ R, we have

|t|−1‖Θ1(z, t)‖η′,η ≤ |t|−1‖Θ1(z, t)‖η1,η ≤ Jη |t|−1‖Υ1(t)‖η1,η Jη1 ,

|t|−1‖Θ2(z, t)‖η′,η ≤ Jη

(

‖L1‖η1,η + |t|−1‖Υ1(t)‖η1,η

)

Jη1‖P (t) − P‖η′,η1Mη′ .

The second members do not depend on z ∈ R and converge to 0 with t, this proves the
lemma. 2

To establish Proposition 8.1, we now use the formulae of Corollary 7.2’. More precisely, the
linear maps Π(t) and N(t) of the corollary are considered here as elements of L(Bη′ ,Bη) since
they may be viewed as integrals of functions with values in L(Bη′ ,Bη).
Then Lemma 8.3 shows that Π(·) has a derivative at t = 0 as a L(Bη′ ,Bη)-valued function.
Thus Π(·)∗ has a derivative at t = 0 as a L(B′

η,B′
η′)-valued function. This proves the first

order Taylor’s expansions of v(·) and φ(·). The existence of a derivative for N(·) at t = 0
follows in a similar way from Lemma 8.3. On the other hand, from the integral formula

N(t)n =
1

2iπ

∫

Γ0

zn(z − P (t))−1dz, we deduce the existence of a constant K such that, for

n ≥ 1 and t ∈ Iη′ ,

(κ′0)
−(n+1)‖N(t)n −N(0)n‖η′,η ≤ sup

z∈Γ0

∥

∥

∥

∥

(z−P (t))−1 − (z−P )−1
∥

∥

∥

∥

η′,η
≤ |t|

(

sup
z∈Γ0

‖R′
z‖η′,η +K

)

,
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hence the inequality of Proposition 8.1. 2

Proof of Proposition 8.2. As above, we start with a Taylor’s expansion of the resolvent
(z − P (t))−1.

Lemma 8.4. Under condition V2(η
′, η), there exist continuous functions R′

· et R′′
· from R

to L(Bη′ ,Bη), such that we have

lim
t→0

1

t2
sup
z∈R

∥

∥

∥

∥

(z − P (t))−1 − (z − P )−1 − t R′
z −

t2

2
R′′

z

∥

∥

∥

∥

η′,η
= 0.

Proof. Retaining the notations of Lemma 8.3 but setting n to 2, the formula (∗) gives, for
z ∈ R and t ∈ Iη′ ,

R(z, t) = R(z) +R(z)(P (t) − P )R(z) +R(z)(P (t) − P )R(z)(P (t) − P )R(z)

+R(z)(P (t) − P )R(z)(P (t) − P )R(z)(P (t) − P )R(z, t).

Since η′ + 2r < η, we can choose η1 and η2 such that η′ < η1 ≤ η1 + r < η2 ≤ η2 + r < η.
The condition U2(η

′, η) is verified, hence by Proposition 6.3,

P (t) − P = tL1 +
t2

2
L2 + Υ2(t),

with P, P (t), L1, L2,Υ2(t) ∈ L(Bη′ ,Bη) and lim
t→0

t−2‖Υ2(t)‖η′,η = 0.

The conditions U1(η1, η2) and U1(η2, η) are satisfied since we have η1 +r < η2, η2 +r < η and
Iη1(R,R + S) ≤ Iη2(R,R + S) ≤ Iη−r(R,R + S). Then Proposition 6.3 with n = 1 shows
that

P (t) − P = tL1 + Υ1(t),

with L1,Υ1(t) ∈ L(Bη1 ,Bη2)∩L(Bη2 ,Bη) and lim
t→0

|t|−1‖Υ1(t)‖η1,η2 = lim
t→0

|t|−1‖Υ1(t)‖η2,η = 0.

At last, since Iη′

(0, S) ≤ Iη−r(0, S) < +∞, the condition U0(η
′, η1) holds and Proposition

6.2 ensures that
lim
t→0

‖P (t) − P‖η′,η1 = 0.

We get

R(z, t) = R(z) +R(z)
(

tL1 +
t2

2
L2 + Υ2(t)

)

R(z)

+R(z)
(

tL1 + Υ1(t)
)

R(z)
(

tL1 + Υ1(t)
)

R(z)

+R(z)
(

tL1 + Υ1(t)
)

R(z)
(

tL1 + Υ1(t)
)

R(z)(P (t) − P )R(z, t),

hence

R(z, t) = R(z) + tR′
z +

t2

2
R′′

z +
5

∑

k=1

Θk(z, t),
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with R′
z = R(z)L1R(z), R′′

z = R(z)L2R(z) + 2R(z)L1R(z)L1R(z),
and
Θ1(z, t) = R(z)Υ2(t)R(z)
Θ2(z, t) = t R(z)L1R(z)Υ1(t)R(z)
Θ3(z, t) = t R(z)Υ1(t)R(z)L1R(z)
Θ4(z, t) = R(z)Υ1(t)R(z)Υ1(t)R(z)

Θ5(z, t) = R(z)
(

tL1 + Υ1(t)
)

R(z)
(

tL1 + Υ1(t)
)

R(z)(P (t) − P )R(z, t).

Since L1 ∈ L(Bη′ ,Bη)∩L(Bη′ ,Bη2)∩L(Bη2 ,Bη), L2 ∈ L(Bη′ ,Bη), and R(·) is continuous from
R to L(Bη′), L(Bη2), and L(Bη), the functions R′

· et R′′
· are continuous from R to L(Bη′ ,Bη).

We have, for t ∈ I, 0 < |t| ≤ 1, and z ∈ R
t−2‖Θ1(z, t)‖η′,η ≤ Jη (t−2‖Υ2(t)‖η′,η)Jη′ ,

t−2‖Θ2(z, t)‖η′,η ≤ t−2‖Θ2(z, t)‖η1,η ≤ Jη ‖L1‖η2,η Jη2 (|t|−1‖Υ1(t)‖η1,η2)Jη1 ,

t−2‖Θ3(z, t)‖η′,η ≤ t−2‖Θ3(z, t)‖η1,η ≤ Jη (|t|−1‖Υ1(t)‖η2,η) Jη2 ‖L1‖η1,η2 Jη1 ,

t−2‖Θ4(z, t)‖η′,η ≤ t−2‖Θ4(z, t)‖η1,η ≤ Jη (|t|−1‖Υ1(t)‖η2,η) Jη2 (|t|−1‖Υ1(t)‖η1,η2) Jη1 ,

t−2‖Θ5(z, t)‖η′,η ≤ Jη Kη2,η Jη2 Kη1,η2 Jη1 ‖P (t) − P‖η′,η1 Mη′ ,

with Ka,b = sup{‖L1‖a,b + |t|−1‖Υ1(t)‖a,b, t ∈ I, |t| ≤ 1}.

This proves the lemma because the right hand members do not depend on z ∈ R and tend
to 0 with t. 2

Let us now complete the proof of Proposition 8.2. The Taylor’s expansions for v(·), φ(·) and
N(·) can be deduced from the formulae of Corollaire 7.2’. We just specify how to get the
expansion for N(·)n. Using integration in L(Bη′ ,Bη), we set

N1,n =
1

2iπ

∫

Γ0

znR′
zdz and N2,n =

1

2iπ

∫

Γ0

znR′′
zdz.

We have ‖N1,n‖η′,η ≤ κ′0
n+1 supz∈Γ0

‖R′
z‖η′,η and ‖N2,n‖η′,η ≤ κ′0

n+1 supz∈Γ0
‖R′′

z‖η′,η. Lemma 8.4
yields

‖εn(t)‖η′,η =
1

2πt2

∥

∥

∥

∥

∫

Γ0

zn
(

(z − P (t))−1 − (z − P )−1 − t R′
z −

t2

2
R′′

z

)

dz

∥

∥

∥

∥

η′,η

≤ κ′0
n+1

t2
sup
z∈R

∥

∥

∥

∥

(z − P (t))−1 − (z − P )−1 − t R′
z −

t2

2
R′′

z

∥

∥

∥

∥

η′,η
,

since κ′0
n+1 ≤ 1, we conclude that lim

t→ 0
sup
n≥1

‖εn(t)‖η′,η = 0. 2
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9 Extensions and proofs of Theorems A-B-C-S

We return to the context of Sections 1 and 2. Theorems A’, B’, C’ below concern the
behaviour of the sequence of r.v. ((Zn, S

Z
n ))n.

9.1 Theorems A’-B’-C’-S’

Neglecting the technical parameter λ0 of the preceding sections, we may define Bγ as the
space of locally Lipschitz C -valued functions f on M such that

ℓγ(f) = sup
{ |f(x) − f(y)|
d(x, y)(1 + d(x, x0))

γ(1 + d(y, x0))
γ , x, y ∈M, x 6= y

}

< +∞,

endowed with the norm

‖f‖∞,γ = ℓγ(f) + sup
x∈M

|f(x)|
(1 + d(x, x0))γ+1

;

this norm is clearly equivalent to the ones previously defined on Bγ .

Recall that we set δ̃(g) = 1+c(g)+d(gx0, x0). As previously we can omit λ0 in the definition
of the numbers Iτ (U, V ) (§ 6.2) by replacing now the function δ by δ̃, that is, by replacing
Iτ (U, V ) by J τ (U, V ), already used in Section 2, and defined by

J τ (U, V ) =
∫

G
U(g) c(g) δ̃(g)2τdπ(g) +

∫

G
V (g) δ̃(g)τ+1dπ(g).

If (V, ‖ · ‖) is a normed linear space and if α > 0, we shall denote by V (α) the closed ball in
V with radius α centered at 0. We name C↓2(IR) the space of C -valued continuous functions
h on IR such that lim|u|→+∞ u2h(u) = 0.

Under the hypotheses of the next statements, the real number m =
∫

M

∫

G
ξ(g, x)dπ(g)dν(x)

is defined, and supposed to be zero.

Recall that Condition H(γ0) holds if there exist γ0 ∈ IR∗
+ and n0 ∈ IN ∗ such that :

Mγ0+1 = π(δ̃γ0+1) < +∞, M′
2γ0+1 = π(c δ̃2γ0) < +∞, C(n0)

2γ0+1 = π∗n0(c max{c, 1}2γ0) < 1.

Theorem A’ (Central limit).
Assume H(γ0) with γ0 > r + max{r, s+ 1} and that

∫

G
R2dπ < +∞, J γ0−r(R,R + S) < +∞.
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Then, there exists σ2 ≥ 0 such that, if the r.v. Z satisfies IE[d(Z, x0)
γ0+1] < +∞, we have,

for f ≥ 0, f ∈
⋃

γ<γ0−r

Bγ, and for any bounded continuous function h on IR,

lim
n
IE

[

f(Zn)h
(

SZ
n√
n

)]

= ν(f)N (0, σ2)(h).

If h ∈ C↓2(IR), this convergence holds uniformly when (µ, f) ranges over B′
γ0

(α) × Bγ(α).

Theorem B’ (Central limit with a rate of convergence).
Assume H(γ0) with γ0 > 3r + max{r, s+ 1} and that

∫

G
R3dπ < +∞, J γ0−r(R,R + S) + J γ0−2r(R2, (R+ S)R) < +∞.

Then, if σ2 > 0, the assertion of Theorem B holds.
Moreover if Z has the distribution ν, then, for 0 < γ < γ0−r, there exists a positive constant
Cγ such that, for f ∈ Bγ , f ≥ 0, satisfying ν(f) > 0, we have

sup
u∈IR

∣

∣

∣

∣

IE
[

f(Zn))1[SZ
n ≤uσ

√
n]

]

− ν(f)N (0, 1)(] −∞, u])
∣

∣

∣

∣

≤ Cγ‖f‖∞,γ√
n

.

The statement of the local limit theorem appeals to the non-arithmeticity condition for ξ
with respect to the space Bγ for γ ∈]s + 1, γ0 − r[ :

Condition (N-A)γ. There is no t ∈ IR \ {0}, no λ ∈ C , |λ| = 1, and no bounded function
w in Bγ with non-zero constant modulus on the support Σν of ν, such that we have, for all
x ∈ Σν and for all n ≥ 1,

eitSx
nw(Rnx) = λnw(x) IP − a.s.

Theorem C’ (Local central limit).
Assume that the hypotheses of Theorem A’ are satisfied. Let γ be a real number verifying
max{r, s+ 1} < γ < γ0 − r and such that the condition (N-A)γ is fulfilled.
If σ2 > 0, and if Z is such that IE[d(Z, x0)

γ0+1] < +∞, then for all f ≥ 0, f ∈ Bγ, and for
all h ∈ C↓2(IR), we have

lim
n

sup
u∈IR

∣

∣

∣

∣

σ
√

2πn IE
[

f(Zn)h(S
Z
n − u)

]

− e
−u2

2nσ2 ν(f)L(h)

∣

∣

∣

∣

= 0,

and this convergence holds uniformly when (µ, f) ranges over B′
γ0

(α) × Bγ(α).

Theorem S’.
Assume H(γ0) with γ0 > 2r + s + 1 and that

J γ0−r(R,R + S) + J γ0−2r(R2, (R+ S)R) < +∞.

Then the assertions of Theorem S hold with ξ̃1 ∈ Bγ0−r in point (i).

38



9.2 Proofs of Theorems A’-B’-C’

These proofs are based on expansions of the characteristic function of the r.v SZ
n .

Proposition 9.1.
(1) Assume that the hypotheses of Theorem A’ are fulfilled. Let the parameter γ verifies
max{r, s+ 1} < γ < γ0 − r.
Then there exist an open interval Iγ containing t = 0, a C -valued function λ(·), and L(Bγ)-
valued functions L(·), N(·), defined on this interval, such that, if the distribution µ of the
r.v. Z verifies µ(d(·, x0)

γ0+1) < +∞, we have, for n ≥ 1, t ∈ Iγ, and for f ∈ Bγ,

IE
[

f(Zn)e
itSZ

n

]

= 〈µ, P (t)nf〉 = λ(t)n
(

ν(f)+ < µ,L(t)f >
)

+ 〈µ,N(t)nf〉.

For all t ∈ Iγ, we have |λ(t)| ≤ 1, there exists a real positive number σ2 ≥ m2 such that

λ(t) = 1 + imt− σ2 t
2

2
+ o(t2),

and there exists a positive constant cγ such that :
(i) if, either f = 1 and µ ∈ B′

γ0
, or f ∈ Bγ and µ = ν, then

|〈µ,N(t)nf〉| ≤ cγ(κ
′
0)

n inf{|t|, 1}‖µ‖∞,γ0 ‖f‖∞,γ,

(ii) ‖N(t)n‖γ ≤ cγ(κ
′
0)

n,
(iii) ‖L(t)‖γ,γ0 ≤ cγ inf{|t|, 1} .

Moreover, if m = 0 and σ2 > 0, then, for any real number t such that t
σ
∈ Iγ, we have

(iv) |λ(
t

σ
)| ≤ e−

t2

4 .

(2) Suppose that the hypotheses of Theorem B’ hold. Then, if m = 0 and σ2 > 0, there
exists a constant C1 such that we have, for all real t such that t

σ
√

n
∈ Iγ,

(v) |λ(
t

σ
√
n

)n − e−
t2

2 | ≤ C1√
n
|t|3e− t2

4 .

Assume this proposition for a while. To prove Theorems A’- B’ -C’ we have only to use the
method of Hennion and Hervé (2001) Section IV.2 and Chap. VI, which is an adaptation of
standard Fourier techniques for sums of i.i.d.r.v. As already mentioned in Section 4.2, we
consider here the Fourier kernels P (t) instead of the Fourier kernels Q(t) associated with ξ
and the probability transition Q on G×M defined in Section 4.2. Yet the needed changes
are obvious, and we shall not develop the argumentation, we only specify some points.
Firstly, the distribution µ of Z defines an element of B′

γ0
if and only if IE[d(Z, x0)

γ0+1] <
+∞, and, in this case, ‖µ‖∞,γ0 = IE[(1 + d(Z, x0))

γ0+1]). Actually, we have, for f ∈ Bγ0 ,
|f | ≤ ‖f‖∞,γ0(1 + d(·, x0))

γ0+1, hence µ(|f |) ≤ ‖f‖∞,γ0IE[(1 + d(Z, x0))
γ0+1].

Secondly, because of the topological embedding of the spaces Bγ , in the proofs of Theorems A’
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and B’, it will be sufficient to considerer the case where the function f is in a space Bγ with
γ ∈] max{r, s+ 1}, γ0 − r[.
At last, in the proof of Theorem C’ it is necessary to have some control on the behaviour of
P (t), for all t ∈ IR, the following lemma shows how this is related to Condition (N-A)γ.

Lemma 9.1.’ Assume conditions of Theorem C’ except (N-A)γ. Then P (t) is a bounded
operator of Bγ for all t ∈ IR. Let t ∈ IR such that r(P (t)) ≥ 1, then there exist λ ∈ C ,
|λ| = 1, and a bounded function w ∈ Bγ, with non-zero constant modulus on the support Σν

of ν, such that we have, for all x ∈ Σν and all n ≥ 1,

eitSx
nw(Rnx) = λnw(x) IP − a.s.

Consequently, under (N-A)γ, for all t ∈ IR\{0}, we have r(P (t)) < 1.

Proof. Let γ ∈]s + 1, γ0 − r[. The inequality J γ(0, S) ≤ J γ0−r(0, S) < +∞ together with
Proposition 7.1 shows that the Fourier kernels P (t) act continuously on Bγ for all t ∈ IR.
By Proposition 7.4, if r(P (t)) ≥ 1, then r(P (t)) = 1, and P (t) is quasi-compact. Conse-
quently, there exist w ∈ Bγ\{0}, and λ ∈ C , |λ| = 1, such that, for all n ≥ 1, we have

P (t)nw = λnw.
It follows that |w| ≤ P n|w|. Since, by Theorem 5.1, the sequence (P n|w|)n≥1 converges
pointwise to ν(|w|), we get |w| ≤ ν(|w|), so that w is bounded. From the above and equality
ν(ν(|w|)1M − |w|) = 0, we deduce that ν({x : x ∈ M, |w(x)| = ν(|w|)}) = 1, thus |w| is a
non-zero constant function on Σν . For x ∈ Σν and n ≥ 1, we write

IE[1 − eitSx
nw(Rnx)

λnw(x)
] = 1 − P (t)nw(x)

λnw(x)
= 0.

Since |e
itSx

nw(Rnx)

λnw(x)
| = 1, it follows that eitSx

nw(Rnx) = λnw(x) IP − a.s. 2

To be complete on the properties required for local theorem, one needs to establish the
following.

Lemma 9.1”. Under the conditions of theorem C’, for every compact subset K of IR∗,
(i) We have rK = sup{r(P (t)), t ∈ K} < 1.
(ii) There exists C ≥ 0 and ρK < 1 such that we have, for all n ≥ 1, sup

t∈K
‖P (t)n‖ ≤ C ρn

K.

Proof. (i) Suppose that supt∈K r(P (t)) ≥ 1. Then, by Lemma 9.1’, supt∈K r(P (t)) = 1, thus
there exists a sequence (τk)k in K such that limk r(P (τk)) = 1. For each k ≥ 1 consider
a spectral value λk of P (τk) satisfying |λk| = r(P (τk)). By compactness, one can suppose
that (τk)k and (λk)k converge. Set t0 = limk τk, λ = limk λk, and observe that t0 ∈ K, thus
t0 6= 0, and |λ| = 1.
We are going to show that the perturbation theorem of Keller and Liverani (1999) applies
to the action, on a certain space Bγ, of the family {P (t), t ∈ IR} when t→ t0. It will follows
from this result, see page 145 of the above cited paper, that λ is a spectral value of P (t0).
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But since t0 6= 0 and |λ| = 1, this will contradict Lemma 9.1’, so we shall get point (i).
Let γ, γ̃ be such that s + 1 + (γ̃ − γ) ≤ γ < γ̃ < γ0 − r. We establish that {P (t), t ∈ IR}
acting on Bγ satisfies the four assertions of Lemma 7.3, where 0 is replaced by t0 ∈ IR∗, and
the norm N1,γ(·) [respectively ν(·)] is replaced by N∞,γ,γ̃ [respectively | · |γ̃].
1. Using the inequality |P (t)nf | ≤ P n|f | ≤ |f |γ̃P n(pγ̃+1) and Assertion (c) of Lemma 4.2

(observe that pγ̃ and 1+φλ are equivalent), one easily proves that supn≥1 |P n(pγ̃+1)|γ̃ < +∞.
It follows that {P (t)n, t ∈ IR, n ≥ 1} is uniformly bounded on (Bγ, | · |γ̃).
2. Proposition 6.7 implies the second point of Lemma 7.3 (with | · |γ̃ instead of ν(| · |)).
3. If r(P (t)) > ϑ

1
n0
0 , where ϑ0 < 1 is the real number in Proposition 6.7, it follows from

Lemma 5.4, from the preceding assertion, and from Hennion (1993), that the essential spec-

tral radius of P (t) is ≤ ϑ
1

n0
0 . If r(P (t)) ≤ ϑ

1
n0
0 , this is also valid because the essential spectral

radius is always less than the spectral radius.
4. In the same way as Proposition 6.2, it can be proved that there exists a real continuous
function ε(·), vanishing at t = t0, such that we have ‖P (t)f − P (t0)f‖∞,γ̃ ≤ ε(t) ‖f‖∞,γ for
all f ∈ Bγ. Since ‖ · ‖∞,γ ≤ C ‖ · ‖∞,γ,γ̃ (Prop. 5.2), we obtain

|P (t)f − P (t0)f |γ̃ ≤ ‖P (t)f − P (t0)f‖∞,γ̃ ≤ C ε(t) ‖f‖∞,γ,γ̃.

(ii) Let ρK be such that max{ϑ
1

n0
0 , rK} < ρK < 1, and let Γ be the oriented circle {|z| = ρK}

in C . For t ∈ K, we have r(P (t)) ≤ rK < ρK , thus P (t)n =
1

2iπ

∫

Γ
zn(z − P (t))−1dz.

Moreover the theorem of Keller-Liverani ensures that, for any t0 ∈ K, there exists an open
interval I, containing t0, such that sup{‖(z − P (t))−1‖γ, t ∈ I, |z| = ρK} < +∞. By
compactness, we get sup{‖(z − P (t))−1‖γ, t ∈ K, |z| = ρK } < +∞. This gives (ii). 2

Proof of assertion (1) of Proposition 9.1. Let γ, max{r, s+ 1} < γ < γ0 − r.
We have s + 1 < γ < γ0 and J γ(0, S) ≤ J γ0−r(0, S) < +∞. Thus Proposition 7.1 applies
to P (t) acting on Bγ. For convenience, the interval Iγ will be denoted by I.

Lemma 9.2. The maps v(·), φ(·), and N(·) have derivatives at t = 0 as functions with
values in (Bγ, ‖ · ‖∞,γ0), B′

γ, and L(Bγ,Bγ0) respectively, and there exists a constant K such
that we have, for all n ≥ 1 and all t ∈ I,

‖N(t)n −N(0)n‖γ,γ0 ≤ K|t|(κ′0)n.

Moreover there exists γ2, 0 < γ2 < γ, such that P (·) has a derivative at t = 0 as a L(Bγ2 ,Bγ)-
valued function.

Proof. We have s + 1 < γ ≤ γ + r < γ0 and J γ0−r(R,R + S) < +∞, so that the condition
V1(γ, γ0) is fulfilled and the assertions upon v(·), φ(·) and N(·) follow from Proposition 8.1.
Since r < γ < γ0 − r, there exists γ2 such that 0 < γ2 ≤ γ2 + r < γ ≤ γ + r < γ0.
To establish that P (t) has a derivative, we apply Proposition 6.3. Actually, the condition
U1(γ2, γ) holds : we have γ2+r < γ, s+1 < γ and J γ2(R,R+S) ≤ J γ0−r(R,R+S) < +∞. 2

The formula for IE[eitSnf(Xn)] is obtained by using the basic lemma stated in Section 4.2, the
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decomposition of P (t) given in Proposition 7.1, and by setting L(t)f = 〈φ(t), f〉v(t)−〈ν, f〉1 .
Under the conditions of (i), we have 〈µ,N(0)nf〉 = 0, so that the considered inequality follows
from Lemma 9.2.
The inequality (ii) already appears in Corollaire 7.2’.
To obtain (iii), it suffices to remark that, since the functions v(·) and φ(·) have derivatives
in (Bγ , ‖ · ‖∞,γ0) and B′

γ, there exist constants C1 and C2 such that, for f ∈ Bγ ,

‖L(t)f‖∞,γ0 ≤ |〈φ(t), f〉| ‖v(t)− 1‖∞,γ0 + |〈φ(t) − ν, f〉| ‖1‖∞,γ0

≤ C1|t| ‖φ(t)‖∞,γ‖f‖∞,γ + C2|t| ‖f‖∞,γ‖1‖∞,γ0.

It remains to prove the properties of λ(·).
From Proposition 7.1, we have λ(0) = 1 and λ(t)n = 〈ν, P (t)nv(t)〉. Appealing to the
invariance of ν, we get |λ(t)|n ≤ 〈ν, P n|v(t)|〉 = 〈ν, |v(t)|〉. It follows that |λ(t)| ≤ 1.
To prove that λ(·) can be expanded to the second order and to identify the terms of its
expansion, we proceed as in Lemma IV.4’ of Hennion and Hervé (2001).

Lemma 9.3. For t ∈ I, set p(t) = 〈φ(t), 1〉, ν̃(t) = 〈ν, P (t)1〉, and u(t) = P (t)1 − ν̃(t)1.
Then u(0) = 0, 〈ν, u(t)〉 = 0, and

λ(t) =
1

p(t)
〈φ(t) − ν, u(t)〉 + ν̃(t).

Proof. The two first equalities are obvious. From the decomposition of Proposition 7.1, we
have P (t)1 = λ(t)p(t)v(t) + N(t)1. As 〈φ(t), v(t)〉 = 1 and φ(t)N(t) = 0, the formula for
λ(t) follows from

〈φ(t), u(t)〉 = 〈φ(t), λ(t)p(t)v(t) +N(t)1 − ν̃(t)1〉 = λ(t)p(t) − ν̃(t)p(t). 2

Notice that ν̃(·) is the characteristic function of ξ under the distribution π ⊗ ν, so that the
next lemma results from the moment property ν(d(·, x0)

γ0+1) < +∞.

Lemma 9.4. Let n ∈ IN∗. Assume that
∫

GR(g)ndπ(g) < +∞ and that r ≤ γ0+1
n

.
Then ν̃(·) has continuous derivatives up to order n, with ν̃(k)(0) = ik

∫

G ξ(g, x)
kdπ(g)dν(x)

for k = 1, . . . , n.

We can now obtain the second order Taylor’s expansion of λ(·).

Lemma 9.5. u(·) has a derivative at t = 0 as a Bγ-valued function, and we have

λ(t) = 1 + imt− σ2 t
2

2
+ o(t2), with σ2 = (π ⊗ ν)(ξ2) − 2〈φ′(0), u′(0)〉 ≥ m2.

Proof. By assumption we have
∫

GR(g)2dπ(g) < +∞ and r < γ0

2
≤ γ0+1

2
, so that ν̃(t) =

1 + imt − (π ⊗ ν)(ξ2) t2

2
+ o(t2). From Lemma 9.2, we know that P (·)1 and 〈ν, P (·)1〉 have

derivatives at t = 0 as functions with values in Bγ and C respectively. Therefore u(·) has a
derivative at t = 0 as a Bγ-valued function.
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We get, firstly in B′
γ , φ(t)−ν = φ(t)−φ(0) = tφ′(0)+o(t), secondly in Bγ, u(t) = tu′(0)+o(t),

and thirdly in C , p(t) = 1 +O(t). Setting c = 2〈φ′(0), u′(0)〉, we have

1

p(t)
〈φ(t) − ν, u(t)〉 =

(

1 +O(t)
)(

c
t2

2
+ o(t2)

)

= c
t2

2
+ o(t2).

We obtain the Taylor’s expansion of λ(·) by adding the expansion of ν̃ to the last one.
We now prove that σ2 ≥ m. Setting v(t)(·) = v(t)(·), we have P (−t)v(t) = λ(t) v(t)
and, by uniqueness (cf. Prop. 7.1(a)), we get λ(−t) = λ(t). It follows that σ2 ∈ IR. As
1 ≥ |λ(t)|2 = 1 − (σ2 −m2)t2 + o(t2), we obtain σ2 −m2 ≥ 0. Lemma 9.5 is proved. 2

When m = 0 and σ2 > 0, it follows from the preceding expansion that, for small |t|,
|λ( t

σ
)| ≤ 1 − t2

2
+ t2

4
≤ e−

t2

4 , that is (iv).

Proof of the assertion (2) of Proposition 9.1.
The claimed inequality follows (cf. for example Hennion and Hervé (2001)) from the fact
that, under the additional hypotheses in (2), the remainder of the second order expansion
of λ(·) can be specified as follows.

Proposition 9.6. We have λ(t) = 1 + imt− σ2 t2

2
+O(t3).

Proof.

Lemma 9.7. There exists 0 < γ2 < γ0 such that the functions φ(·) and P (·)1 have a second
order Taylor’s expansion at t = 0 as functions with values in B′

γ2
and in Bγ2 respectively.

Proof. By assumption we have γ0 > 3r + max{r, s + 1}, therefore 4r < γ0 and s + 1 + r <
γ0 − 2r. It follows that there exist γ4 and γ2 such that 0 < γ4 ≤ γ4 + 2r < γ2 ≤ γ2 + 2r < γ0

and s+ 1 + r < γ2.
To establish the assertion on φ(·), we apply Proposition 8.2, this is possible since the con-
dition V2(γ2, γ0) is satisfied, indeed, we have s + 1 ≤ s + 1 + r < γ2 ≤ γ2 + 2r < γ0, and
J γ0−r(R,R + S) + J γ2(R2, (R+ S)R) < +∞ because γ2 < γ0 − 2r.
Moreover, the condition U2(γ4, γ2) is verified : we have 0 < γ4 ≤ γ4 +2r < γ2, s+1+r < γ2,
and then J γ4(R2, (R + S)R) < +∞ since γ4 < γ0 − 2r. Proposition 6.3 shows that P (·)
has a second order Taylor’s expansion at t = 0 as a L(Bγ4 ,Bγ2)-valued function, hence the
claimed property for P (·)1. 2

To conclude, we appeal once more to the formula of Lemma 9.3. Since
∫

GR(g)3dπ(g) < +∞
and r < γ0

4
≤ γ0+1

3
, the characteristic function ν̃(·) has now three continuous derivatives,

so that the remainder of its second order Taylor’s expansion is O(t3). Using the preceding
lemma, we have φ(t) = ν+ tφ′(0)+ t2φ2 + o(t2) in B′

γ2
and u(t) = tu′(0)+ t2u2 + o(t2) in Bγ2 .

Consequently 1
p(t)

〈φ(t)− ν, u(t)〉 = (1 +O(t))(c t2

2
+O(t3)) = c t2

2
+O(t3). It follows that the

remainder of the second order expansion of λ(·) at t = 0 is O(t3). 2
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9.3 Proof of Theorem S’

Proposition 9.8.
Assume H(γ0) with γ0 > r + max{r, s+ 1} and that

∫

G
R(g)2dπ(g) < +∞, J γ0−r(R,R + S) < +∞,

and that m = 0.

(a) We set θ(x) =
∫

G ξ(g, x)dπ(g), x ∈ M . There exists a unique real valued function
w ∈ Bγ0−r such that :

〈ν, w〉 = 0 , (1 − P )w = θ,

and we have σ2 = (π ⊗ ν)
(

ξ(ξ + 2w ◦ j)
)

.

(b) Moreover suppose that γ0 > 2r + s+ 1 and that

J γ0−2r(R2, (R+ S)R) < +∞.

Suppose that the r.v. Z has a distribution µ which defines an element of B′
γ0

. Then, for

all n ≥ 1, the characteristic function ϕn(t) = IE[eitSZ
n ] = 〈µ, P (t)n1〉 has the Taylor’s

expansion ϕn(t) = 1 + ant+ bn
t2

2
+ on(t2), with sup

n≥1
|bn + nσ2| < +∞.

Recall that j defines the action of G on M .

Proof of Proposition 9.8.
The hypothesis

∫

GR(g)2dπ(g) < +∞ implies that θ is well defined.

Proof of assertion (a). To begin, we state the differential properties that we shall use.
Let γ be such that max{r, s + 1} < γ < γ0 − r. Then there exist γ2, γ

′ such that 0 < γ2 ≤
γ2 + r < γ′ < γ ≤ γ + r < γ0 and s+ 1 < γ′. It is easily checked that we have the following
properties and their consequences :
(1) V1(γ, γ0), therefore φ(·) has a derivative at t = 0 as a B′

γ-valued function (Prop. 8.1),
(2) U1(γ2, γ

′), therefore P (·) has the derivative L1 at t = 0 as a L(Bγ2 ,Bγ′)-valued function
(Prop. 6.3),
(3) U1(γ

′, γ0), therefore P (·) has the derivative L1 at t = 0 as a L(Bγ′ ,Bγ0)-valued function
(Prop. 6.3),
(4) U0(γ

′, γ), therefore P (·) is continuous at t = 0 as a L(Bγ′ ,Bγ)-valued function (Prop. 6.2).

Lemma 9.4 asserts that ν̃(·) has a continuous derivative, with ν̃ ′(0) = im = 0. The property
(2) above ensures that u(·) has a derivative at t = 0 as a Bγ′ -valued function, and that
u′(0)(x) = L11(x) − ν̃ ′(0) = i

∫

G ξ(g, x)dπ(g) = iθ(x), thus u′(0) = iθ. It follows that
θ ∈ Bγ′ . Since 〈ν, θ〉 = im = 0, Theorem 5.5 shows that there exists a unique w ∈ Bγ′ such
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that 〈ν, w〉 = 0 and (1 − P )w = θ, and that w is the sum in Bγ′ of the series
∑

n≥0 P
nθ. As

θ is real valued, so is w. At last, since γ′ < γ0 − r, we have w ∈ Bγ0−r.
On the basis of the formula of Lemma 9.5, we get

σ2 = (π ⊗ ν)(ξ2) − 2i〈φ′(0), θ〉 = (π ⊗ ν)(ξ2) − 2i〈φ′(0), (1 − P )w〉.
The following lemma allows us to conclude.

Lemma 9.9. We have

〈φ′(0), (1 − P )w〉 = i(π ⊗ ν)(ξ w ◦ j).
Proof. It is known that, for small |t|, (λ(t) − P (t))∗φ(t) = φ(t)(λ(t) − P (t)) = 0. Hence,

setting S(t) = λ(t) − P (t), we have

(

φ(t) − φ(0)

t

)

S(t)w + φ(0)
(

S(t)w − S(0)w

t

)

=
φ(t)S(t)w − φ(0)S(0)w

t
= 0.

Observe that λ(t) has a derivative at t = 0 because the conditions of point (a) in Proposition
9.1 hold. Therefore, since w ∈ Bγ′ and φ(0) = ν ∈ B′

γ0
, the above properties (1) and (4),

and then (3) enable us to pass to the limit in the equality.We get

φ′(0)(S(0)w) + ν(S ′(0)w) = 0,

or else φ′(0)(1 − P )w = ν[(L1 − λ′(0))w] = ν(L1w) = i
∫

M

∫

G
ξ(g, x)w(gx)dπ(g)dν(x). 2

Proof of assertion (b). We know that λ(t) = 1−σ2 t2

2
+o(t2). Otherwise, since s+1 < γ0−2r,

there exists η such that s + 1 < η ≤ η + 2r < γ0. Since J γ0−r(R,R + S) < +∞ and
J η(R2, (R+S)R) < +∞ ( because η < γ0−2r), the condition V2(η, γ0) holds. Consequently
Proposition 8.2 applies, it follows that v(·), φ(·), N(·) have second order Taylor’s expansions
at t = 0 as functions with values in (Bη, N∞,γ0), in B′

η, and in L(Bη,Bγ0) respectively. We
get, for all n ≥ 1,

〈φ(t), 1〉〈µ, v(t)〉 = 1 + tB +
t2

2
C + o(t2) (A,B ∈ C )

〈µ,N(t)n1〉 = 〈µ,N(0)n1〉 + t〈µ,N1,n1〉 +
t2

2
〈µ,N2,n1〉 + on(t2).

Since N(0)1 = 0 and ϕn(t) = 〈µ, P (t)n1〉 = λ(t)n〈φ(t), 1〉〈µ, v(t)〉+〈µ,N(t)n1〉, with λ(t)n =

1−nσ2 t
2

2
+on(t

2), the coefficient bn of t2

2
in the Taylor expansion of ϕn is C−nσ2 +〈µ,N2,n1〉.

This enables us to conclude because supn≥1 ‖N2,n‖η,γ0 < +∞. 2

End of the proof of Theorem S’.
Proof of (ii). Let us proved that IE[(SZ

n )2] < +∞. Actually, since 2r ≤ γ0, we have, for
k ≥ 1,

IE[ξ(Yk, Zk−1)
2] ≤ IE[R(Yk)

2] IE[ψ(Zk−1)] =
∫

G
R2dπ

∫

M
P k−1ψdµ,

with ψ(x) = (1 + d(x, x0))
γ0 . Since ψ ∈ Bγ0−1 ⊂ Bγ0 , P ∈ L(Bγ0), and µ ∈ B′

γ0
, we get

IE[ξ(Yk, Zk−1)
2] < +∞ ; hence the claimed property. The function ϕn(·) has therefore a
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second order derivative at t = 0 and ϕ′′
n(0) = −IE[(SZ

n )2]. With the help of Proposition
9.8(b), we obtain IE[(SZ

n )2] = −bn, hence σ2 = limn
1
n
IE[(SZ

n )2].

Proof of (i). The method of the proof of Theorem IV.7 of Hennion and Hervé (2001)
applies here to the transition probability Q introduced in Section 4.2, yet we give below an
adaptation of this method only using P . Set

ξ̃ = ξ + w ◦ j,

where w is the function in Proposition 9.8 (it can be checked that ξ̃ −Qξ̃ = ξ). Recall that
σ2 = (π⊗ν)[ξ(ξ+2w◦j)] (Prop. 9.8). From the equality ξ2+2ξ w◦j = (ξ+w◦j)2−(w◦j)2 =
ξ̃2 − (w ◦ j)2, we get

σ2 = (π ⊗ ν)
(

ξ̃2 − (w ◦ j)2
)

.

Assume that ν(w2) < +∞. Then, using the invariance of ν, we can write

σ2 = (π ⊗ ν)(ξ̃2) − ν(w2) =
∫

M
dν(x)

∫

G
(ξ̃(g, x)2 − w(x)2)dπ(g).

But
∫

G
ξ̃(g, x)dπ(g) =

∫

G
ξ(g, x)dπ(g) + Pw(x) = θ(x) + (w(x) − θ(x)) = w(x),

so that

σ2 =
∫

M
dν(x)

∫

G
(ξ̃(g, x) − w(x))2dπ(g) =

∫

M
dν(x)

∫

G
(ξ(g, x) + w(gx) − w(x))2dπ(g).

If σ2 = 0, we therefore get ξ(g, x) = w(x) − w(gx) π ⊗ ν a.e.

To complete the proof of Theorem S’, it now suffices to show that the hypothesis σ2 = 0
implies ν(w2) < +∞. We know that, for all x ∈ M , w(x) =

∑

n≥0 P
nθ(x). Since P nθ(x) =

IE[θ(Rnx)] = IE[
∫

ξ(g, Rnx)dπ(g)] = IE[ξ(Yn+1, Rnx)], we have, for all x ∈ M , w(x) =
limn IE[Sx

n].
Assume that Z has the distribution ν and that σ2 = 0. Then the point (b) of Proposition
9.8 and the fact that bn = −IEµ[(S

Z
n )2] show that supn IE[(SZ

n )2] = ϑ < +∞. From the
inequalities

∫

IE[Sx
n]2dν(x) ≤ ∫

IE[(Sx
n)2]dν(x) = IE[(SZ

n )2] and Fatou’s Lemma, we deduce
that ν(w2) ≤ ϑ. 2

Example : study of σ2 for sequences of type (u(Yn)χ(Zn−1))n.
Suppose that the function ξ is of the form ξ(g, x) = u(g)χ(x), where u is a non-zero real
valued measurable function on G and χ is a real valued locally Lipschitz function on M
satisfying |χ(x) − χ(y)| ≤ Cd(x, y)(1 + d(x, x0) + d(y, x0))

s. Observe that Condition (RS)
holds with r = s+ 1 and R(s) = S(g) = C|u(g)|.
In this context, the next statement based on both Theorem S’ and Theorem 5.5 gives a
simple sufficient condition for σ2 > 0.
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Proposition S”. Suppose that the conditions of theorem S hold (with r = s+ 1 and R(s) =
S(g) = |u(g)|), that

∫

G u(g)dπ(g) = 0, and that χ(x) 6= 0 for some x in the support Σν of
the P -invariant measure ν. Then σ2 > 0.

Proof. Observe that m = π ⊗ ν(ξ) = 0. By Theorem S’, we shall get σ2 > 0 if we
prove that there is no real valued function χ̃1 in Bγ0−r such that, for all x ∈ Σν , we have
ξ(g, x) = u(g)χ(x) = ξ̃1(x) − ξ̃1(gx) π − a.e.
Let ξ̃1 be such a function. Then, by integrating the above equality with respect to the
measure π, we get ξ̃1(x) =

∫

G ξ̃1(gx)dπ(g) = (P ξ̃1)(x) for all x ∈ Σν . Since Σν is an absorbing
set (for all x ∈ Σν we have P (x,Σν) = 1), this can be rewritten as ξ̃1|Σν

= PΣν
(ξ̃1|Σν

) where
PΣν

denotes the kernel induced by P on Σν . From Ker(P − 1) = C · 1 (Th. 5.5), it can
be easily proved that the fonctions of Bγ0−r whose restriction on Σν is PΣν

-invariant are
constant on Σν . It follows that ξ̃1|Σν

is constant, thus, for all x ∈ Σν , u(g)χ(x) = 0 π−a.e.
This is impossible. 2
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convergence. Ann. Inst. H. Poincaré, Vol. 25, No 4, pp. 383-428.
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