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Abstract. We study the exponential growth of branching processes with ancestral depen-
dence. We suppose here that the lifetimes of the cells are dependent random variables, that
the numbers of new cells are random and dependent. Lifetimes and new cells’s numbers are
also assumed to be dependent. Applying the spectral study of Laplace-type operators re-
cently made in [15], we illustrate our results in the Markov context, for which the exponential
growth property is linked to the Laplace transform of the lifetimes of the cells.
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1. Introduction

Mathematical models for the growth of populations have been widely studied and applied
in many fields especially animal, cell biology (mitosis), plant and forestry sciences. Branching
process is a mathematical model often used to model reproduction (see for instance [4], [12]
and [18] or more recently, [2], [3], [6] and [16] and references therein). It is described as
follows. A single ancestor object (that may be a particle, a neutron, a cosmic ray, a cell and
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so on) is born at time 0. It lives for a random time. At the moment of death, the object
produces a random number of progenies. In the classical case (i.e. independence context),
each of the first generation progeny behaves, independently of each other and of the ancestor:
the objects do not interfere with one another. Many authors were interested by generalizing
this classical model by trying to introduce dependence in the above model (see, for instance,
[6], [16], [21] and references therein).

In the spirit of the branching processes and for the sake of generalization, we consider in
this paper a model of reproduction with a random number of children and with random life
duration. As done in [2], [6] and [16], our approach to develop this mathematical model, is
to associate to each object v a parameter xv, called its characteristics. This parameter may
depend on its energy, its growth, its position or on other non-observed factors and determines
its number of children and its life duration. We consider a stationary context: the sequence
of characteristics of two lines are assumed to have the same finite dimensional distributions (a
line is an infinite succession of objects starting from the initial one and linked from one to the
next one by a parent-child relation). The classical independent identically distributed (i.i.d.
for short) case above described is a particular case of stationarity. Next we will use, as was
done by many authors (see for instance [2], [6] and [16]), Markov processes as mathematical
models for this characteristics process. We discuss, in particular, the linear autoregressive
process.

This paper is specifically concerned with the mitosis model and from now on, an object
will be a cell. This mitosis model starts with one single initial cell. After a random time, this
initial cell is divided into a random number of cells and the process continues. For technical
reasons we will suppose that the random number of children is always larger than 2. We
summarize our model, used throughout the paper, as follows,

(A) to each cell v, is associated a parameter xv ∈ X, called its characteristics, (with
(X,X ) a measurable space) which determines its lifetime ξ(xv) and the number of
new cells κ(xv) in which the cell splits at the end of its lifetime (where ξ and κ are
two measurable functions with values in [0,+∞) and in Z+ respectively);

(B) there exists a process (Xn)n with values in X such that, for each line (vn)n≥0 of cells,
the characteristics along this line is given by a copy of (Xn)n≥0 (these copies are not
assumed to be mutually independent);

(C) κ(x) ≥ 2 for any x, i.e. each cell gives birth to more than two children.

The present work deals with the so-called Belleman-Harris age-dependent branching process
(Nt)t≥0 where, for every t ≥ 0, Nt denotes the number of cells alive at time t (see [4] and
[12] for more about). More precisely we study the first and second moment of (Nt)t, as well
as the exponential growth behavior of Nt (as t tends to infinity) which will be linked to an
extended Malthusian parameter ν defined below.

Roughky speaking, our above assumptions mean that the characteristics of the successive
cells of a same line are modeled by a reference process (Xn)n, and that, the characteristics
of each cell determine both its number of children and its life duration. In particular, in our
more general setting, the number of children and the life duration of a cell are not assumed
to be independent and are neither assumed to be independent for two cells of a same line,
nor of two different lines. For the study of the first moment of (Nt)t, the characteristics of
two different lines will be assumed to have the same distribution, but not to be independent
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(conditionally to its last common ancestor). For the study of the auto-covariances of (Nt)t,
we require a bit more in terms of stationary: we will moreover assume that

(D) for every non negative integer k, there exists a process (X
(k)
n )n such that any couple

of characteristics of two different lines with last common ancestor of generation k is

a copy of ((Xn)n, (X
(k)
n )n).

This includes the case where the children are driven by conditionally independent processes
(as in [16]), but also the case in which the children have the same characteristic, and a lot of
other situations. In our applications (Xn)n will be a Markov process.

The exponential growth behavior of Nt as t tends to infinity was studied in the book of
Harris [12] in the case where (Xn)n is a sequence of i.i.d. rv’s, that is when the lifetimes are
modeled by a sequence of i.i.d. random variables independent of the random numbers of the
news cells which are also assumed to be i.i.d. The growth rate ν0 (also called the Malthusian
parameter) was defined, in this context, as the positive root of the equation,

E[κ(X1)]E
[
e−ν0ξ(X1)

]
= 1, (1)

as soon as the distribution of ξ(X1) is not lattice (cf. [12, Theorem 17.1]). Louhichi and Ycart
[21] extend some results of Harris to the case where the lifetimes are a sequence of dependent
random variables and when each cell is divided, after a random lifetime, into two cells: (Xn)n
is a stationary process and κ(x) = 2 for any x. Under those assumptions the Malthusian
parameter ν1 is expressed in terms of the Laplace transform of the random variable Sn

Sn :=

n∑
k=0

ξ(Xk) (2)

which models the birth date of the (n+ 1)-th individual of a same line. More precisely,

ν1 = inf

γ > 0,
∑
n≥0

2nE
[
e−γSn

]
<∞

 . (3)

In this paper, since the lifetimes and the numbers of new cells are dependent random variables,
the growth rate of Nt is given by

ν := inf

γ > 0,
∑
n≥0

gn(γ) <∞

 , (4)

where gn(γ) is expressed in terms of a Laplace-type transform of Sn, that is

gn(γ) := E

n−1∏
j=0

κ(Xj)

 (κ(Xn)− 1)e−γSn

 .
One task of the paper, is to give exact evaluations of E[Nt] and E[NtNt+τ ], for any t, τ ≥
0, under general and minimal conditions on the characteristics process (Xn) as described
above. Those calculations are the main ingredients to get the convergence almost surely of
e−νtNt to a non-negative random variable W . A second task of the paper is to discuss the
conditions yielding the previous results and to give some Markovian models for which the
growth parameter ν is finite.
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This paper is organized as follows. In Subsection 2.1 we give with proofs an exact evalu-
ation of E[Nt] (see Proposition 2.2). An immediate consequence of this calculation, when ν
is supposed finite, is the convergence in mean of e−νtE[Nt] to some constant Cν given by

Cν := lim
γ→0

γ

γ + ν

∑
n≥0

gn(γ + ν),

see Corollary 2.3 for a precise statement. As noticed in Subsection 2.2, from a multiplicative
ergodicity behavior of gn(γ), see Definition 2.4, one can deduce that ν and Cν are both finite.

The multiplicative ergodicity property is particularly useful in the context of additive
functional of Markov chains with Markov kernel P and initial law µ. In Subsection 2.2 we
present two instances of Markov models satisfying this multiplicative ergodicity property
(and then for which ν and Cν are both finite): first a toy model involving some Knudsen
gas in Theorem 2.6 (see [5] for other results on Knudsen gases); second the model of linear
autoregressive processes in Theorem 2.7. Both Theorems 2.6 and 2.7 are obtained under
weak integrability assumptions on the observable ξ (the lifetime). The proof of these two
theorems is based on the fact that

∀n ≥ 1, gn(γ) = µ
(
κ e−γξ Pn−1

γ (Phκ,γ)
)
,

where Pγ is a Laplace-type kernel associated with P , ξ and κ (see Formula (13) for more

details about the notations), and where hκ,γ is given by the formula hκ,γ :=
(
κ−1

)
e−γξ. Then

the multiplicative ergodicity property can be proved in the case when the Laplace kernels
Pγ satisfy some nice spectral properties on a suitable Banach space B (see (14)). Then ν is
proved to be finite and given by

ν = inf{γ > 0, r(γ) < 1},

where r(γ) denotes the spectral radius of Pγ on B. The main lines of our spectral approach,
based on the quasi-compactness property (see [13]) and the Keller and Liverani perturbation
theorem (see [17, 1]), are summarized at the end of Subsection 2.2. The complete procedure,
together with further references related to the spectral method, are presented in [15].

In Subsection 3.1 we study the behavior of E[NtNt+τ ], for any t > 0, τ ≥ 0, in the very
general setting of dependence (cf. Proposition 3.2). Under assumptions (A)-(D), Proposition

3.2 states a formula for E[NtNt+τ ] in terms of expectations of functionals of ((Xn)n, (X
(k)
n )n)

The behavior of E[NtNt+τ ] is the main ingredient for the study of the quadratic mean and of
the almost sure convergence of e−νtNt as t tends to infinity (see Corollary 3.3). The purpose of
Subsection 3.2 is to discuss Corollary’s 3.3 assumptions, yielding the almost sure convergence
of e−νtNt as t tends to infinity, in the particular case where lifetimes and new cells numbers
are independent and new cells numbers are modelled by a sequence of iid random variables.
A main step is then to establish that, for some δ > 0 (see Lemma 3.9),∣∣∣∣∣∣e−νt

∑
n≥0

κn1 (κ1 − 1)P(

n+1∑
i=1

ξ(Xi) ≤ t|X0 = x)− C̃0(x)

∣∣∣∣∣∣ ≤ Ψ0(x)

2π
e−δt, (5)

where κ1 = E[κ(X1)] (see Lemma 3.9 for the definitions of the functions C̃0 and Ψ0). The
bound (5) is the main tool to obtain (see Proposition 3.10 for more details),

E[Nt] = eνtE[κ(X0)]E[e−νξ(X0)C̃0(X0)][1 +O(e−ε1t)], as t→∞, for some ε1 > 0.
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Under additional assumptions, the bound (5) also allows us to obtain (see Proposition 3.11),

E[NtNt+τ ] = eν(2t+τ)κ2

∞∑
k=0

κk1E[C̃2
0 (Xk)e

−2νSk ](1 + ae−ε1t), as t→∞,

where κ2 = E[κ(X1)(κ(X1)− 1)] and where a, ε1 are positive constants independent of t and
τ . Lemma 3.9 gives sufficient conditions ensuring (5). Theorem 3.8 studies the convergence in
mean quadratic and almost surely of e−νtNt to a random variable W and gives the expressions
of the first and of the second moment of this limit W . In Subsection 3.3 we discuss mainly
the conditions of Lemma 3.9 (and then sufficient conditions for the bound (5)).

2. Behavior of the first moment, multiplicative ergodicity, examples

2.1. First moment of Nt. The following proposition evaluates, for any t > 0, the expecta-
tion of Nt, when it exists, in terms of the lifetimes (ξ(Xi))i≥0 and of the numbers of new cells
(κ(Xi))i≥0. For this first result, we only assume our general stationary assumptions (A)-(C)
that can be reformulated as follows.

Hypothesis 2.1. There exist a family {X0,k1,...,kn , n ≥ 0, k1, .., kn ≥ 1} of X-valued random
variables defined on the same probability space and two functions κ : X → Z+ and ξ : X →
[0,+∞) such that, for every sequence (ki)i≥1 of positive integers,

• (X0,k1,...,kn)n≥0 has the same distribution as (Xn := X0,1n)n≥0, where we use the
notation 0, 1n to denote 0, k1, ..., kn when k1 = ... = kn = 1,

and such that, setting D0,k1,...,kn := κ(X0,k1,...,kn) and T0,k1,...,kn := ξ(X0,k1,...,kn), the following
model hypothesis holds

• for every x ∈ X, if a cell has characteristics x, then it has κ(x) ≥ 2 children and a
life duration of ξ(x),
• X0 is the characteristics of the initial cell (and so D0 and T0 are respectively its

number of children and its life duration),
• for every k ∈ {1, · · · , D0}, X0,k is the characteristics of the k-th child of the initial

cell (and so D0,k and T0,k are respectively its number of children and its life duration),
• more generally, for every n ≥ 0, for every positive integers k1, ...kn such that ki ≤
D0,k1,...,ki−1

(for every i = 1, ..., n), X0,k1,...,kn is the characteristics of the kn-th child
of the kn−1-th child of the · · · of the k1-th child of the initial cell (and so D0,k1,··· ,kn
and T0,k1,··· ,kn are respectively its number of children and its lifetime).

Proposition 2.2. Assume Hypothesis 2.1. Let t > 0 be fixed. If
∑

n≥0 E
[(∏n

j=0 κ(Xj)
)

1{Sn≤t}

]
<

∞, then E[Nt] <∞ and

E[Nt] = 1 +
∑
n≥0

E

n−1∏
j=0

κ(Xj)

 (κ(Xn)− 1) 1{Sn≤t}

 (6)

(with the usual convention
∏−1
j=0 κ(Xj) = 1).

Proof. For every n ≥ 0, we write Σn(t) for the number of cells of generation n alive at time
t. Observe that E[Σ0(t)] = P(ξ(X0) > t) and that, for every n ≥ 1 (with the convention
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k0 = 0),

E[Σn(t)] = E

 D0∑
k1=1

D0,k1∑
k2=1

· · ·
D0,k1,··· ,kn−1∑

kn=1

1{T0+T0,k1+···+T0,k1,··· ,kn−1
≤t<T0+T0,k1+···+T0,k1,··· ,kn}

 .
We write, since D0 = κ(X0), i.e, D0 is a measurable function of X0,

E[Σn(t)]

= E

 D0∑
k1=1

E

D0,k1∑
k2=1

· · ·
D0,k1,k2,··· ,kn−1∑

kn=1

1{T0+T0,k1+···+T0,k1,k2,··· ,kn−1
≤t<T0+T0,k1+···+T0,k1,k2,··· ,kn}

∣∣∣∣∣∣X0

 .
Since the vector (X0, X0,k1 , · · · , X0,k1,k2,··· ,kn) is distributed as (X0, X0,1, · · · , X0,1,k2,··· ,kn),
we obtain a. s.

E

D0,k1∑
k2=1

· · ·
D0,k1,k2,··· ,kn−1∑

kn=1

1{T0+T0,k1+···+T0,k1,k2,··· ,kn−1
≤t<T0+T0,k1+···+T0,k1,k2,··· ,kn}

∣∣∣∣∣∣X0


= E

 D0,1∑
k2=1

· · ·
D0,1,k2,··· ,kn−1∑

kn=1

1{T0+T0,1+···+T0,1,k2,··· ,kn−1
≤t<T0+T0,1+···+T0,1,k2,··· ,kn}

∣∣∣∣∣∣X0

 .
We obtain, collecting the two last equalities and using some properties of the conditional
expectation,

E[Σn(t)]

= E

D0E

 D0,1∑
k2=1

· · ·
D0,1,k2,··· ,kn−1∑

kn=1

1{T0+T0,1+···+T0,1,k2,··· ,kn−1
≤t<T0+T0,1+···+T0,1,k2,··· ,kn}

∣∣∣∣∣∣X0


= E

E
D0

D0,1∑
k2=1

· · ·
D0,1,k2,··· ,kn−1∑

kn=1

1{T0+T0,1+···+T0,1,k2,··· ,kn−1
≤t<T0+T0,1+···+T0,1,k2,··· ,kn}

∣∣∣∣∣∣X0


= E

D0

D0,1∑
k2=1

· · ·
D0,1,k2,··· ,kn−1∑

kn=1

1{T0+T0,1+···+T0,1,k2,··· ,kn−1
≤t<T0+T0,1+···+T0,1,k2,··· ,kn}

 .
Now, starting with the last term above and using, analogously, the fact that D0, D0,1 are
(X0, X0,1)-measurable and that the distribution of (X0, X0,1, X0,1,k2 , · · · , X0,1,k2,··· ,kn) does
not depend on k2, we obtain

E[Σn(t)] =

E

D0D0,1E

D0,1,1∑
k3=1

· · ·
D0,1,1,k3,··· ,kn−1∑

kn=1

1{T0+T0,1+···+T0,1,1,k3,··· ,kn−1
≤t<T0+T0,1+···+T0,1,1,k3,··· ,kn}

∣∣∣∣∣∣X0, X0,1


= E

D0D0,1

D0,1,1∑
k3=1

· · ·
D0,1,1,k3,··· ,kn−1∑

kn=1

1{T0+T0,1+···+T0,1,1,k3,··· ,kn−1
≤t<T0+T0,1+···+T0,1,1,k3,··· ,kn}

 .
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We deduce, iterating those arguments (recall that 1m = 1, · · · , 1 (m times)), that for every
n ≥ 1,

E[Σn(t)] = E
[
D0D0,1 · · ·D0,1n−11{T0+T0,1+···+T0,1n−1≤t<T0+T0,1+···+T0,1n}

]
.

Now we get, since the vector (D0, · · · , D0,1n−1 , T0, · · · , T0,1n) is distributed as the vector
(κ(X0), · · · , κ(Xn−1), ξ(X0), · · · , ξ(Xn)),

E
[
D0D0,1 · · ·D0,1n−11{T0+T0,1+···+T0,1n−1≤t<T0+T0,1+···+T0,1n}

]
= E

n−1∏
j=0

κ(Xj)

(1{Sn−1≤t} − 1{Sn≤t}
) .

Hence, we obtain by collecting the two last equalities,

E[Σn(t)] = E

n−1∏
j=0

κ(Xj)

(1{Sn−1≤t} − 1{Sn≤t}
) .

Now we get, since
∑

n≥0 E
[(∏n

j=0 κ(Xj)
)

1{Sn≤t}

]
<∞ and Nt = 1T0>t+

∑∞
n=1 Σn(t) a. s.,

E[Nt] = P(ξ(X0) > t) +

∞∑
n=1

E

n−1∏
j=0

κ(Xj)

(1{Sn−1≤t} − 1{Sn≤t}
)

= P(ξ(X0) > t) +
∞∑
n=0

E

 n∏
j=0

κ(Xj)

1{Sn≤t}

− ∞∑
n=1

E

n−1∏
j=0

κ(Xj)

1{Sn≤t}


= P(ξ(X0) > t) + E

[
κ(X0)1ξ(X0)≤t

]
+
∑
n≥1

E

n−1∏
j=0

κ(Xj)

 (κ(Xn)− 1)1{Sn≤t}


= 1 + E

[
(κ(X0)− 1)1ξ(X0)≤t

]
+
∑
n≥1

E

n−1∏
j=0

κ(Xj)

 (κ(Xn)− 1)1{Sn≤t}

 .
�

It follows from Proposition 2.2 that E[Nt] <∞ if ν defined by (4) is finite (using the fact
that 1{Sn≤t} ≤ eγte−γSn for any positive γ). Now using Proposition 2.2 and arguing exactly
as for the proof of Theorem 2.1 in [21], we obtain the following exponential behavior in mean
of E[Nt] in a very general setting of dependence with the use of the function G given by

G(γ) :=
∑
n≥0

gn(γ), recall that gn(γ) = E

n−1∏
j=0

κ(Xj)

 (κ(Xn)− 1)e−γSn

 . (7)

Corollary 2.3. Assume Hypothesis 2.1 and that ν <∞ and that the following limit exists

Cν := lim
γ→0

γ

γ + ν
G(ν + γ) . (8)
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Then, lim
t→∞

1

t

∫ t

0
e−νsE[Ns]ds = Cν . (9)

2.2. Multiplicative ergodicity, application to Markov chains. In order to study the
above function G(·), and so ν and Cν , we adapt the notion of ”multiplicative ergodicity”, as
introduced in [19] and [20], to our context.

Definition 2.4. Let γ1 > 0. We say that (Sn, κ(Xn))n is multiplicatively ergodic on
J = [0, γ1) if there exist two continuous maps A and ρ from J to (0,+∞) such that, for every
compact subset K of (0, γ1), there exist MK > 0 and θK ∈ (0, 1) such that, for every n ≥ 1,

∀γ ∈ K, |gn(γ)−A(γ)(ρ(γ))n| ≤MK(ρ(γ)θK)n. (10)

When κ(·) is constant, we will simply say that (Sn)n is multiplicatively ergodic on J .

Remark 2.5. Assume that (Sn, κ(Xn))n is multiplicatively ergodic on J = [0, γ1). Then

• For every γ ∈ J we have: G(γ) =
∑

n≥0 gn(γ) <∞ ⇐⇒ ρ(γ) < 1.

• For every compact subset K of J , we obtain from the definition of ν in (4) that

∀γ ∈ K ∩ (ν,+∞),

∣∣∣∣G(γ)− A(γ)

1− ρ(γ)

∣∣∣∣ ≤ MK

1− ρ(γ)θK
.

• ν < γ1 means that

ν = inf{γ ∈ J : ρ(γ) < 1} < γ1. (11)

• If moreover ρ is differentiable at ν with ρ(ν) = 1 and ρ′(ν) 6= 0, then (8) follows with

Cν = − A(ν)
νρ′(ν) . Actually, to obtain (11), we can relax the continuity assumptions on A

and ρ on J = [0, γ1). For (8), we just need the continuity of A and the differentiability
of ρ at ν (with ρ′(ν) 6= 0).

The multiplicative ergodicity property is specially adapted for additive functional of Markov
chains, that is: X = (Xn)n is a Markov chain on (X,X ) with Markov kernel P (x, dy), in-
variant probability π, and initial distribution µ (i.e. µ is the distribution of X0). Below we
present two Markov models satisfying the multiplicative ergodicity property. The first one
is a toy model, namely: at each step, either we follow a Markov chain Z = (Zn)n (with
probability (1 − α)) or we generate an independent random variable with distribution the
invariant probability measure of Z (with probability α). See [5] for more about this model.

Theorem 2.6 (Knudsen gas). Let X := Rd, let π be some Borel probability measure on
X, and let U a Markov operator with stationary probability π. We fix α ∈ (1/2, 1). Let
X = (Xn)n be a Markov chain with transition kernel P := απ + (1− α)U . Assume that the
initial distribution µ admits a density (with respect to π) having a moment of order p for some
p > 1. Moreover assume that κ ≡ 2 and that π(ξ > 0) = 1. Then (Sn)n is multiplicatively
ergodic on some interval [0, γ1] with ρ(0) = 2 and γ1 > 0 such that ρ(γ1) < 1. Thus ν defined
by (4) is finite.
If, moreover, π(ξτ ) <∞ for some τ ∈ (1, p/(p−1)), then (8) is well defined and Property (9)
holds with Cν ∈ (0,+∞).

Note that, for this example, as for the next one, our moment assumptions are very weak
(no exponential moment is needed, our assumptions only involve finite order moment as-
sumptions).
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Theorem 2.7 (Linear autoregressive model). Let X := R and Xn = αXn−1 + ϑn for n ≥ 1,
where X0 is a real-valued random variable, α ∈ (−1, 1), and (ϑn)n≥1 is a sequence of i.i.d. real-
valued random variables independent of X0. Let r0 > 0. We assume that ϑ1 has a continuous
Lebesgue probability density function p > 0 on X satisfying the following condition: for all
x0 ∈ R, there exist a neighbourhood Vx0 of x0 and a non-negative function qx0(·) such that
y 7→ (1 + |y|)r0 qx0(y) is Lebesgue-integrable and such that 1

∀y ∈ R, ∀v ∈ Vx0 , p(y + v) ≤ qx0(y). (12)

Assume that the initial distribution µ is either the stationary probability measure π or δx for
some x ∈ R. Let N0 be a positive integer. Assume that κ is bounded, that lim|x|→+∞ ξ(x) =

+∞, that the Lebesgue measure of the set [ξ = 0] is zero, and that supx∈R
ξ(x)

(1+|x|)r0 <∞.

Then (Sn, κ(Xn))n is multiplicatively ergodic on J = [0,+∞) with limγ→ 0+ ρ(γ) ≥ 2 and
limγ→+∞ ρ(γ) = 0. Thus ν given by (4) is well defined (and is independent of the choice of
the initial distribution µ).

If moreover there exists τ > 0 such that supx∈R
ξ(x)1+τ

(1+|x|)r0 < ∞
2, then the constant Cν given

by (8) is well defined in (0,+∞) and Property (9) holds.

The proof of Theorems 2.6 and 2.7 is based on the spectral study of Laplace operators
associated with (P, ξ, κ). A general setting of this method is provided in [15], together with
the complete proof of Theorems 2.6 and 2.7 (see [15, Theorems 5.1 and 6.1]). Let us give the
main lines of this spectral method.

• The Laplace kernel associated with (P, ξ, κ). We assume that, for every n ≥ 1, the random
variable

∏n
j=0 κ(Xj) is integrable. We set hκ,γ :=

(
κ− 1

)
e−γξ. Let γ ∈ (0,+∞). For n ≥ 1,

gn(γ) = E

n−1∏
j=0

κ(Xj)e
−γξ(Xj)

hκ,γ(Xn)


= E

n−1∏
j=0

κ(Xj)e
−γξ(Xj)

 (Phκ,γ)(Xn−1)

 ,
with (Ph)(x) :=

∫
X h(y)P (x, dy). If n ≥ 2, we continue and obtain

gn(γ) = E

n−2∏
j=0

κ(Xj)e
−γξ(Xj)

 (Pγ(Phκ,γ))(Xn−2)

 ,
with Pγh := P (hκe−γξ). An easy induction gives

∀n ≥ 1, gn(γ) = µ
(
κ e−γξ Pn−1

γ (Phκ,γ)
)
. (13)

• A spectral multiplicative ergodicity property. The first step of the spectral procedure is to
find an interval J0 ⊂ [0,∞) and a suitable Banach space (B, ‖·‖B) on which, for every γ ∈ J0,
the Laplace kernel Pγ continuously acts on B and has the following spectral properties: there

1Note that ϑ1 admits a moment of order r0.
2Recall that

∫
R |x|

r0 dπ(x) <∞ under the assumptions of Theorem 2.7 (see [7, 8]). Hence supx∈R
ξ(x)1+τ

(1+|x|)r0 <

∞ implies that
∫
R |ξ|

1+τ dπ <∞.
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exists a map γ 7→ Πγ from J0 into the space L(B) of bounded linear operators on B such
that, for every compact subset K of J0, there exist θK ∈ (0, 1) and MK ∈ (0,+∞) such that

∀γ ∈ K, ∀f ∈ B,
∥∥Pnγ f − r(γ)nΠγf

∥∥
B ≤MK

(
θK r(γ)

)n‖f‖B (14)

where r(γ) is the spectral radius of Pγ . Then, using Definition 2.4, Remark 2.5 and For-
mula (13), the following assertions hold:

(i) If the functions γ 7→ r(γ) and γ 7→ B(γ) := µ
(
κ e−γξΠγ(Phκ,γ)

)
are continuous from

J0 to (0,+∞), then (Sn, κ(Xn))n is multiplicatively ergodic on J0 with A(γ) := B(γ)
r(γ)

and ρ(γ) = r(γ).
(ii) If moreover inf

γ∈J0
r(γ) < 1 < sup

γ∈J0
r(γ), then ν is finite and

ν = inf{γ > 0 : r(γ) < 1}. (15)

(iii) If furthermore the functions r(·) and B(·) are C1-smooth on J0, and if r′(ν) 6= 0, then
the constant Cν of (8) is well defined and finite, and Property (9) holds true.

• On Property (14). A natural way to obtain (14) is to use quasi-compactness. More precisely
assume that, for some fixed γ ≥ 0, Pγ continuously acts on B and that

(a) r(γ) > 0 and Pγ is quasi-compact on B,
(b) r(γ) is the only eigenvalue of modulus r(γ) for Pγ , and r(γ) is a first order pole of Pγ

with moreover dim Ker(Pγ − r(γ)I) = dim Ker(Pγ − r(γ)I)2 = 1.

Then Pγ satisfies (14) with K = {γ}. Condition (a) may be investigated by applying the
quasi-compactness criteria of [13]. Condition (b) may be studied by using standard arguments
of positive operators. The case when B is a Banach lattice is specially adapted to the study
of (b), and further useful properties on r(·) may be obtained in this case, as for instance the
non-increasingness of r(·). For the Knudsen gas (Theorem 2.6), the conditions (a) and (b)
are fulfilled on every La(π) (a > 1), where La(π) denotes the usual Lebesgue space associated
with the P -invariant probability distribution π. For linear autoregressive models (Theorem
2.7), setting V (x) := (1 + |x|)r0 , the conditions (a) and (b) are proved to hold on the Banach
space Ba = CV a for each a ∈ (0, 1], where (CV a , ‖ · ‖V a) denotes the space of continuous
fonctions f : R→C such that the limits limx→−∞ f(x)/V (x)a and limx→+∞ f(x)/V (x)a

exist in C and are equal, and where ‖f‖V a = supx∈R |f(x)|/V (x)a. The Banach spaces
involved in these two instances are Banach lattices.

• The use of weak perturbation theory. The above conditions (a) and (b) only give Prop-
erty (14) for K = {γ}. To obtain (14) with the desired uniformity property with respect
to any compact subset K of J0, and moreover to obtain the continuity of the functions r(·)
and B(·), a natural way is to apply the perturbation theory of bounded linear operators.
Unfortunately, the classical operator perturbation method [22, 23, 9, 10] does not apply to
our context. Indeed, because we do not assume any exponential moment condition on ξ, the
map γ 7→ Pγ is (in general) not continuous from (0,+∞) to L(B). For instance, for linear
autoregressive models (respectively for the Knudsen gas), the map γ 7→ Pγ is not continuous
in general from (0,+∞) to L(Ba) with Ba = CV a (respectively with Ba = La(π)), but only
from (0,+∞) to L(Ba,Bb) for 0 ≤ a < b ≤ 1 (respectively for 1 ≤ b < a). The same problem
occurs in the study of the C1-regularity of r(·) and B(·). This is the reason why we use the
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Keller-Liverani perturbation theorem [17] in [15]. The price to pay is to consider ”a chain of
Banach spaces” instead of a single one, according to the approach used in [14].

3. Behavior of the second moment and almost sure convergence

3.1. Second moment and applications. To study the behaviour of E[NtNt+τ ] (Propo-
sition 3.2), as well as the convergence of (e−νtNt)t≥0 when t→+∞ (Corollary 3.3), let us
introduce an additional assumption involving the characteristics for lines of cells coinciding
up to the k-th generation (this is a reformulation of our Assumptions (A)-(D)).

Hypothesis 3.1. Hypothesis 2.1 holds true. Moreover, for each k ∈ N, there exists a process

X(k) = (X
(k)
n )n≥0 such that{

(X
(k)
n )0≤n≤k = (Xn)0≤n≤k a.s.

(X
(k)
n )n≥0 = (Xn)n≥0 in law,

(16)

and such that, for every couple of sequences of positive integers (mi)i≥1 and (`i)i≥1 such
that m1 = `1, ...,mk = `k and `k+1 6= mk+1, ((X0,m1,...,mn)n, (X0,`1,...,`n)n) has the same

distribution as (X,X(k)).

Now define, for any integers n ≥ 1,m ≥ 1 and min(n,m)−1 ≥ k ≥ 0 the random variables
An,m,k as follows:

An,m,k =

(
n−2∏
i=0

κ(Xi)

) m−2∏
j=min(k+1,n−1)

κ(X
(k)
j )


 ∏
j∈{k}\{n−1,m−1}

(κ(Xj)− 1)

 (κ(Xn−1)− 1)
(
κ(X

(k)
m−1)− 1

)
,

with the usual convention
∏`
i=k+1 · · · = 1 if ` ≤ k. Define also S

(k)
n :=

∑n
j=0 ξ(X

(k)
j ). The

main result of this section is the following proposition.

Proposition 3.2. Assume that Hypothesis 3.1 holds. Let t > 0 and τ ≥ 0 be fixed. If∑
n≥0 E

[(∏n
j=0 κ(Xj)

)
1{Sn≤t+τ}

]
<∞, then

E[NtNt+τ ] = E[Nt] + E[Nt+τ ]− 1 +

∞∑
n=1

∞∑
m=1

min(n,m)−1∑
k=0

E
[
An,m,k1{Sn−1≤t,S(k)

m−1≤t+τ}

]
. (17)

Proof. We have, using the notations of the proof of Proposition 2.2, Nt = 1{T0>t}+
∑∞

n=1 Σn(t) a.s.,
with

Σn(t) =

D0∑
k1=1

D0,k1∑
k2=1

· · ·
D0,k1,··· ,kn−1∑

kn=1

(
1{T0+T0,k1+···+T0,k1,··· ,kn−1

≤t} − 1{T0+T0,k1+···+T0,k1,··· ,kn≤t}

)
.

We deduce from
∑

n≥0 E
[(∏n

j=0 κ(Xj)
)

1{Sn≤t+τ}

]
<∞ that

∑
n≥0 E

[(∏n
j=0 κ(Xj)

)
1{Sn≤t}

]
<

∞, and then, arguing exactly as in the proof of Proposition 2.2,
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∞∑
n=1

E

 D0∑
k1=1

D0,k1∑
k2=1

· · ·
D0,k1,··· ,kn−1∑

kn=1

1{T0+T0,k1+···+T0,k1,··· ,kn−1
≤t}

 =

∞∑
n=1

E

n−1∏
j=0

κ(Xj)

1{Sn−1≤t}

 <∞.
Hence,

∞∑
n=1

D0∑
k1=1

D0,k1∑
k2=1

· · ·
D0,k1,··· ,kn−1∑

kn=1

1{T0+T0,k1+···+T0,k1,··· ,kn−1
≤t} <∞ a.s..

Therefore Nt = 1 +
∑∞

n=1 Σ̃n(t) a.s. , with

Σ̃n(t) =

D0∑
k1=1

D0,k1∑
k2=1

· · ·
D0,k1,··· ,kn−2∑

kn−1=1

(D0,k1,··· ,kn−1 − 1)1{T0+T0,k1+···+T0,k1,··· ,kn−1
≤t}.

Consequently,

NtNt+τ = 1 +

∞∑
n=1

Σ̃n(t) +
∞∑
n=1

Σ̃n(t+ τ) +
∞∑
n=1

∞∑
m=1

Σ̃n(t)Σ̃m(t+ τ)

= Nt +Nt+τ − 1 +
∞∑
n=1

∞∑
m=1

Σ̃n(t)Σ̃m(t+ τ) .

For any positive integers n,m and t > 0, τ ≥ 0, we have,

Σ̃n(t)Σ̃m(t+ τ) =

min(n−1,m−1)∑
k=0

∑
(`,˜̀)∈En,m,k

(D` − 1)(D˜̀− 1)1{Sn−1(`)≤t,Sm−1(˜̀)≤t+τ}

where En,m,k is the set of (`, ˜̀), with ` = (0, `1, ..., `n−1) ∈ {0} × (N \ {0})n−1 and ˜̀ =

(0, ˜̀
1, ..., ˜̀

m−1) ∈ {0}× (N\{0})n−1 having the same coordinates up to time k, i.e. such that

min{j = 0, ...,min(n,m) : `j 6= ˜̀
j} = k + 1, with the notation Sn−1(`) := T0 + T0,`1 + · · ·+

T0,`1,··· ,`n−1 . We conclude by proceeding exactly as in the proof of Proposition 2.2. �

As it was done in [12] in the case of independence (cf. Lemma 19.1 and Theorem 21.1
there), Proposition 3.2 is the main ingredient for the proofs of the quadratic mean and of
the almost sure convergence of e−νtNt, where the growth rate ν given in (4) is assumed to
be finite. This is the purpose of the next corollary.

Corollary 3.3. Assume that the assumptions of Proposition 3.2 are satisfied, that ν < ∞,
that lim supt→∞ e

−νtE[Nt] <∞ and that there exists K > 0 such that

lim
t→∞

sup
τ≥0

∣∣∣∣∣∣e−ν(2t+τ)
∞∑
n=1

∞∑
m=1

min(n,m)−1∑
k=0

E
[
An,m,k1{Sn−1≤t,S(k)

m−1≤t+τ}

]
−K

∣∣∣∣∣∣ = 0. (18)

Then there exists a square integrable random variable W such that e−νtNt converges in qua-
dratic mean to W as t tends to infinity.

If moreover the convergence in (18) is exponentially fast and if W > 0 then e−νtNt con-
verges almost surely to W as t tends to infinity.
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Proof of Corollary 3.3. Clearly,

E
[(
e−νtNt − e−ν(t+τ)Nt+τ

)2
]

= e−2νtE
[
N2
t

]
+ e−2ν(t+τ)E

[
N2
t+τ

]
− 2e−2νt−ντE [NtNt+τ ] .

Now Proposition 3.2 gives,

e−2νt−ντE[NtNt+τ ]

= e−2νt−ντE[Nt] + e−2νt−ντ (E[Nt+τ ]− 1)

+e−2νt−ντ
∞∑
n=1

∞∑
m=1

min(n,m)−1∑
k=0

E
[
An,m,k1{Sn−1≤t,S(k)

m−1≤t+τ}

]
.

Thanks to the assumptions of Corollary 3.3, the two first terms of the right hand side of the
last equality tends to 0 as t tends to infinity. While the third term tends to K. Those three
limits hold for any τ ≥ 0 and uniformly in τ . Hence,

lim
t→∞

E
[(
e−νtNt − e−ν(t+τ)Nt+τ

)2
]

= K +K − 2K = 0,

for any τ ≥ 0, uniformly in τ . The Cauchy criterion ensures then the convergence in quadratic
mean of e−νtNt as t tends to infinity to a random variable W with finite second moment.

For the last point, we deduce from Proposition 3.2 that
∫∞

0 E
[(
e−νtNt −W

)2]
dt < ∞.

This yields (arguing as for the proof of Theorem 21.1 in [12]) the almost sure convergence,
as t tends to infinity, of e−νtNt to W . �

We will apply these results in the two following sections under some additional indepen-
dence assumptions.

3.2. Some extensions of Harris’ results. For further results, we will make the following
stronger assumption reinforcing (A)-(D) and involving some independence assumptions.

Hypothesis 3.4. Hypothesis 3.1 holds. (Xn)n is a stationary sequence of random vari-
ables, (κ(Xn))n is a sequence of i.i.d. square integrable random variables of expectation κ1,

which is independent of (ξ(Xn))n. Moreover, for all k ∈ N, (X
(k)
n )n≥k+1 and (Xn)n≥k+1 are

independent given Xk. Finally the number ν (as defined in (4)) satisfies

∀x ∈ X, ν = inf

γ > 0,
∑
n≥0

κn1E
[
e−γSn+1 |X0 = x

]
<∞

 <∞ . (19)

We set κ2 := E[κ(X1)(κ(X1)− 1)].

Remark 3.5. Observe that under Hypothesis 3.4,

E

 n∏
j=0

κ(Xj)

1{Sn≤t}|X0

 = κn1κ(X0)E
[
1{Sn≤t}|X0

]
≤ κn+1

1 κ(X0)E
[
e−γ(Sn−t))|X0

]
.

Hence, Proposition 2.2 applies and (6) can be rewritten

E[Nt] = 1 +
∑
n≥0

κn1 (κ1 − 1)P (Sn ≤ t) .
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Remark 3.6 (Bifurcating Markov chains). Hypothesis 3.4 can be satisfied by bifurcating
Markov chains as defined, for instance, in Section 3 of [21] or by Definition 1.1 in [6], where
an explicit model is constructed there. This model is similar to that introduced in [11]. It
supposes that the characteristics Xv0 and Xv1 of two daughters are linked to the mother’s one
Xv through the following auto-regressive equations: for any v ∈ ,{

Xv0 = ρmXv +
√

1− ρ2
mεv0

Xv1 = ρmXv +
√

1− ρ2
m(ρsεv0 +

√
1− ρ2

sεv1)

where ρm, ρs ∈]−1, 1[ and they play the role of the mother’s and sister’s correlations, (εv)v ∈
is a sequence of independent standard normal law and X0 = ε0. Contrarily to [6], the purpose
is to evaluate the Laplace transform of Sn =

∑n
k=0 ξ(Xk). In [21], an explicit computation of

this Laplace transform is done in the case where

ξ(x) = a+ b(x+ c)2,

see Proposition 4.1 there.

Define fx,0(t) = (κ1− 1)e−νt
∑

n≥0 κ
n
1P (Sn+1 − S0 ≤ t|X0 = x) . We will make the follow-

ing assumption involving the Laplace transform f̃x,0 of fx,0:

∀γ > 0, f̃x,0(γ) =

∫ ∞
0

e−γtfx,0(t)dt =
κ1 − 1

γ + ν

∑
n≥0

κn1E
[
e−(γ+ν)(Sn+1−S0)|X0 = x

]
. (20)

Hypothesis 3.7. Suppose that there exist two positive reals δ < ν and ε such that, for any x,
the Laplace transform f̃x,0, extended on the complex plane, satisfies the following conditions:

(1) f̃x,0 is analytic in {z = u+ iy, |u| < δ + ε, y ∈ R} \ {0},
(2) f̃x,0 has a simple pole at 0, with residue C̃0(x),

(3)
∫ +∞
−∞ |f̃x,0(δ + iy)|dy <∞ ,

(4) limy→±∞ f̃x,0(u+ iy) = 0, uniformly in u ∈ [−δ, δ],
(5) Ψ0(x) :=

∫ +∞
−∞ |f̃x,0(−δ + iy)|dy <∞ .

We generalize the approach of [21] to obtain the following result extending [12, Theorem
19.1] to the case where the lifetimes are dependent.

Theorem 3.8. Assume Hypotheses 3.4 and 3.7 with (Xn)n a Markov process and that

E
[
e−νξ(X0)C̃0(X0)

]
+ E

[
e−(ν−δ)ξ(X0)Ψ0(X0)

]
+
∞∑
k=0

κk1E
[
C̃2

0 (Xk)e
−2νSk

]
<∞ ,

and
∞∑
k=0

κk1E
[
C̃0(Xk)Ψ0(Xk)e

−(2ν−δ)Sk + Ψ2
0(Xk)e

−2(ν−δ)Sk
]
<∞,

∞∑
k=0

κk1E
[
(C̃0(Xk) + Ψ0(Xk) + k)e−(ν+δ)Sk

]
<∞, (21)
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then there exists a square integrable random variable W such that e−νtNt converges in qua-
dratic mean to W as t tends to infinity, with

E[W ] = κ1E
[
e−νξ(X0)C̃0(X0)

]
Var(W ) = κ2

∞∑
k=0

κk1E
[
C̃2

0 (Xk)e
−2νSk

]
− κ2

1

(
E
[
e−νξ(X0)C̃0(X0)

])2
.

If, moreover, W > 0 almost surely then e−νtNt converges almost surely to W .

The rest of this subsection is devoted to the proof of Theorem 3.8.

Define, for r ≤ m, the partial sums Sr,m :=
∑m

i=r ξ(Xi) S
(k)
r,m :=

∑m
i=r ξ(X

(k)
i ) (so that

Sn = S0,n and S
(k)
n = S

(k)
0,n, with the usual convention, for r > m, S

(k)
r,m = Sr,m = 0.

The proof of the next lemma is an immediate consequence of Lemma 2.2 in [21] and we
omit it.

Lemma 3.9. Assume Hypothesis 3.7. Then, for any t > 0,∣∣∣∣∣∣e−νt
∑
n≥0

κn1 (κ1 − 1)P(S1,n+1 ≤ t|X0 = x)− C̃0(x)

∣∣∣∣∣∣ ≤ Ψ0(x)

2π
e−δt. (22)

Lemma 3.9 together with Proposition 2.2 allows us to give an exact asymptotic behavior
of E[Nt] as t tends to infinity, as shows the following proposition.

Proposition 3.10. Assume Hypotheses 3.4 and 3.7 are satisfied for some positive δ strictly
less than ν. If E[e−νξ(X0)C̃0(X0)] < ∞ and if E(e−(ν−δ)ξ(X0)Ψ0(X0)) < ∞, then E[Nt] < ∞
and there exists ε1 > 0 such that

E[Nt] = eνtκ1E[e−νξ(X0)C̃0(X0)](1 +O(e−ε1t)), as t→∞ .

Proof. Recall that fx,0(u) = e−νu
∑

n≥1 κ
n−1
1 (κ1 − 1)P(S1,n ≤ u|X0 = x). Moreover, due to

Remark 3.5,

E[Nt] =
∑
n≥1

κn1 (κ1 − 1)P(Sn ≤ t)

= E

∑
n≥1

κn1 (κ1 − 1)P(S1,n ≤ t− ξ(X0)|X0)1{ξ(X0)≤t}


= eνtκ1E

[
e−νξ(X0)fX0,0(t− ξ(X0))1{ξ(X0)≤t}

]
= eνtκ1E

[
e−νξ(X0)

(
fX0,0(t− ξ(X0))− C̃0(X0)

)
1{ξ(X0)≤t}

]
+eνtκ1E

[
e−νξ(X0)C̃0(X0)1{ξ(X0)≤t}

]
.

Now Lemma 3.9 gives,

E
[
e−νξ(X0)

(
fX0,0(t− ξ(X0))− C̃0(X0)

)
1{ξ(X0)≤t}

]
≤ e−δt

2π
E
[
Ψ0(X0)e−(ν−δ)ξ(X0)

]
.
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and so

E[Nt] = eνtκ1

[
E
(
e−νξ(X0)C̃0(X0)1{ξ(X0)≤t}

)
+ e−δtD(t)

]
(23)

with 0 < D(t) ≤ (2π)−1E
(
Ψ0(X0)e−(ν−δ)ξ(X0)

)
. This allows to deduce thanks to Proposition

2.2 that E[Nt] <∞ and

E[Nt] = eνtκ1E[e−νξ(X0)C̃0(X0)1{ξ(X0)≤t}]
[
1 + e−νtA(t) + e−δtD(t)

]
,

with 0 < A(t) < supt>0A(t) <∞, 0 < D(t) < supt>0D(t) <∞. �

The following proposition gives an exact asymptotic behavior of E[NtNt+τ ] under further
assumptions.

Proposition 3.11. Assume Hypotheses 3.4 and 3.7 are satisfied with (Xn)n a Markov pro-

cess. Suppose also that
∑∞

k=0 κ
k
1E[C̃2

0 (Xk)e
−2νSk ] < ∞. If Condition (21) is satisfied, then,

for any t > 0, τ ≥ 0, E[NtNt+τ ] <∞ and

E[NtNt+τ ] = eν(2t+τ)κ2

∞∑
k=0

κk1E
[
C̃2

0 (Xk)e
−2νSk

]
(1 + ae−ε1t), as t→∞,

where a and ε1 are positive constants independent of t and τ .

Proof. The task is to apply Proposition 3.2. For 0 ≤ k ≤ min(n,m)− 1, we have (recall that

S
(k)
m−1 =

∑m−1
i=0 ξ(X

(k)
i ))

E
[
An,m,k1{Sn−1≤t, S(k)

m−1≤t+τ}

]
= E [An,m,k]P

(
Sn−1 ≤ t, S(k)

m−1 ≤ t+ τ
)
.

Observe that

E [An,m,k] =


E[(κ(X0)− 1)2]κn−1

1 if k = n− 1 = m− 1

κ2(κ1 − 1)κ
max(n−2,m−2)
1 if (k = m− 1 ou k = n− 1), n 6= m

κ2(κ1 − 1)2κn−2+m−2−k
1 if (k 6= m− 1 et k 6= n− 1) .

Now we have for k 6= m− 1,

P
(
Sn−1 ≤ t, S(k)

m−1 ≤ t+ τ
)

=

E
[
P
(
Sk+1,n−1 ≤ t− Sk, S

(k)
k+1,m−1 ≤ t+ τ − Sk|Sk, Xk

)
1{Sk≤t}

]
= E

[
P (Sk+1,n−1 ≤ t− Sk|Sk, Xk)P

(
S

(k)
k+1,m−1 ≤ t+ τ − Sk|Sk, Xk

)
1{Sk≤t}

]
.

When k = m−1 (and then necessarily m ≤ n and Sm−1 ≤ Sn−1), S
(m−1)
m−1 =

∑m−1
i=0 ξ(X

(m−1)
i )

and by Hypothesis 3.1, (X
(m−1)
i )1≤i≤m−1 = (Xi)1≤i≤m−1 a.s. Hence in this case S

(m−1)
m−1 =

Sm−1 a.s. and then

P
(
Sn−1 ≤ t, S(m−1)

m−1 ≤ t+ τ
)

= P (Sn−1 ≤ t, Sm−1 ≤ t+ τ) = P (Sn−1 ≤ t) .



EXPONENTIAL GROWTH OF BRANCHING PROCESSES 17

Consequently (recall that S
(m−1)
m,m−1 = 0),

∞∑
n=1

n∑
m=1

E
[
An,m,m−11{Sn−1≤t, Sm−1+S

(m−1)
m,m−1≤t+τ}

]

=
∞∑
n=1

n−1∑
m=1

κn−2
1 (κ1 − 1)κ2P (Sn−1 ≤ t) +

∞∑
n=1

κn−1
1 E[(κ(X0)− 1)2]P (Sn−1 ≤ t)

= (κ1 − 1)κ2

∞∑
n=1

(n− 1)κn−2
1 P (Sn−1 ≤ t) + E[(κ(X0)− 1)2]

∞∑
n=1

κn−1
1 P (Sn−1 ≤ t) .

The last equality, together with the fact that

P (Sn−1 ≤ t) = P
(
e−(ν+δ)Sn−1 ≥ e−(ν+δ)t

)
≤ e(ν+δ)tE[e−(ν+δ)Sn−1 ],

proves that, for any 0 < δ < ν

e−ν(2t+τ)
∞∑
n=1

n∑
m=1

E
[
An,m,m−11{Sn−1≤t, Sm−1+S

(m−1)
m,m−1≤t+τ}

]

≤ e−t(ν−δ)(κ1 − 1)κ2

∞∑
n=1

(n− 1)κn−2
1 E[e−(ν+δ)Sn−1 ]

+e−t(ν−δ)E[(κ(X0)− 1)2]

∞∑
n=1

κn−1
1 E[e−(ν+δ)Sn−1 ]. (24)

We also have,

∞∑
n=2

∞∑
m=2

min(n,m)−2∑
k=0

E
[
An,m,k1{Sn−1≤t, Sk+S

(k)
k+1,m−1≤t+τ}

]
(25)

= κ2

∞∑
k=0

κk1E

 ∑
n≥k+2

κn−2−k
1 (κ1 − 1)P (Sk+1,n−1 ≤ t− Sk|Sk, Xk)

×
∑

m≥k+2

κm−2−k
1 (κ1 − 1)P

(
S

(k)
k+1,m−1 ≤ t+ τ − Sk|Sk, Xk

)
1{Sk≤t}

 .
Now the bound (22) gives, letting an(k) = κn−2−k

1 (κ1 − 1),

|e−ν(t−
∑k
i=0 ξ(xi))

∑
n≥k+2

an(k)P(Sk+1,n−1 ≤ t−
k∑
i=0

ξ(xi)|Xk = xk)− C̃0(xk)|

≤ Ψ0(xk)e
−δ(t−

∑k
i=0 ξ(xi)),

and

|e−ν(t+τ−
∑k
i=0 ξ(xi))

∑
m≥k+2

am(k)P(S
(k)
k+1,m−1 ≤ t+ τ −

k∑
i=0

ξ(xi)|Xk = xk)− C̃0(xk)|

≤ Ψ0(xk)e
−δ(t+τ−

∑k
i=0 ξ(xi)).
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The two last bounds together with (25) give then

∞∑
n=2

∞∑
m=2

min(n,m)−2∑
k=0

E
[
An,m,k1{Sn−1≤t, Sk+S

(k)
k+1,m−1≤t+τ}

]

= eν(2t+τ)κ2

[ ∞∑
k=0

κk1E(C̃2
0 (Xk)e

−2νSk1Sk≤t) + e−δta

]
, (26)

where a ≤ 2
∑∞

k=0 κ
k
1E[C̃0(Xk)Ψ0(Xk)e

−(2ν−δ)Sk ] + e−δt
∑∞

k=0 κ
k
1E[Ψ2

0(Xk)e
−2(ν−δ)Sk ].

Finally,

∞∑
n=1

∞∑
m=n+1

E
[
An,m,n−11{Sn−1≤t, Sn−1+S

(k)
n,m−1≤t+τ}

]
(27)

= κ2(κ1 − 1)
∞∑
n=1

E

[ ∞∑
m=n+1

κm−2
1 P

(
S

(n−1)
n,m−1 ≤ t+ τ − Sn−1|Sn−1, Xn−1

)
1{Sn−1≤t}

]

= κ2(κ1 − 1)E

[ ∞∑
n=1

κn−1
1 1{Sn−1≤t}

∞∑
m=n+1

κm−n−1
1 P

(
S

(n−1)
n,m−1 ≤ t+ τ − Sn−1|Sn−1, Xn−1

)]
.

Now the bound (22) gives, letting bn(m) = (κ1 − 1)κm−n−1
1 ,

|e−ν(t+τ−
∑n−1
i=0 ξ(xi))

∑
m≥n+1

bn(m)P(S
(n−1)
n,m−1 ≤ t+ τ −

n−1∑
i=0

ξ(xi)|Xn−1 = xn−1)− C̃0(xn−1)|

≤ Ψ0(xn−1)e−δ(t+τ−
∑n−1
i=0 ξ(xi)). (28)

We have also,

e−νt
∑
n≥1

κn−1
1 E

(
C̃0(Xn−1)e−νSn−11{Sn−1≤t}

)
≤ e−(ν−δ)t

∑
n≥1

κn−1
1 E

[
C̃0(Xn−1)e−(ν+δ)Sn−1

]
,

(29)
and

e−νtE

∑
n≥1

κn−1
1 1{Sn−1≤t}Ψ0(Xn−1)e−νSn−1e−δ(t+τ−Sn−1)


≤ e−(ν+δ)t

∑
n≥1

κn−1
1 E

(
1{Sn−1≤t}Ψ0(Xn−1)e−(ν−δ)Sn−1

)
≤ e−(ν−δ)t

∑
n≥1

κn−1
1 E

[
Ψ0(Xn−1)e−(ν+δ)Sn−1

]
(30)

We get collecting Inequalities (27), (28), (29) and (30)

e−ν(2t+τ)
∞∑
n=1

∞∑
m=n+1

E
[
An,m,n−11{Sn−1≤t, Sn−1+S

(k)
n,m−1≤t+τ}

]
≤ e−(ν−δ)tκ2

∑
n≥1

κn−1
1 E

(
(C̃0(Xn−1) + Ψ0(Xn−1))e−(ν+δ)Sn−1

)
. (31)
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We then obtain combining (24), (26) and (31),

e−ν(2t+τ)
∞∑
n=1

∞∑
m=1

min(n,m)−1∑
k=0

E
[
An,m,k1{Sn−1≤t, Sk+S

(k)
k+1,m−1≤t+τ}

]

= κ2

∞∑
k=0

κk1E[C̃2
0 (Xk)e

−2νSk1{Sk≤t}] + e−(ν−δ)tA+ e−δtκ2a, (32)

where a is as defined in (26) and

A ≤ κ2

∑
n≥1

κn−1
1 E

[
(C̃0(Xn−1) + Ψ0(Xn−1))e−(ν+δ)Sn−1

]
+(κ1 − 1)κ2

∞∑
n=1

(n− 1)κn−2
1 E[e−(ν+δ)Sn−1 ] + E[(κ(X0)− 1)2]

∞∑
n=1

κn−1
1 E[e−(ν+δ)Sn−1 ].

Consequently, we obtain collecting (32) together with (17) and Proposition 3.10, that there
exists ε1 > 0, such that, for any t, τ ≥ 0,

E[NtNt+τ ] = eν(2t+τ)κ2

∞∑
k=0

κk1E[C̃2
0 (Xk)e

−2νSk ](1 + ct,τe
−ε1t), as t→∞,

where supt,τ ct,τ <∞. �

Proof of Theorem 3.8. The bound (32) proves that the convergence in (18) is exponentially
fast and satisfied with

K = κ2

∞∑
k=0

κk1E[C̃2
0 (Xk)e

−2νSk ].

Proposition 3.10 ensures that lim supt→∞ e
−νtE[Nt] < ∞. Hence, due to Corollary 3.3, as

t → +∞, (e−νtNt)t converges in quadratic mean to some random variable W . Therefore
E[W ] = limt→∞ E[e−νtNt)] and E[W 2] = limt→∞ E[e−2νtN2

t ] and so, due to respectively
Propositions 3.10 and 3.11 (with τ = t),

E[W ] = κ1E[e−νξ(X0)C̃0(X0)] and E[W 2] = κ2

∞∑
k=0

κk1E[C̃2
0 (Xk)e

−2νSk ] .

�

3.3. About Hypothesis 3.7. The purpose of this section is to discuss Hypothesis 3.7 yield-
ing to the key bound (22). We assume, along this subsection, Hypothesis 3.4 with (Xn)n a
Markov process.

3.3.1. The i.i.d. case. If moreover the lifetimes are i.i.d., then the growth rate ν as defined
in (19) is also that defined in (1), that is κ1E

[
e−νξ(X0)

]
= 1. The following lemma gives

additional assumptions ensuring (22) in this i.i.d. case. Although this case is classical, its
study is important to make comparison with previous results (obtained with other methods
of proofs). Also proofs for more general results will be obtained in the spirit of this classical
case, see the paragraph below.
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Lemma 3.12 (i.i.d. case). Assume Hypothesis 3.4, that (ξ(Xn))n is a sequence of i.i.d.
random variables admitting a density g with moment of order p for some p > 1. If, for some
M > 0, ν > δ > 0,

inf
y∈R

∣∣∣1− κ1E
[
e−(−δ+ν+iy)ξ(X0)

]∣∣∣ > 0 and inf
|y|≥M

inf
u∈[−δ,δ]

|1− κ1E
[
e−(u+ν+iy)ξ(X0)

]
| > 0

then Hypothesis 3.7 is satisfied for any x ∈ X, with

C̃0(x) =
κ1 − 1

κ2
1ν

(
E
[
ξ(X0)e−νξ(X0)

])−1
,

Ψ0(x) ≤ Const.

(
inf
y∈R

∣∣∣1− κ1E
[
e−(−δ+ν+iy)ξ(X0)

]∣∣∣)−1 [∫ +∞

−∞
gp(u)du

]1/(p−1)

.

Remark 3.13. Note that if ξ(X0) is exponentially distributed with parameter λ, then for any
δ > 0 sufficiently small,

ν = λ(κ1 − 1)

inf
y∈R

∣∣∣1− κ1E
[
e−(−δ+ν+iy)ξ(X0)

]∣∣∣ > 0

inf
|y|≥M

inf
u∈[−δ,δ]

∣∣∣1− κ1E
[
e−(u+ν+iy)ξ(X0)

]∣∣∣ ≥Mλκ1(λ+ δ)−1((δ + λ+ ν)2 +M2)−1/2 > 0

Remark 3.14. Due to Lemma 3.12, Propositions 3.10 and 3.11 are respectively Theorem 17.2
and Lemma 18.1 in [12] (m, h′′(1) and n1 there being respectively κ1, κ2 and the constant

function C̃0).

Proof of Lemma 3.12. The task is to check the conditions on the Laplace transform f̃x,0 (as
calculated in (20)). In this i.i.d. case, we have, for γ = s+ iy and s > 0,

f̃x,0(γ) =
κ1 − 1

γ + ν

E[e−(γ+ν)ξ(X0)]

1− κ1E[e−(γ+ν)ξ(X0)]
.

The right hand side of the last equality is analytic in a sufficiently narrow strip {z = u +

iy, |u| ≤ δ + ε, y ∈ R} \ {0} for δ + ε < ν. It has a simple pole at 0 with residue C̃0(x), since

lim
z→0

zf̃x,0(z) =
κ1 − 1

κ2
1ν

(
E
[
ξ(X0)e−νξ(X0)

])−1
= C̃0(x).

We have, since |1−κ1E[e−(δ+ν+iy)ξ(X0)]| is bounded below by a strictly positive constant (this

follows from supy∈R |E[e−(δ+ν+iy)ξ(X0)]| < E[e−νξ(X0)] = 1/κ1), and letting p′ = p/(p− 1),∫ +∞

−∞
|f̃x,0(δ + iy)|dy ≤ Cst

∫ +∞

−∞

|E[e−(δ+iy+ν)ξ(X0)]|√
(ν + δ)2 + y2

dy

≤ Cst

(∫ +∞

−∞
|E[e−(δ+iy+ν)ξ(X0)]|p′dy

)1/p′ (∫ +∞

−∞
((ν + δ)2 + y2)−p/2dy

)1/p

.

Now we have, arguing as for the proof of Lemma 3 in Harris (1963) page 163,∫ +∞

−∞
|E[e−(δ+iy+ν)ξ(X0)]|p′dy ≤ C̃p

[∫ +∞

−∞
e−p(δ+ν)tgp(t)dt

]1/(p−1)

.
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Consequently
∫ +∞
−∞ |f̃x,0(δ + iy)|dy < ∞ since the density g is supposed to be in Lp. Using

the same arguments, we prove that
∫ +∞
−∞ |f̃x,0(−δ + iy)|dy <∞, in fact,∫ +∞

−∞
|f̃x,0(−δ + iy)|dy

≤ κ1C̃p

(
inf
y∈R

∣∣∣1− κ1E[e−(−δ+ν+iy)ξ(X0)]
∣∣∣)−1 [∫ +∞

−∞
gp(t)dt

]1/p(∫ +∞

−∞
((ν − δ)2 + y2)−p/2dy

)1/p

,

which is finite by the requirements of the lemma. Now, we have for any u ∈ [−δ, δ] and for
any |y| > M > 0,

|f̃x,0(u+ iy)| ≤ (κ1 − 1)((ν + u)2 + y2)−1/2
∣∣∣1− κ1E[e−(u+ν+iy)ξ(X0)]

∣∣∣−1

≤ κ1

|y|

(
inf
|y|≥M

inf
u∈[−δ,δ]

∣∣∣1− κ1E[e−(u+ν+iy)ξ(X0)]
∣∣∣)−1

this proves that, for allM > 0, sup|y|>M supu∈[−δ,δ]

∣∣∣f̃x,0(u+ iy)
∣∣∣ <∞ and then limy→±∞ f̃x,0(u+

iy) = 0, uniformly in u ∈ [−δ, δ]. Hypothesis (3.7) is then satisfied. �

3.3.2. Multiplicative ergodic case. The purpose of this paragraph is to prove that Hypothe-
sis 3.7 can also be satisfied by Markov chains having multiplicative ergodic sums (cf. Defi-
nition 3.3 and Section 3 in [21]), the multiplicative ergodic property implying that, for any

γ > 0, any x ∈ X and any n ∈ N (recall that, S1,n+1 =
∑n+1

i=1 ξ(Xi))

E
[
e−γS1,n+1 |X0 = x

]
= α(γ, x)Ln+1(γ) + rn+1(γ, x) (33)

for suitable non-negative functions α, L and (rn)n. We suppose here that,

(a) For all x ∈ X, the functions α(·, x), L and rn(·, x) can be extended to analytic functions
in {z = u+ iy, |u| ≤ δ + ε < ν, y ∈ R}

(b) L is positive and non-increasing on R∗+. The equation κ1L(z) = 1, has a unique
positive solution in C, denoted by ν.

(c) The mapping L is holomorphic at ν and L′(ν) < 0.
(d) The series

∑
n>0 κ

n
1rn(γ, x) converges uniformly in γ in a neighborhood of ν uniformly

in x.
(e) There exists p′ > 1 such that

∫∞
−∞ |α(±δ+ν+ iy, x)L(±δ+ν+ iy)|p′dy <∞ and that∫∞

−∞ |
∑

n≥0 κ
n
1rn(±δ + ν + iy, x)|p′dy <∞.

(f) infy∈R |1−κ1L(±δ+ iy+ν)| > 0,∞ > sup|y|>M supu∈[−δ,δ] |α(u+ iy+ν, x)L(u+ iy+

ν)| > 0,∞ > sup|y|>M supu∈[−δ,δ]
∑

n≥0 κ
n
1 |rn(u+iy+ν, x)| > 0 and inf |y|>M infu∈[−δ,δ] |1−

κ1L(u+ iy + ν)| > 0, for some M > 0.

Remark 3.15. Assume 3.4 and 3.7 with (Xn)n a Markov process, the multiplicative ergodic
property stated in (33) ensures (10), in fact, in this case

gn(γ) = (κ1 − 1)κn1L
n(γ)E[α(γ,X0)] + (κ1 − 1)κn1E[rn(γ,X0)], for any γ > 0.
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Lemma 3.16. Hypothesis 3.7 is satisfied under Conditions (a)-· · · -(f) with

C̃0(x) = − (κ1 − 1)

κ2
1νL

′(ν)
α(ν, x)

Ψ0(x) ≤ κ1

(
inf
y∈R
|1− κ1L(−δ + iy + ν, x)|

)−1

×(∫ ∞
−∞
|α(−δ + ν + iy, x)L(−δ + ν + iy)|p′dy

)1/p′ (∫ +∞

−∞
((ν − δ)2 + y2)−p/2dy

)1/p

+κ1

∫ ∞
−∞
|
∑
n≥0

κn1rn+1(−δ + ν + iy, x)|p′dy

1/p′ (∫ +∞

−∞
((ν − δ)2 + y2)−p/2dy

)1/p

for any x ∈ X.

Proof of Lemma 3.16. We have, in this case,

f̃x,0(γ) =
κ1 − 1

γ + ν

∑
n≥0

κn1E[e−(γ+ν)S1,n+1 |X0 = x]

=
κ1 − 1

γ + ν

α(γ + ν, x)L(γ + ν)

1− κ1L(γ + ν)
+
κ1 − 1

γ + ν

∑
n≥0

κn1rn+1(γ + ν, x),

which can be extended thanks to Conditions (a) and (d) to an analytic function in {z =
u+ iy, |u| ≤ δ + ε < ν, y ∈ R} \ {0}. Conditions (a), (b), (c) and (d) allow to deduce that

lim
z→0

zf̃x,0(z) = − (κ1 − 1)

κ2
1νL

′(ν)
α(ν, x) =: C̃0(x).

We have arguing as for the proof of Lemma 3.12, for any |y| > M and any u ∈ [−δ, δ],

|f̃x,0(u+ iy)| ≤ κ1

|y|
sup|y|>M supu∈[−δ,δ] |α(u+ iy + ν, x)L(u+ iy + ν)|

inf |y|>M infu∈[−δ,δ] |1− κ1L(u+ iy + ν)|

+
κ1

|y|
sup
|y|>M

sup
u∈[−δ,δ]

∑
n≥0

κn1 |rn+1(u+ iy + ν, x)|,

which proves, thanks to (f), that limy→±∞ supu∈[−δ,δ] |f̃x,0(u+ iy)| = 0. Now,∫
|f̃x,0(±δ + iy)|dy ≤ κ1

(
inf
y∈R
|1− κ1L(±δ + iy + ν)|

)−1

×(∫ ∞
−∞
|α(±δ + ν + iy, x)L(±δ + ν + iy)|p′dy

)1/p′ (∫ +∞

−∞
((ν ± δ)2 + y2)−p/2dy

)1/p

+κ1

∫ ∞
−∞
|
∑
n≥0

κn1rn+1(±δ + ν + iy, x)|p′dy

1/p′ (∫ +∞

−∞
((ν ± δ)2 + y2)−p/2dy

)1/p

,

which is finite thanks to Conditions (e) and (f). Hypothesis (3.7) is then satisfied. �

Remark 3.17. In [3], the authors consider the classical continuous time Galton-Watson tree
where each branch lives during an independent exponential time and splits into a random
number of new branches given by independent random variables. More precisely, let N∗t be
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the size of the living population Vt at time t and let (Xt)t≥0 be a Markov chain indexed by this
continuous time Galton-Watson tree. The authors focus on the following probability measure,

IN∗t >0

N∗t

∑
u∈Vt

δXu
t
(dx).

Their study uses the a.s. limiting behavior of N∗t . Since the purpose of our paper is to
study this a.s. limiting behavior for a general Galton-Watson tree, one may wonder if it is
possible to generalize the result of [3] to a general Galton-Watson tree (i.e. without assuming
independence between the branch lifetimes and the number of the new branches).
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