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Abstract

Under the standard drift/minorization and strong aperiodicity assumptions, this pa-
per provides an original and quite direct approach of the V -geometrical ergodicity of a
general Markov kernel P , which is by now a classical framework in Markov modelling.
This is based on an explicit approximation of the iterates of P by positive �nite-rank
operators, combined with the Krein-Rutman theorem in its version on topological dual
spaces. Moreover this allows us to get a new bound on the spectral gap of the transi-
tion kernel. This new approach is expected to shed new light on the role and on the
interest of the above mentioned drift/minorization and strong aperiodicity assumptions
in V -geometrical ergodicity.

AMS subject classi�cation : 60J05

Keywords : Geometric ergodicity, Rate of convergence, Spectral gap, Minorization
condition, Drift condition

1 Introduction

Throughout the paper P is a Markov kernel on a measurable space (X,X ). For any positive
measure µ on X and any µ-integrable function f : X→C, µ(f) denotes the integral

∫
fdµ.

When P admits a unique invariant distribution denoted by π, an important question in the
theory of Markov chains is to �nd condition for the n−th iterate Pn of P to converge to π
when n→+∞, and to control ∥Pn − π(·)1X∥ for some functional norm. In this paper we
consider the standard V−weighted norm ∥ · ∥V associated with some [1,+∞)-valued function
V on X. Then the property

∥Pn − π(·)1X∥V := sup
|f |≤V

sup
x∈X

∣∣(Pnf)(x)− π(f)
∣∣

V (x)
−→ 0 when n→+∞

implies that there exists ρ ∈ (0, 1) such that ∥Pn − π(·)1X∥V = O(ρn): this corresponds to
the so-called V -geometrical ergodicity property, see [MT93, RR04]. The in�mum of all the
real numbers ρ such that the previous property holds true is the so-called spectral gap of P ,
denoted by ρV (P ).
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Since the classical work by Meyn and Tweedie [MT93, MT94], it is well known that P is
V -geometrically ergodic provided that usual irreducibility/aperiodicity assumptions hold true
and that the following drift/minorization conditions are ful�lled: there exist S ∈ X , called a
small set, and a positive measure ν on (X,X ) such that

∃δ ∈ (0, 1), ∃L > 0, PV ≤ δ V + L 1S , (D)

∀x ∈ X, ∀A ∈ X , P (x,A) ≥ ν(1A) 1S(x). (M)

Condition (M) when the small set S is the entire state space X is the so-called Doeblin
condition. The proofs in [MT93, MT94, Bax05] are based on renewal theory involving the
study of the return times to the small set S and Kendall's theorem. Actually the renewal
theory easily applies to the atomic case (i.e. when S is an atom), and it has to be applied to
the split chain in the general case.

In this paper, under Assumptions (D)-(M) and the (strong) aperiodicity condition as in
[Bax05]

ν(1S) > 0, (SA)

we revisit the V -geometrical ergodicity property of P thanks to a simple constructive approach
based on an explicit approximation of the iterates of P by positive �nite-rank operators,
combined with Krein-Rutman theorem [KR50]. This theorem can be thought of as an abstract
dual Perron-Frobenius statement. It is stated at the end of this section in our speci�c case of
positive operators acting on a weighted-suppremum norm space.

Speci�cally in Section 2, the following sequence (βk)k≥1 of positive measures on (X,X ) is
recursively de�ned from the positive measure ν and the small S in Condition (M):

β1(·) := ν(·) and ∀n ≥ 2, βn(·) := ν
(
Pn−1 ·

)
−

n−1∑
k=1

ν
(
Pn−k−11S

)
βk(·).

Then, under Conditions (D)-(M), the following assertions are obtained:

(i) ∀n ≥ 1, Pn − Tn = (P − T )n with Tn :=
∑n

k=1 βk(·)Pn−k1S satisfying 0 ≤ Tn ≤ Pn;

(ii) r := limn

(
∥Pn − Tn∥V

)1/n
< 1, thus ∀γ ∈ (r, 1), ∥Pn − Tn∥V = O(γn);

(iii) r ≤ (δν(1X) + τ)/(ν(1X) + τ) < 1, with τ := max(0, L− ν(V )).

In Section 3, under Conditions (D)-(M), the unique invariant distribution π of P is obtained
from the explicit series

π = π(1S)

+∞∑
k=1

βk,

which extends a well-known formula when P satis�es the Doeblin condition, see [LC14], or
when P is irreducible and recurrent positive according to [Num84, p 74]. More important,
as a result of the above assertion (ii), we easily derive the rate βn(V ) = O(γn) as well as an
approximation of π by an explicit sequence of probability measures with the same convergence
rate. In Sections 4 and 5, under the additional assumption (SA), an original proof of the
V -geometrical ergodicity is derived from the results of Sections 2-3. More precisely, setting

ϱS := lim sup
n→+∞

(
sup
x∈X

∣∣(Pn(x, S)− π(1S)
∣∣

V (x)

) 1
n
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the V -geometrical ergodicity follows from the following bounds of the spectral gap of P

ρV (P ) ≤ max
(
r, ϱS

)
≤

(
min

{
|z| : 1 < |z| < 1/r,

+∞∑
k=1

βk(1X) z
k = 0

})−1

< 1 (2)

with the convention that the above minimum equals to 1/r if the related set is empty (in this
case ρV (P ) ≤ r ).

Although the results of Section 5 seem sound like those in [Bax05], who also introduced a
real number similar to ϱS , it is worth noticing that they di�er completely from their content
and their proofs. Indeed, on the one hand the renewal theory is not used here, on the other
hand no intermediate Markov kernel is required in our work, in particular we do not use
the split chain. Our method is mainly based on the Krein-Rutman theorem. Recall that
the classical Perron-Frobenius theorem is a useful result for obtaining positive eigenvectors
belonging to the maximal positive eigenvalue of a �nite non-negative matrix. Here the Krein-
Rutman theorem plays the same role (on the dual side). The following four stages outline our
approach. First, the minorization condition (M) provides the positive �nite-rank operator
Tn in the above assertion (i). Mention that such an approach has been used in [HL21] to
study inhomogeneous products of Markov kernels satisfying the Doeblin condition. Second,
the geometric rate of ∥(P − T )n∥V is obtained under Conditions (D)-(M) thanks to the
Krein-Rutman theorem. Third, the existence and uniqueness of the invariant distribution π
is deduced from the Krein-Rutman theorem too. Four, standard arguments on power series
are used to prove Inequalities (2) under the additional assumption (SA).

As mentioned in [Bax05] (see also the references therein), the bounds of ρV (P ) obtained
in the literature may be still quite far o� ρV (P ), and we do not presume to give here a better
bound of ρV (P ). Actually this new approach is expected to shed new light, as for instance in
[HM11], on the role of Assumptions (D)-(M)-(SA) in the study of the V -geometrical ergod-
icity. For the sake of completeness, an alternative proof of the V -geometrical ergodicity of P
under Assumptions (D)-(M)-(SA), as well as a more precise estimate of ρV (P ), are addressed
in Appendix A by using more sophisticated spectral arguments due to quasi-compactness.

Notations and basic material

Let V : X→[1,+∞) be a measurable function such that V (x0) = 1 for some x0 ∈ X. Let
(BV , ∥ · ∥V ) denote the weighted-supremum Banach space

BV :=
{
f : X→C, measurable : ∥f∥V := sup

x∈X

|f(x)|
V (x)

<∞
}
.

If Q is a bounded linear operator on BV , its operator norm ∥Q∥V is de�ned by

∥Q∥V := sup
f∈BV ,∥f∥V ≤1

∥Qf∥V .

If Q1 and Q2 are bounded linear operators on BV , we write Q1 ≤ Q2 when the following
property holds: ∀f ∈ BV , f ≥ 0, Q1f ≤ Q2f . Under Assumption (D), the following
functional action of P

∀f ∈ BV , ∀x ∈ X, (Pf)(x) :=

∫
X
f(y)P (x, dy)
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is well-de�ned and provides a bounded linear operator on BV . Recall that P is said to be
V -geometrically ergodic if there exists a P -invariant probability measure π on (X,X ) such
that π(V ) <∞ and if there exist some rate ρ ∈ (0, 1) and constant Cρ > 0 such that

∀n ≥ 0, sup
f∈BV ,∥f∥V ≤1

∥Pnf − π(f)1X∥V ≤ Cρ ρ
n. (3)

Denoting by Π the rank-one operator f 7→ π(f)1X on BV , Property (3) rewrites as

∀n ≥ 0, ∥(P −Π)n∥V = ∥Pn −Π∥V ≤ Cρ ρ
n. (4)

The spectral gap of P , denoted by ρV (P ), is de�ned as the spectral radius r(P − Π) of the
operator P −Π, that is

ρV (P ) = lim
n→+∞

(
∥(P −Π)n∥V

) 1
n = lim

n→+∞

(
∥Pn −Π∥V

) 1
n . (5)

Equivalently ρV (P ) is the in�mum of all the real numbers ρ such that (3) holds true for some
positive constant Cρ. Finally B′

V denotes the topological dual space of BV , that is the Banach
space composed of all the continuous linear forms on BV , equipped with its usual norm:

∀η ∈ B′
V , ∥η∥′V = sup

f∈BV ,∥f∥V ≤1
|η(f)|.

Note that, if η ∈ B′
V is non-negative (i.e. ∀f ∈ BV : f ≥ 0 ⇒ η(f) ≥ 0), then ∥η∥′V = η(V ).

Finally, for the sake of simplicity, let us state the Krein-Rutman theorem for the positive
operators on BV . In such a context, a proof can be directly obtained from [MN91, Th 4.1.5,
p 251] using E := BV and ∥ · ∥e := ∥ · ∥V .

Krein-Rutman theorem If L is a positive bounded linear operator on BV such that its

spectral radius r(L) = limn ∥Ln∥1/nV > 0, then there exists a non-trivial non-negative η ∈ B′
V

such that η ◦ L = r(L) η.

2 Approximation of P n by a positive �nite-rank operator

Let P be a Markov kernel satisfying Conditions (D)-(M). We set β1(·) := ν(·), and for every
n ≥ 2, the element βn(·) of B′

V is de�ned by the following recursive formula :

∀f ∈ BV , βn(f) := ν
(
Pn−1f

)
−

n−1∑
k=1

ν
(
Pn−k−11S

)
βk(f). (6)

Note that β1(·) = ν(·) is de�ned as a positive measure on (X,X ) and that β1(V ) = ν(V ) <∞
from (D)-(M). Thus β1(·) de�nes a non-negative element of B′

V . It follows from induction
that, for every n ≥ 1, βn(·) is well de�ned as an element of B′

V . Actually the next proposition
shows that, for every n ≥ 1, βn(·) can be de�ned as a positive measure on (X,X ) such that
βn(V ) <∞. Let T be the rank-one operator on BV de�ned by :

∀f ∈ BV , T f := ν(f) 1S = β1(f) 1S .

It follows from T ≥ 0 and (M) that 0 ≤ T ≤ P .
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Proposition 2.1 Assume that P satis�es Assumptions (D)-(M). Then

∀n ≥ 1, Tn := Pn − (P − T )n =
n∑

k=1

βk(·)Pn−k1S and 0 ≤ Tn ≤ Pn. (7)

Moreover, for every n ≥ 1, βn is a positive measure on (X,X) such that βn(V ) <∞, that is:
there exists a positive measure on (X,X) (still denoted by βn) such that

∫
X V dβn < ∞ and:

∀f ∈ BV , βn(f) =
∫
X f dβn.

Proof. The �rst equality in (7) is just the de�nition of Tn. That 0 ≤ Tn ≤ Pn follows from
0 ≤ T ≤ P . The second equality in (7) for n = 1 is obvious from the de�nition of T . Now
assume that this second equality holds true for some n ≥ 1. Then

Pn+1 − Tn+1 := (P − T )n+1 = (P − T )(Pn − Tn) = Pn+1 − PTn − TPn + TTn

from which we deduce that, for every f ∈ BV

Tn+1f = PTnf + TPnf − TTnf (8)

=

n∑
k=1

βk(f)P
n−k+11S +

(
β1(P

nf)−
n∑

k=1

βk(f)ν(P
n−k1S)

)
1S

=

n∑
k=1

βk(f)P
n+1−k1S + βn+1(f)1S

with βn+1(·) de�ned in (6). This provides the second equality in (7) by induction.

As already mentioned β1(·) = ν(·) is de�ned as a positive measure on (X,X ) such that
β1(V ) < ∞. Next, for every n ≥ 1, the element βn(·) is de�ned as an element of B′

V and for
every f ∈ BV , we have from (6) and then from (7)

βn(f) = ν
(
Pn−1f

)
−

n−1∑
k=1

βk(f) ν
(
Pn−k−11S

)
= ν

(
Pn−1f − Tn−1f

)
. (9)

It follows that βn(·) is a non-negative element of B′
V since Pn−1 ≥ Tn−1. To complete the

proof, let us prove by induction that, for every n ≥ 1, βn is a positive measure on (X,X)
such that βn(V ) < ∞. Assume that, for some n ≥ 2, the following property holds: for every
1 ≤ k ≤ n − 1, βk(·) is a positive measure on (X,X) such that βk(V ) < ∞. That is: for
every 1 ≤ k ≤ n− 1 there exists a positive measure on (X,X) (still denoted by βk) such that∫
X V dβk <∞ and ∀f ∈ BV , βk(f) =

∫
X f dβk. Then βn(·) in (6) is a �nite linear combination

of positive measures on (X,X). It follows that βn(·) is itself a positive measure on (X,X)
since we have proved that βn is non-negative. □

Under Assumptions (D)-(M), let us introduce the spectral radius r := r(P − T ) of P − T
on BV :

r := lim
n→+∞

(
∥(P − T )n∥V

) 1
n = lim

n→+∞

(
∥Pn − Tn∥V

) 1
n . (10)

Theorem 2.1 Assume that P satis�es Conditions (D)-(M). Then

r ≤ δ ν(1X) + τ

ν(1X) + τ
< 1 where τ := max(0, L− ν(V )). (11)
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Inequality (11) has already been established to prove [HL14a, Th. 5.2] in another purpose.
Here a short proof of (11) is given to highlight the use of the Krein-Rutman theorem.

Proof. Condition (D) implies that PV ≤ δ V + L 1X, thus: ∀n ≥ 1, ∥Pn∥V = ∥PnV ∥V ≤
(1− δ + L)/(1− δ). Then the spectral radius r(P ) of P is one from P1X = 1X and 1X ∈ BV .
Recall that T := ν(·) 1S . Set R := P − T with spectral radius r := r(R). We know that
0 ≤ R ≤ P , thus r ≤ r(P ) = 1. If r = 0, then (11) is obvious. Now assume that r ∈ (0, 1].
Then there exists η ∈ B′

V , η ≥ 0, η ̸= 0 such that η◦R = r η from the Krein-Rutman theorem.
Since P = T + R, we have η ◦ P = η ◦ T + r η, so that η(P1X) = η(1X) = η(T1X) + r η(1X).
Hence η(T1X) = (1− r)η(1X). Observing that T1X = ν(1X) 1S and ν(1X) > 0, and that η ≥ 0
and 1X ≤ V , it follows that

η(1S) =
(1− r)η(1X)

ν(1X)
≤ (1− r)η(V )

ν(1X)
.

We have RV = PV − ν(V )1S ≤ δ V + (L− ν(V )) 1S from (D). Hence

r η(V ) = η(RV ) ≤ δ η(V ) + τ η(1S) ≤ δ η(V ) + τ
(1− r)η(V )

ν(1X)
.

Since η ̸= 0, we have η(V ) = ∥η∥′V ̸= 0, and (11) follows from the last inequality. □

Note that, for every n ≥ 1, the operator Tn de�ned in Proposition 2.1 is positive and �nite-
rank, more precisely Im(Tn) is contained in the n−dimensional subspace of BV generated
by the functions 1S , P1S , . . . , P

n−11S . The following corollary is a direct consequence of
Proposition 2.1 and Theorem 2.1.

Corollary 2.1 Assume that P satis�es (D)-(M). Then, for every γ ∈ (r, 1), there exists
Cγ > 0 such that

∀n ≥ 1, ∀f ∈ BV , ∥Pnf − Tnf∥V =

∥∥∥∥Pnf −
n∑

k=1

βk(f)P
n−k1S

∥∥∥∥
V

≤ Cγ γ
n ∥f∥V . (12)

Under Conditions (D)-(M), Inequality (12) provides a geometric convergence rate for the
di�erence between the n-th iterate of P and the positive �nite-rank operator Tn. This will be
a central preliminary property for obtaining the results of Sections 3, 4 and 5.

3 Existence and approximation of π

Let us introduce

∀n ≥ 1, µn :=
n∑

k=1

βk (13)

with the βk's de�ned in (6). It follows from Proposition 2.1 that µn is a positive measure on
(X,X ) such that µn(V ) < ∞. We provide a very short proof that P has a unique invariant
probability π with a simple representation from the βk's.

Theorem 3.1 Assume that P satis�es (D)-(M). Then P has a unique P -invariant distribu-
tion π. Moreover π satis�es:

π = π(1S)
+∞∑
k=1

βk, (14)
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where the series
∑+∞

k=1 βk is absolutely convergent in B′
V given that

∀γ ∈ (r, 1), ∀n ≥ 1, ∥βn∥′V ≤ ν(V )Cγ γ
n−1 (15)

where Cγ is given in Corollary 2.1. Moreover π(V ) <∞.

Proof. Under Condition (D), we know from the proof of Theorem 2.1 that the spectral radius
r(P ) of P is one. Next, we know from the Krein-Rutman theorem that there exists a non zero
and non-negative element ϕ ∈ B′

V such that ϕ ◦ P = ϕ. We obtain using the P -invariance of
ϕ and (12) that

∀n ≥ 1, ∥ϕ− ϕ(1S)
n∑

k=1

βk∥′V ≤ Cγ γ
n (16)

where γ ∈ (r, 1) and Cγ are given in Corollary 2.1. It follows that ϕ = ϕ(1S)
∑+∞

k=1 βk in B′
V .

Actually this series absolutely converges in B′
V since we have for every n ≥ 2

∥βn∥′V ≤ ∥ν∥′V ∥Pn−1 − Tn−1∥V ≤ ν(V )Cγ γ
n−1

from (9) and Corollary 2.1, and from ∥ν∥′V = ν(V ). Next µ :=
∑+∞

k=1 βk de�nes a sigma-
additive measure. Since βk(1X) ≤ βk(V ) = ∥βk∥′V for any k ≥ 1, we have µ(1X) ≤ µ(V ) < +∞
and µ is a bounded positive measure. Thus ϕ is a bounded positive measure and ϕ is a P -
invariant probability up to a normalization factor. □

The following theorem states that the P -invariant probability π may be approximated by a
sequence of probability measures de�ned from the βk's. Indeed, µn(1X) ≥ β1(1X) = ν(1X) > 0
for every n ≥ 1. Thus, we can de�ne from (13) the following probability measure µ̃n(·) on
(X,X ) such that µ̃n(V ) <∞:

∀n ≥ 1, µ̃n(·) =
1

µn(1X)
µn(·). (17)

Theorem 3.2 Assume that P satis�es (D)-(M). Let γ be such that r < γ < 1, and let n0 be
the smallest integer number such that Cγ γ

n0 < 1, with Cγ given in Corollary 2.1. Then the
following assertion holds for the P -invariant probability π:

∀n ≥ n0, ∀f ∈ BV ,
∣∣π(f)− µ̃n(f)

∣∣ ≤ L

1− δ

(
1 +

L

(1− δ)(1− Cγγn)

)
∥f∥V Cγ γ

n. (18)

Proof. Using the notations of Proposition 2.1 and Corollary 2.1, we deduce from the P−invariance
of π that π ◦ Tn = π(1S)µn. It follows from (12) that

∀n ≥ 1, ∀f ∈ BV ,
∣∣π(f)− π(1S)µn(f)

∣∣ ≤ Cγ γ
n π(V ) ∥f∥V . (19)

Lemma 3.1 We have π(V ) ≤ L/(1− δ) and

∀n ≥ 1, µn(V ) ≤ L

1− δ
and ∀n ≥ n0,

∣∣∣∣ 1

µn(1X)
− π(1S)

∣∣∣∣ ≤ Cγ γ
n π(V )

1− Cγγn
.
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Proof. We deduce from (D) that π(V ) ≤ δ π(V ) + Lπ(1S). Thus π(1S) > 0 since δ < 1 and
π(V ) > 0. This gives π(V ) ≤ Lπ(1S)/(1 − δ) ≤ L/(1 − δ). We have π(1S)µn = π ◦ Tn ≤
π ◦ Pn = π from Proposition 2.1, so that π(1S)µn(V ) ≤ π(V ). Therefore µn(V ) ≤ L/(1− δ).
Now Property (19) with f := 1X gives

∀n ≥ 1,
∣∣1− π(1S)µn(1X)

∣∣ ≤ Cγ γ
n π(V ). (20)

Let n ≥ n0. Then π(1S)µn(1X) ≥ 1−Cγγ
n, thus µn(1X) ≥ π(1S)µn(1X) ≥ 1−Cγγ

n > 0 from
π(1S) ≤ 1 and the de�nition of n0. It follows from (20) and from the last inequality that

∀n ≥ n0,

∣∣∣∣ 1

µn(1X)
− π(1S)

∣∣∣∣ ≤ Cγ γ
n π(V )

µn(1X)
≤ Cγ γ

n π(V )

1− Cγγn
.

The proof of Lemma 3.1 is complete. □

Let n ≥ n0 and let f ∈ BV . Note that |µn(f)| ≤ µn(V )∥f∥V . We obtain that∣∣π(f)− µ̃n(f)
∣∣ ≤

∣∣π(f)− π(1S)µn(f)
∣∣+ |µn(f)|

∣∣π(1S)− 1

µn(1X)

∣∣
≤ Cγ γ

n π(V ) ∥f∥V + ∥f∥V
L

1− δ

Cγ γ
n π(V )

1− Cγγn
,

from (19) and from the previous lemma. This provides the inequality (18). □

Remark 3.1 Theorem 3.1 asserts the existence of a unique invariant probability when X is
a general state space and P satis�es the conditions (D)-(M). Under topological assumptions
on X such a statement can be simply obtained by using Prohorov's theorem. This is the case
when P satis�es the drift condition (D) provided that X is a separable complete metric space
and that V has compact level sets (for completenes a proof is postponed to Proposition B.1).

Remark 3.2 It follows from (9) and (7) that βk = ν(P − T )k−1 for every k ≥ 1, so that the
series representation (14) of π reduces to π = π(1S) ν

∑+∞
k=0(P−T )k. Such a representation is

well known when P satis�es the Doeblin condition (i.e. X is a small set, e.g. see [LC14]) and
when P is irreducible and recurrent positive by using the renewal theory, see [Num84, p. 74].
Note that Theorem 3.1 gives this formula with the additional geometric rate (15) which is
central for analysing the power series introduced in the next section.

4 Some relevant power series

In this short section some power series related to the βk(·)'s are introduced and we prove
a result that highlights the interest of Property (15) and the role of Assumption (SA). For
every τ > 0 we set D(0, τ) := {z ∈ C : |z| < τ} and D(0, τ) := {z ∈ C : |z| ≤ τ}.

Proposition 4.1 Assume that P satis�es (D)-(M). Then, for every f ∈ BV , the radius of
convergence of the power series

Bf (z) :=
+∞∑
k=1

βk(f) z
k
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is larger than 1/r. The functions B1X and B1S (i.e. Bf for f := 1X and f := 1S) satisfy

∀z ∈ D(0, 1/r), (1− z)B1X(z) = ν(1X) z
(
1−B1S (z)

)
. (21)

Under the additional assumption (SA), z = 0 is the unique zero of B1X(·) in D(0, 1).

Proof. The assertion on the radius of convergence follows from (15). Next, set a−1 := 1 and
∀j ≥ 0, aj := ν(P j1S). Let f ∈ BV . Then (6) rewrites as

∀n ≥ 1, ν(Pn−1f) =
n∑

k=1

βk(f)an−k−1. (22)

Note that the radius of convergence of the power series Nf (z) :=
∑+∞

n=0 ν(P
nf)zn is larger

than 1 since supn ν(|Pnf |) ≤ ∥f∥V supn ν(P
nV ) < ∞ from (D)-(M). It follows from (22)

that for every z ∈ D(0, 1)

+∞∑
n=1

ν(Pn−1f)zn =

+∞∑
n=1

n∑
k=1

βk(f)an−k−1z
n =

+∞∑
k=1

βk(f)z
k
+∞∑
n=k

an−k−1z
n−k,

so that: ∀z ∈ D(0, 1), zNf (z) = Bf (z)
(
1 + zN1S (z)

)
. We obtain with f := 1X and f := 1S

∀z ∈ D(0, 1), ν(1X)
z

1− z
= B1X(z)

(
1 + zN1S (z)

)
zN1S (z)

(
1−B1S (z)

)
= B1S (z). (23)

The second equality gives (1 + zN1S (z))(1 − B1S (z)) = 1, and multiplying the �rst one by
(1−B1S (z)) provides (21) on D(0, 1). The extension of (21) to the open disk D(0, 1/r) follows
from the principle of analytic continuation.

Now we prove the last assertion of Proposition 4.1. Note that B1X(0) = 0. The �rst equality
in (23) shows that, for every z ∈ D(0, 1), z ̸= 0, we have B1X(z) ̸= 0 since z/(1 − z) ̸= 0.
Now assume that there exists z0 ∈ C such that |z0| = 1, z0 ̸= 1, and B1X(z0) = 0. Then
B1S (z0) = 1 from (21), which is impossible since

+∞∑
k=1

βk(1S) z
k = 1, z ∈ C, |z| = 1 =⇒ z = 1. (24)

Indeed set z := eiϑ with ϑ ∈ [0, 2π[. Then the equality
∑+∞

k=1 βk(1S) z
k = 1 provides∑+∞

k=1 βk(1S)
(
1− cos(kϑ)) = 1 since

∑+∞
k=1 βk(1S) = 1. We deduce from β1(1S) = ν(1S) > 0

that cos(ϑ) = 1, that is z = 1. We have proved by a reductio ad absurdum that B1X(z0) ̸= 0
for every z0 ∈ C such that |z0| = 1, z0 ̸= 1. Finally note that B1X(1) = 1/π(1S) ̸= 0. □

5 V -geometrical ergodicity and bound of the spectral gap

In this section an original proof of the V -geometrical ergodicity of P under the three assump-
tions (D)-(M)-(SA) is derived from the previous statements. We also provide a new bound
of the spectral gap ρV (P ) of P on BV de�ned in (5). This bound is related to the real number
r ∈ [0, 1) of Theorem 2.1 and to the following real number ϱS only depending on the action
of the iterates of P on the small set S in (M):

ϱS := lim sup
n→+∞

(∥∥(Pn −Π)1S
∥∥
V

) 1
n . (25)
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Under Assumptions (D)-(M), Proposition 4.1 is used in order to de�ne

θ := min
{
|z| : 1 < |z| < 1/r, B(z) = 0

}
where B(z) ≡ B1X(z) =

+∞∑
k=1

βk(1X) z
k, (26)

with the convention θ := 1/r when the previous set is empty.

Proposition 5.1 Assume that P satis�es (D)-(M)-(SA). Then we have: ϱS ≤ θ−1 < 1.

Proof. For every 0 < τ < 1/r, the function B(·) is analytic on D(0, τ) from Proposition 4.1 so
has a �nite number of zeros in D(0, τ). From this fact and from the de�nition of θ, it follows
that θ > 1. Next, the following result is used to derive the inequality ϱS ≤ θ−1.

Lemma 5.2 Let ϕ ∈ B′
V , and for every j ≥ 0 set σj := ϕ

(
(P j − Π) 1S

)
. Then the power

series σ(z) :=
∑+∞

k=0 σk z
k has a radius of convergence larger that θ.

Proof. The radius of convergence of σ(z) is larger than 1 since (σk)k≥0 is clearly bounded
from above by 2∥ϕ∥′V . Next, we deduce from the de�nitions of Tn and π in (7) and (14) that

(Tn − Pn)1X = Tn1X − 1X = Tn1X −Π1X =
n∑

k=1

βk(1X)P
n−k1S −

( +∞∑
k=1

βk(1X)

)
π(1S)1X

=

n∑
k=1

βk(1X)
(
Pn−k −Π

)
1S −

( +∞∑
k=n+1

βk(1X)

)
Π1S .

Composing on the left by ϕ this equality we obtain that

∀n ≥ 1,

n∑
k=1

βk(1X)σn−k = hn

where (hn)n≥1 is a sequence of complex numbers (depending on ϕ) such that, for every
γ ∈ (r, 1), |hn| = O(γn) from Corollary 2.1 and (15). Then

∀z ∈ D(0, 1),

+∞∑
n=1

n∑
k=1

βk(1X)σn−k z
n = B(z)σ(z) = h(z) where h(z) :=

+∞∑
n=1

hnz
n. (27)

Note that h(z) (as B(z)) has a radius of convergence larger than 1/r since we have, for every
γ ∈ (r, 1), |hn| = O(γn). Moreover, �rst z = 0 is the only zero of B(·) on D(0, θ) from
Proposition 4.1 and from the de�nition of θ, second z = 0 is a simple zero of B(·) since
β1(1X) = ν(1X) > 0. Thus, for every z ∈ D(0, θ), B(z) = zξ(z) with ξ(z) =

∑+∞
k=0 βk+1(1X)z

k

having a radius of convergence larger than 1/r and having no zero in D(0, θ). It follows from
(27) that z 7→ z σ(z) coincides on D(0, 1) with the function h/ξ which is analytic on D(0, θ)
since 1/r ≥ θ and ξ does not vanish on D(0, θ). Therefore the power series

∑+∞
k=0 σk z

k+1 has
a radius of convergence larger that θ. □

Now the proof of Proposition 5.1 can be completed. Let ϕ ∈ B′
V . Then Lemma 5.2 and the

Cauchy-Hadamard formula give

lim sup
k→+∞

∣∣ϕ((P k −Π)1S
)∣∣1/k ≤ θ−1.

10



Let ε > 0. We have proved that: ∀ϕ ∈ B′
V , supn≥0

(
θ−1 + ε

)−n∣∣ϕ((Pn − Π)1S
)∣∣ < ∞. It

follows from a classical corollary of the Banach-Steinhaus theorem that

sup
n≥0

(
θ−1 + ε

)−n∥∥(Pn −Π)1S
∥∥
V
<∞. (28)

This give ϱS ≤ θ−1 + ε, thus ϱS ≤ θ−1 since ε is arbitrary. □

We are now in position to state the main result of this section.

Theorem 5.1 Assume that P satis�es (D)-(M)-(SA). Then P is V -geometrically ergodic.
Moreover

ρV (P ) ≤ max
(
r, ϱS

)
≤ θ−1 < 1

where r, ϱS and θ are de�ned in (10), (25) and (26) respectively. More precisely

(i) ρV (P ) = ϱS ≤ θ−1 when r ≤ ϱS; (ii) ρV (P ) ≤ r when r > ϱS.

Proof. Let n ≥ 1. We have

Tn − µn(·)Π 1S =

n∑
k=1

βk(·)
(
Pn−k1S −Π1S

)
from (7) and (13). From Proposition 5.1 we know that ϱS < 1. Let γ ∈ (r, 1), ϱ ∈ (ϱS , 1).
Set α := max(γ, ϱ), and de�ne Dϱ := supn≥0 ϱ

−n
∥∥Pn1S −Π1S

∥∥
V
<∞. Then

∥Tn − µn(·)Π 1S∥V ≤
n∑

k=1

∥βk∥′V
∥∥Pn−k1S −Π1S

∥∥
V

≤ ν(V )Cγ Dϱ

n∑
k=1

γk−1ϱn−k

≤ ν(V )Cγ Dϱ

γ
nαn

from (15) and from the de�nitions of Dϱ and α. Moreover note that

∥µn(·)Π 1S −Π∥V = ∥π(1S)µn(·)− π(·)∥′V ≤ LCγ

1− δ
γn

from (19) and Lemma 3.1. Then

∥Pn −Π∥V ≤ ∥Pn − Tn∥V + ∥Tn − µn(·)Π 1S∥V + ∥µn(·)Π 1S −Π∥V

≤ Cγ γ
n +

ν(V )Cγ Dϱ

γ
nαn +

LCγ

1− δ
γn

from Corollary 2.1 and from the previous inequalities. It follows from the de�nition of ρV (P ) in
(5) that ρV (P ) ≤ α, thus P is V -geometrically ergodic. Next, since γ and ϱ are arbitrarily close
to r and ϱS respectively, we obtain that ρV (P ) ≤ max

(
r, ϱS

)
. Inequality max

(
r, ϱS

)
≤ θ−1

holds since ϱS ≤ θ−1 from Proposition 5.1 and since r ≤ θ−1 from the de�nition of θ. Next, if
r ≤ ϱS , then ρV (P ) ≤ ϱS , thus ρV (P ) = ϱS since ϱS ≤ ρV (P ) from the de�nitions of ρV (P )
and ϱS . This gives (i)-(ii). □
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Remark 5.1 As already mentioned, the geometric approximation (12) as well as the geomet-
rical rate for ∥βk∥′V in (15) are central in the proof of Proposition 5.1. Indeed this ensures that
the radius of convergence of both power series B(·) and h(·) in (27) are larger than 1/r. In
this regard note that, if the function B(·) in (26) has no zero in the annulus {1 < |z| < 1/r},
then ρV (P ) ≤ r from Theorem 5.1 since θ = 1/r in this case. By contrast, if B(·) has a
zero in the annulus {1 < |z| < 1/r}, then Inequality ρV (P ) > r may occur: in this case the
convergence rate O

(
(r+ε)n

)
in both inequalities (12) and (18) is better than O

(
(ρV (P )+ε)

n
)

in (3).

Remark 5.2 The main results of this paper extend when conditions (D)-(M)-(SA) hold for
some iterate PN with N > 1 (in place of P ). Indeed Theorem 2.1 and Theorem 3.1 then
apply to PN . In particular PN has a unique invariant probability π which is also P -invariant.
In the same way Theorem 5.1 asserts that PN is V -geometrically ergodic, provided that the
small set associated with PN satis�es Assumption (SA). Then it easily follows that P is
V -geometrically ergodic with spectral gap ρV (P ) = (ρV (P

N ))1/N .

A Complements thanks to quasi-compactness

In this appendix we give another proof of the V -geometric ergodicity of P under the as-
sumptions (D)-(M)-(SA) by using quasi-compactness arguments. Moreover the link between
ρV (P ) and the real number θ of (26) is made clearer. The proofs below are independent from
that of Theorem 5.1, in particular ϱS in (25) is not used.

Various equivalent de�nitions of the essential spectral radius of a bounded linear operator
on a Banach space can be found in the literature in link with, either the essential spectrum,
or the quasi-compactness property, e.g. see [Hen93, Hen07] for a general context and [Hen06,
HL14b, HL14a] in the framework of V -geometrically ergodic Markov kernels. What is needed
to know here on quasi-compactness is summarized in the assertions (qc1)-(qc2) below.

Let ress(P ) denote the essential spectral radius of P on BV . In [HL14a, Section 5] it is
proved that, under Assumptions (D)-(M), P is a power-bounded (i.e. supn ∥Pn∥V <∞) and
quasi-compact operator on BV with

ress(P ) ≤ r (29)

where r ∈ [0, 1) is de�ned in (10). The elements βk of B′
V are de�ned in (6). Recall that

B1X(z) =
∑+∞

k=1 βk(1X)z
k is well-de�ned and analytic on D(0, 1/r) from Proposition 4.1, and

that the real number θ in (26) is de�ned as follows:

(a) If B1X has at least one zero in the annulus {1 < |z| < 1/r}, then θ is the smallest one in
modulus, in particular 1 < θ < 1/r in this case.

(b) If B1X has no zero in the annulus {1 < |z| < 1/r}, then θ = 1/r by convention.

Theorem A.1 Assume that P satis�es (D)-(M)-(SA). Then P is V -geometrically ergodic,
and ρV (P ) ≤ θ−1. More precisely

(a') ρV (P ) = θ−1 < 1 when θ < 1/r; (b') ρV (P ) ≤ r when θ = 1/r.

The proof of Theorem A.1 involves the adjoint operator of P acting on B′
V , which is

denoted by P ∗. We know that P and P ∗ have the same spectral values, but quasi-compactness

12



gives much more spectral informations. Indeed, since under Conditions (D)-(M) P is quasi-
compact on BV with spectral radius r(P ) = 1, then so is P ∗ on B′

V with the same spectral
radius and the same essential spectral radius. Using (29) the important things to remember
from quasi-compactness in the next proofs are the following facts, see [HL14b] for details.

� For every a ∈ (r, 1) there are �nitely number of spectral values λ of P (or of P ∗) such
that a ≤ |λ| ≤ 1 and they are in fact eigenvalues of both P and P ∗.

� For every a ∈ (r, 1), denoting by Va the set of eigenvalues λ of P (or of P ∗) such that
a ≤ |λ| < 1, the following assertions hold:

(qc1) If Va ̸= ∅, then ρV (P ) = max{|λ|, λ ∈ Va}.
(qc2) If Va = ∅, then ρV (P ) ≤ a.

Proof of Theorem A.1. From Proposition 4.1, B1S (z) :=
∑+∞

k=1 βk(1S)z
k is well-de�ned on

D(0, 1/r). First we prove the folowing lemma.

Lemma A.1 Assume that P satis�es Conditions (D)-(M). Let λ be an eigenvalue of P ∗ such
that r < |λ| ≤ 1. Then the subspace Eλ := {ψ ∈ B′

V : ψ ◦P = λψ} is spanned by the following
absolutely convergent series ψλ :=

∑+∞
k=1 λ

−k βk in B′
V . Moreover we have B1S (λ

−1) = 1.

Proof. The absolute convergence of the series
∑+∞

k=1 λ
−k βk in B′

V follows from (15) applied
with γ ∈ (r, |λ|). Let ψ ∈ Eλ, ψ ̸= 0. Then composing on the left by ψ in (12) gives

λnψ = ψ(1S)

n∑
k=1

λn−k βk +O(γn),

so that ψ = ψ(1S)
∑n

k=1 λ
−k βk + O((γ/λ)n). Hence ψ = ψ(1S)ψλ. Since ψ ̸= 0, we have

ψ(1S) > 0, thus 1 =
∑+∞

k=1 λ
−k βk(1S). □

Let us establish that P is V -geometrically ergodic. From P1X = 1X, we know that λ = 1
is an eigenvalue of P , thus of P ∗. Next, from Lemma A.1 we know that λ = 1 is a simple
eigenvalue of P ∗, more precisely the subspace E1 := {ψ ∈ B′

V : ψP = ψ} is spanned by
ψ1 :=

∑+∞
k=1 λ

−k βk which is a bounded positive measure from Proposition 2.1 and (15). In
particular the probability measure π on (X,X ) de�ned by π = ψ1/ψ1(1X) is P -invariant (as
already stated in Theorem 3.1). Furthermore Lemma A.1 and Property (24) due to (SA)
ensure that λ = 1 is the single eigenvalue with modulus one of P ∗, thus of P . Then we deduce
from the quasi-compactness of P ∗ on B′

V and from the previous facts that there exists on
B′
V a rank-one eigen-projector Π′

1 belonging to λ = 1 such that the sequence (P ∗n − Π′
1)n

converges to 0 with geometric rate in operator norm on B′
V . Similarly the quasi-compactness

of P on BV ensures that there exists on BV a �nite-rank eigen-projector Π1 belonging to
λ = 1 such that the sequence (Pn−Π1)n converges to 0 with geometric rate in operator norm
on BV . We have Π∗

1 = Π′
1 since Pn − Π1 and P ∗n − Π∗

1 have the same norm. It follows that
Π1 is rank-one, more precisely Π1 writes as Π1 = π(·)h for some h ∈ BV . From Pn1X = 1X
we obtain that 1X = π(1X)h = h, thus Π1 = π(·)1X. This proves that P is V -geometrically
ergodic.

Now applying the above statements (qc1)-(qc2), Properties (a′) and (b′) of Theorem A.1
follow from the next proposition and from the de�nition of θ in (a)-(b). More precisely, in
case (a), apply Proposition A.2 and (qc1) with some (any) a such that r < a < θ−1; in
case (b), apply Proposition A.2 and (qc2) with any a ∈ (r, 1) (arbitrarily close to r). □
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Proposition A.2 Assume that P satis�es Conditions (D)-(M). Let λ be a complex number
such that r < |λ| < 1. Then the three following assertions are equivalent.

(i) λ is an eigenvalue of P (or of P ∗) on BV .

(ii) B1X(λ
−1) = 0.

(iii) B1S (λ
−1) = 1.

In others words, if the set of eigenvalues λ of P (or of P ∗) on BV such that r < |λ| < 1 is
non-empty, then it coincides with the set {1/z : B1X(z) = 0, 1 < |z| < 1/r}.

Proof. The equivalence (ii) ⇔ (iii) follows from Proposition 4.1. Recall that T · = ν(·)1S .

Lemma A.3 Let z ∈ C such that |z| < 1/r. Then the series B(z) :=
∑+∞

k=1 z
k βk absolutely

converges in B′
V , and sati�es

∀z ∈ D(0, 1/r), zB(z) ◦ P = B(z)− z ν + zB(z) ◦ T. (30)

Proof. The above stated absolute convergence follows from (15). Recall that Tk for k ≥ 1 is
de�ned in Proposition 2.1. Setting T0 := 0 we obtain that for every k ≥ 1

P k − Tk := (P − T )k = (P k−1 − Tk−1)(P − T ) = P k − P k−1T − Tk−1P + Tk−1T

so that
∀k ≥ 1, Tk − Tk−1P = P k−1T − Tk−1T = (P k−1 − Tk−1)T. (31)

Let z ∈ D(0, 1/r). Then

B(z) ◦ P =

+∞∑
k=1

zk ν ◦
(
P k − Tk−1 ◦ P

)
(from (9))

=
+∞∑
k=1

zk ν ◦ (P k − Tk) +
+∞∑
k=1

zk ν ◦
(
Tk − Tk−1P

)
=

+∞∑
k=1

zk βk+1 +
+∞∑
k=1

zk ν ◦ (P k−1 − Tk−1)T (from (9) and (31))

=
1

z

(
B(z)− zν

)
+B(z) ◦ T (from (9))

from which we deduce (30). □

Now let λ ∈ C be such that r < |λ| < 1. If λ is an eigenvalue of P (or of P ∗), then (iii)
holds from Lemma A.1. Conversely, assume that B1S (λ

−1) = 1 and set ψ :=
∑+∞

k=1 λ
−k βk in

B′
V . Note that ψ = B(λ−1) and that ψ ̸= 0 since ψ(1S) = B1S (λ

−1) = 1. Lemma A.3 gives

ψ ◦ P = λψ − ν + ψ ◦ T.

Moreover, using T · = ν(·)1S we obtain that

ψ ◦ T =
+∞∑
k=1

λ−k βk ◦ T =

( +∞∑
k=1

λ−k βk(1S)

)
ν(·) = B1S (λ

−1) ν(·) = ν(·)

from which it follows that ψ ◦ P = λψ. Hence λ is an eigenvalue of P ∗. □

Remark A.1 Note that Equality (21) of Proposition 4.1 can be deduced from Lemma A.3.
Indeed we have B(z)(1X) = B1X(z) and B(z)(1S) = B1S (z). Then (30) applied to 1X and
T1X = ν(1X)1S easily provide (21).
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B Existence of π in a separable complete metric state space

The following result gives the existence of a P -invariant probability under the drift condi-
tion (D), even under the weaker condition (WD) : ∃δ ∈ (0, 1), ∃L > 0, PV ≤ δ V +L1X. A
proof is provided since we do not succeed in �nding simple arguments for this statement in
the literature.

Proposition B.1 Let (X, d) be a separable complete metric space and V : X→[1,+∞) be
a continuous function such that the set {V ≤ α} is compact for every α ∈ (0,+∞). If P
satis�es Condition (WD), then there exists a P -invariant probability measure π such that
π(V ) <∞.

Proof. We know from the proof of Theorem 2.1 that P is power-bounded on BV . Let x0 ∈ X.
Then K := supn(P

nV )(x0) < ∞. Let πn, n ≥ 1, be the probability measure on (X,X )
de�ned by: ∀B ∈ X , πn(1B) = (1/n)

∑n−1
k=0(P

k1B)(x0). Then Markov's inequality gives:
∀n ≥ 1, ∀α ∈ (0,+∞), πn

(
1{V >α}

)
≤ πn(V )/α ≤ K/α. Thus the sequence (πn)n≥1 is

tight, and we can select a subsequence (πnk
)k∈N weakly converging to a probability measure

π, which is clearly P -invariant. For p ∈ N∗, set Vp(·) = min(V (·), p). Then ∀k ≥ 0, ∀p ≥
0, πnk

(Vp) ≤ πnk
(V ) ≤ K. Since Vp is continuous and bounded on X, we obtain: ∀p ≥

0, limk πnk
(Vp) = π(Vp) ≤ K. The monotone convergence theorem then gives π(V ) <∞. □
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