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Abstract

In this paper, we study various aspects of the ODE’s flow induced by a periodic vector
field b in the torus. We present a picture of all logical connections between: the everywhere
or the a.e. asymptotics of the flow, the rectification of b, the ergodicity of the flow, the unit
set condition for Herman’s rotation set, the unit set condition for the set Db composed
of the means of b related to the invariant measures being absolutely continuous with
respect to Lebesgue’s measure, the homogenization of the linear transport equation with
oscillating velocity b(x/ε). The main result of the paper is that the a.e. asymptotics of the
flow, the unit set condition for Db and the homogenization of the transport equation with
divergence free b, are equivalent. Extending the two-dimensional results on Stepanoff flow
to any dimension, we show that the flow may be ergodic without satisfying the everywhere
asymptotics.

Keywords: ODE’s flow, transport equation, asymptotics of the flow, homogenization, rectifi-
cation of fields, invariant measure, rotation set, ergodic
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1 Introduction

In this paper we study various aspects of the ODE’s flow X in the torus Yd
∂X

∂t
(t, x) = b(X(t, x)), t ∈ R

X(0, x) = x ∈ Rd,

(1.1)

where b is a Zd-periodic vector field in C1(Rd)d (denoted by b ∈ C1
] (Yd)

d), which completely
determines the flow X.

First, we are interested in the asymptotics of the flow X depending on whether it can hold
almost-everywhere (a.e.), or everywhere (e.) in Yd, namely

∃ lim
t→∞

X(t, x)

t
µ-a.e. x ∈ Yd or ∃ lim

t→∞

X(t, x)

t
∀x ∈ Yd,

for some probability measure µ on Yd. If the flow X is ergodic with respect to some invariant
probability measure µ, i.e. that µ agrees with its image measure µX(t,·) for any t ∈ R (see
Section 1.2 below), then Birkhoff’s theorem (see, e.g., [9, Theorem 1, Section 2, Chapter 1])
ensures that

lim
t→∞

X(t, x)

t
= lim

t→∞

(
1

t

∫ t

0

b(X(s, x)) ds

)
=

∫
Yd

b(y) dµ(y) µ-a.e. x ∈ Yd.

The non empty set Ib composed of the invariant probability measures for the flow X plays a
fondamental role in ergodic theory. Associated with the set Ib, the rotations sets of [18] are
strongly connected to the asymptotic behavior of the flow. In particular, the compact convex
Herman rotation set [13] defined by

Cb :=

{∫
Yd

b(y) dµ(y) : µ ∈ Ib

}
(1.2)

characterizes the everywhere asymptotics of the flow, since by [8, Proposition 2.1] we have for
any ζ ∈ Rd,

Cb = {ζ} ⇔ ∀x ∈ Yd, lim
t→∞

X(t, x)

t
= ζ. (1.3)

We also consider the subset Db of Cb defined by

Db :=

{∫
Yd

b(y)σ(y) dy : σ ∈ L1
] (Yd) and σ(y) dy ∈ Ib

}
, (1.4)

which is a priori less interesting than Herman’s rotation set, since it may be empty and it is
not compact in general. Actually, the set Db characterizes the almost-everywhere asymptotics
of the flow. More precisely, assuming the existence of an a.e. positive invariant density function
with respect to Lebesgue’s measure, we prove that for any ζ ∈ Rd (see Proposition 2.1),

Db = {ζ} ⇔ lim
t→∞

X(t, x)

t
= ζ a.e. x ∈ Yd. (1.5)

On the other hand, as a natural association with flow (1.1), we consider the linear transport
equation with oscillating data

∂uε
∂t

(t, x)− b(x/ε) · ∇xuε(t, x) = f(t, x, x/ε) in (0, T )× Rd

uε(0, x) = u0(x, x/ε) for x ∈ Rd,

(1.6)
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where f(t, x, y) and u0(x, y) are suitably regular and Zd-periodic functions with respect to
variable y. In their famous paper [10] DiPerna and Lions showed the strong proximity be-
tween ODE’s flows (1.1) and transport equations, in particular when the velocity has a good
divergence. In the context of homogenization, the linear transport equation with oscillating
data (1.6) as ε → 0 was widely studied in the literature. Tartar [25] proved that in general
homogenization of first-order equations leads to nonlocal effects. These effects were studied
carefully in [2] for equation (1.6). In order to avoid any anomalous effective effect, namely
to get a homogenized transport equation of same nature, it is thus necessary to assume some
additional condition. Assuming that the vector field b is divergence free and the associated
flow X is ergodic, Brenier [4] first obtained the weak convergence of the solution uε to the
transport equation. Following this seminal work, the homogenization of the transport equation
was obtained for instance in [11, 12, 15, 24] with various conditions, but which are all based on
the ergodicity of the flow. Extending the result of [4] with ergodicity arguments, Peirone [21]
proved the convergence of the solution to the two-dimensional transport equation (1.6) with
f(t, x, y) = 0 and u0(x, y) independent of y, under the sole assumption that b is a non vanishing
field in C1

] (Y2)
2. More recently, the homogenization of the transport equation with f(t, x, y) = 0

and u0(x, y) independent of y, was derived in [6] (see [7] for a non periodic framework) under
the global rectification of the vector field b, which is not an ergodic condition, i.e. the existence
of a C2-diffeomorphism Ψ on Yd and of a vector ξ ∈ Rd such that

∀ y ∈ Yd, ∇Ψ(y) b(y) = ξ. (1.7)

This result was extended in [8] replacing the classical ergodic condition by the unit rotation set
condition #Cb = 1, or, equivalently, the everywhere asymptotics (1.3) of the flow.

In the present paper, we prove (see Theorem 3.2) that the homogenization of the transport
equation (1.6) with a divergence free velocity field, holds if, and only if, one of the equivalent
conditions of (1.5) is satisfied. It is a quite new result beyond all the former results based
on the sufficient conditions induced either by the ergodic condition, or by the unit Herman’s
rotation set condition. The proof of this result which is partly based on two-scale convergence
[19, 1], clearly shows (see Remark 3.1) the difference between the ergodic approach of [15], and
the present approach through the unit set condition (1.5) which turns out to be optimal.

Therefore, we establish strong connections between the three following a priori foreign
notions: the oscillations in the transport equation (1.6), the means of b only related to the
invariant measures for the flow X which are absolutely continuous with respect to Lebesgue’s
measure, and finally the almost-everywhere asymptotics of X. More generally, owing to this
new material we do build the complete array of all logical connections between the following
seven conditions (see Theorem 4.1 and Figure 1 below):

• the global rectification (1.7) of the vector field b,

• the ergodicity of the flow X (1.1) related to an invariant probability measure which is
absolutely continuous with respect to Lebesgue’s measure,

• the everywhere asymptotics of the flow X in (1.3),

• the almost-everywhere asymptotics of the flow X in (1.5),

• the unit set condition for Herman’s rotation set Cb (1.2),

• the unit set condition for Db (1.4),

• the homogenization of the transport equation (1.6) when b is divergence free in Rd.

In addition, the following pairs of conditions cannot be compared in general:

- the global rectification of b and the ergodicity of X,
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- the ergodicity of X and the everywhere asymptotics of X,

- the ergodicity of X and the unit set condition for Cb.

The proof of the three last items involves the Stepanoff flow [23] (see Example 4.1) in which
the vector field b has a non empty finite zero set, and is parallel to a fixed direction ξ ∈ Rd

with incommensurable coordinates. Using a purely ergodic approach, Oxtoby [20] and later
Marchetto [17] proved that any two-dimensional flow homeomorphic to a Stepanoff flow admits
a unique invariant probability measure µ for the flow which does not load the zero set of b,
that µ is absolutely continuous with respect to Lebesgue’s measure on Y2, and finally that the
flow is ergodic with respect to µ. Moreover, the set Db is a unit set, but the rotation set Cb is a
closed line segment of R2, possibly not reduced to a unit set. We extend (see Proposition 5.1)
the two-dimensional results of [20, 17] on the Stepanoff flow to any dimension d ≥ 2, thanks
to a new and elementary approach based on classical tools of PDE’s analysis. Finally, owing
to another two-dimensional flow (see Example 5.1 and Proposition 5.4) we obtain that the set
Db may be either empty or a singleton, while the rotation set Cb is a closed line segment of R2

possibly not reduced to a singleton.

1.1 Notation

• (e1, . . . , ed) denotes the canonical basis of Rd.

• “·′′ denotes the scalar product and | · | the euclidian norm in Rd.

• Yd, d ≥ 1, denotes the d-dimensional torus Rd/Zd, which is identified to the unit cube
[0, 1)d in Rd.

• Ck
c (Rd), k ∈ N ∪ {∞}, denotes the space of the real-valued functions in Ck(Rd) with

compact support in Rd.

• Ck
] (Yd), k ∈ N ∪ {∞}, denotes the space of the real-valued functions f ∈ Ck(Rd) which

are Zd-periodic, i.e.
∀ k ∈ Zd, ∀x ∈ Rd, f(x+ k) = f(x). (1.8)

• The abbreviations “a.e.” for almost everywhere, and “e.” for everywhere will be used
throughout the paper. The simple mention “a.e.” refers to the Lebesgue measure on Rd.

• dx or dy denotes the Lebesgue measure on Rd.

• For a Borel measure µ on Yd, extended by Zd-periodicity to a Borel measure µ̃ on Rd (see
definition (1.21) below), a µ̃-measurable function f : Rd → R is said to be Zd-periodic
µ̃-a.e. in Rd, if

∀ k ∈ Zd, f(·+ k) = f(·) µ̃-a.e. on Rd. (1.9)

• For a Borel measure µ on Yd, L
p
] (Yd, µ), p ≥ 1, denotes the space of the µ-measurable

functions f : Yd → R such that
∫
Yd
|f(x)|p dµ(x) <∞.

• Lp] (Yd), p ≥ 1, simply denotes the space of the Lebesgue measurable functions f in

Lploc(Rd), which are Zd-periodic dx-a.e. in Rd.

• Mloc(Rd) denotes the space of the non negative Borel measures on Rd, which are finite
on any compact set of Rd.
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• M](Yd) denotes the space of the non negative Radon measures on Yd, and Mp(Yd) denotes
the space of the probability measures on Yd.

• D ′(Rd) denotes the space of the distributions on Rd.

• For a Borel measure µ on Yd and for f ∈ L1
] (Yd, µ), µ(f) denotes the µ-mean of f on Yd

µ(f) :=

∫
Yd

f(y) dµ(y), (1.10)

which is simply denoted by f when µ is Lebesgue’s measure. The same notation is used
for a vector-valued function in L1

] (Yd, µ)d.

• The notation Ib in (1.18) will be used throughout the paper.

1.2 Definitions and recalls

Let b : Rd → Rd be a vector-valued function in C1
] (Yd)

d. Consider the dynamical system
∂X

∂t
(t, x) = b(X(t, x)), t ∈ R

X(0, x) = x ∈ Rd.

(1.11)

The solution X(·, x) to (1.11) which is known to be unique (see, e.g., [14, Section 17.4]) induces
the dynamic flow X associated with the vector field b, defined by

X : R× Rd → Rd

(t, x) 7→ X(t, x),
(1.12)

which satisfies the semi-group property

∀ s, t ∈ R, ∀x ∈ Rd, X(s+ t, x) = X(s,X(t, x)). (1.13)

The flow X is actually well defined in the torus Yd, since

∀ t ∈ R, ∀x ∈ Rd, ∀ k ∈ Zd, X(t, x+ k) = X(t, x) + k. (1.14)

Property (1.14) follows immediately from the uniqueness of the solution X(·, x) to (1.11) com-
bined with the Zd-periodicity of b.

A possibly signed Borel measure µ on Yd is said to be invariant for the flow X if

∀ t ∈ R, ∀ψ ∈ C0
] (Yd),

∫
Yd

ψ
(
X(t, y)

)
dµ(y) =

∫
Yd

ψ(y) dµ(y). (1.15)

For a non negative Borel measure µ on Yd, a function f ∈ L1
] (Yd, µ) is said to be invariant for

the flow X with respect to µ, if

∀ t ∈ R, f ◦X(t, ·) = f(·) µ-a.e. in Yd. (1.16)

The flow X is said to be ergodic with respect to some invariant probability measure µ, if

∀ f ∈ L1
] (Yd, µ), invariant for X w.r.t. µ, f = µ(f) µ-a.e. in Yd. (1.17)
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Then, define the set

Ib :=
{
µ ∈Mp(Yd) : µ invariant for the flow X

}
, (1.18)

where Mp(Yd) is the set of probability measures on Yd. From the set of invariant probability
measures we define the so-called Herman [13] rotation set

Cb :=

{
µ(b) =

∫
Y2

b(y) dµ(y) : µ ∈ Ib

}
, (1.19)

and its subset

Db :=

{
σ b =

∫
Y2

b(y)σ(y) dy : σ ∈ L1
] (Yd) and σ(y) dy ∈ Ib

}
(1.20)

which is restricted to the invariant probability measures which are absolutely continuous with
respect to Lebesgue’s measure. If there is no such invariant measure, then the set Db is empty
(see Remark 4.1).

We have the following characterization of an invariant measure known as Liouville’s theorem,
which can also be regarded as a divergence-curl result with measures (see [8, Proposition 2.2]
and [8, Remark 2.2] for further details).

Proposition 1.1 (Liouville’s theorem) Let b ∈ C1
] (Yd)

d, and let µ ∈ M](Yd). We define

the Borel measure µ̃ ∈Mloc(Rd) on Rd by∫
Rd

ϕ(x) dµ̃(x) =

∫
Yd

ϕ](y) dµ(y), where ϕ](·) :=
∑
k∈Zd

ϕ(·+ k) for ϕ ∈ C0
c (Rd). (1.21)

Then, the three following assertions are equivalent:

(i) µ is invariant for the flow X, i.e. (1.15) holds,

(ii) µ̃ b is divergence free in the space Rd, i.e.

div (µ̃ b) = 0 in D ′(Rd), (1.22)

(iii) µ b is divergence free in the torus Yd, i.e.

∀ψ ∈ C1
] (Yd),

∫
Yd

b(y) · ∇ψ(y) dµ(y) = 0. (1.23)

Remark 1.1 Since any function ψ ∈ C∞] (Yd) can be represented as a function ϕ] for a suitable

function ϕ ∈ C∞c (Rd) (see [5, Lemma 3.5]), we deduce that the mapping

M](Yd) →
{
ν ∈Mloc(Rd) : ∀ϕ ∈ C0

c (Rd), ϕ] = 0⇒
∫
Rd

ϕ(x) dν(x) = 0

}
µ 7→ µ̃

is bijective. Therefore, the measure µ̃ of (1.21) completely characterizes the measure µ.

By virtue of [8, Proposition 2.1] (see also [18]) Herman’s set Cb satisfies the following result.

Proposition 1.2 ([8, 18]) Let b ∈ C1
] (Yd)

d. Then, we have for any ζ ∈ Rd,

Cb = {ζ} ⇔ ∀x ∈ Yd, lim
t→∞

X(t, x)

t
= ζ. (1.24)
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2 Preliminary results

We have the following characterization of the singleton condition satisfied by Db, which has to
be compared to the one satisfied by Cb in Proposition 1.2 above.

Proposition 2.1 Let b ∈ C1
] (Yb)

d be such that there exists an a.e. positive function σ0 ∈ L1
] (Yd)

with σ0 = 1, satisfying div(σ0 b) = 0 in Rd. Then, the flow X associated with b satisfies for any
ζ ∈ Rd,

Db = {ζ} ⇔ lim
t→∞

X(t, x)

t
= ζ, a.e. x ∈ Yd. (2.1)

Proof. First of all, by virtue of the Birkhoff theorem applied with the invariant measure
σ0(x) dx with the a.e. positive function σ0 ∈ L1

] (Yd), combined with the uniform boundedness
of X(t, x)/t for t ∈ R and x ∈ Yd, there exists a function ξ ∈ L∞] (Yd) which is invariant for the
flow X with respect to Lebesgue’s measure, such that

lim
t→∞

X(t, x)

t
= ξ(x) a.e. x ∈ Yd.

Hence, by Lebesgue’s theorem we get that for any invariant measure σ(x) dx with σ ∈ L1
] (Yd),∫

Yd

b(x)σ(x) dx = lim
t→∞

1

t

∫ t

0

(∫
Yd

b(X(s, x))σ(x) dx

)
ds

=

∫
Yd

lim
t→∞

(
X(t, x)− x

t

)
σ(x) dx

=

∫
Yd

ξ(x)σ(x) dx.

(2.2)

(⇒) Assume that Db = {ζ} for some ζ ∈ Rd. Then, we have for any invariant measure σ(x) dx
with σ ∈ L1

] (Yd), ∫
Yd

b(x)σ(x) dx = ζ

∫
Yd

σ(x) dx,

which by (2.2) implies that ∫
Yd

(ξ(x)− ζ)σ(x) dx = 0. (2.3)

On the other hand, since the non negative and the non positive parts (ξ − ζ)± of ξ − ζ are
also invariant functions for the flow X with respect to Lebesgue’s measure, by Lemma 2.2
below the measures (ξ(x)− ζ)± σ0(x) dx are invariant for X. Therefore, putting the measures
σ(x) dx = (ξ(x)− ζ)± σ0(x) dx in equality (2.3) we get that∫

Yd

(ξ(x)− ζ) (ξ(x)− ζ)± σ0(x) dx = ±
∫
Yd

[
(ξ(x)− ζ)±

]2
σ0(x) dx = 0,

which due to the a.e. positivity of σ0, implies the right hand-side of (2.1).

(⇐) Conversely, we deduce immediately from (2.2) that for any invariant measure σ(x) dx with
σ ∈ L1

] (Yd), ∫
Yd

b(x)σ(x) dx = ζ

∫
Yd

σ(x) dx,

which yields Db = {ζ}. �
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Lemma 2.2 Let b ∈ C1
] (Yd)

d be a vector field in Rd such that there exists an a.e. positive

function σ0 ∈ L1
] (Yd) with σ0 = 1, satisfying div(σ0 b) = 0 in Rd. Then, a function f in L∞] (Yd)

is invariant for the flow X with respect to Lebesgue’s measure if, and only if, the signed measure
f(x)σ0(x) dx is invariant for X.

Proof. First of all, for any t ∈ R, X(t, ·) is a C1-diffeomorphism on Rd with reciprocal X(− t, ·),
as a consequence of the semi-group property (1.13) satisfied by the flow X. Moreover, by virtue
of Liouville’s theorem the jacobian determinant of X(t, ·) is given by

∀ t ∈ R, ∀x ∈ Yd, J(t, x) := det
(
∇xX(t, x)

)
= exp

(∫ t

0

(div b)(X(s, x)) ds

)
. (2.4)

Since by Proposition 1.1 the measure ˜σ0(x) dx = σ0(x) dx (due to the Zd-periodicity of σ0) is
invariant for the flow X, we have for any function ϕ ∈ C0

c (Rd) and any t ∈ R,

ϕ](X(−t, ·)) =
(
ϕ(X(−t, ·))

)
]

by (1.14),

and ∫
Rd

ϕ(x)σ0(x) dx =

∫
Yd

ϕ](x)σ0(x) dx

=

∫
Yd

ϕ](X(−t, x))σ0(x) dx =

∫
Yd

(
ϕ(X(−t, x))

)
]
σ0(x) dx

=

∫
Rd

ϕ(X(−t, x))σ0(x) dx =︸︷︷︸
x=X(t,y)

∫
Rd

ϕ(y)σ0(X(t, y)) J(t, y) dy.

This implies that the jacobian determinant J(t, ·) satisfies the relation

∀ t ∈ R, σ0(X(t, y)) J(t, y) = σ0(y) a.e. y ∈ Rd. (2.5)

Now, let f ∈ L∞] (Yd). From (2.5) we deduce that for any function ϕ ∈ C0
c (Rd) and any t ∈ R,∫

Rd

ϕ(X(− t, x)) f(x)σ0(x) dx =︸︷︷︸
x=X(t,y)

∫
Rd

ϕ(y) f(X(t, y))σ0(X(t, y)) J(t, y) dy

=

∫
Rd

ϕ(y) f(X(t, y))σ0(y) dy.

By virtue of Remark 1.1 combined with the Zd-periodicity of the function f , the former equality
also reads as

∀ψ ∈ C0
] (Yd), ∀ t ∈ R,

∫
Yd

ψ(X(− t, x)) f(x)σ0(x) dx =

∫
Yd

ψ(x) f(X(t, x))σ0(x) dx. (2.6)

Therefore, due to the a.e. positivity of σ0, the function f ∈ L∞] (Yd) is invariant for the flow X
with respect to Lebesgue’s measure, i.e. f(X(·, x)) = f(x) a.e. x ∈ Yd, if, and only if, the
signed measure f(x)σ0(x) dx is invariant for the flow X. �

3 A NSC for homogenization of the transport equation

First of all, recall the definition of the two-scale convergence introduced by Nguetseng [19] and
Allaire [1], which is easily extended to the time dependent case.
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Definition 3.1 Let T ∈ (0,∞).

a) A sequence uε(t, x) in L2((0, T )×Rd) is said to two-scale converge to a function U(t, x, y)
in L2([0, T ] × Rd;L2

] (Yd)), if we have for any function ϕ ∈ C0
c ([0, T ] × Rd;C0

] (Yd)) with

compact support in [0, T ]× Rd × Yd,

lim
ε→0

∫
(0,T )×Rd

uε(t, x)ϕ(t, x, x/ε) dtdx =

∫
(0,T )×Rd×Yd

U(t, x, y)ϕ(t, x, y) dtdxdy, (3.1)

b) According to [1, Definition 1.4] any function ψ(t, x, y) ∈ C0
c ([0, T ] × Rd;L2

] (Yd)) with

compact support in [0, T ] × Rd × Yd, is said to be an admissible function for two-scale
convergence, if (t, x) 7→ ψ(t, x, x/ε) is Lebesgue measurable and

lim
ε→0

∫
(0,T )×Rd

ψ2(t, x, x/ε) dtdx =

∫
(0,T )×Rd×Yd

ψ2(t, x, y) dtdxdy. (3.2)

Then, we have the following two-scale convergence compactness result.

Theorem 3.1 ([1], Theorem 1.2, Remark 1.5) Any sequence uε(t, x) which is bounded in
L2((0, T )×Rd) two-scale converges, up to extract a subsequence, to some function U(t, x, y) in
L2((0, T )× Rd;L2

] (Yd)). Moreover, equality (3.1) holds true for any admissible function (3.2).

Let b(y) ∈ C1
] (Yd)

d be a vector field, let u0(x, y) ∈ C0
c (Rd;L2

] (Yd)) be an admissible function

with compact support in Rd × Yd, and let f(t, x, y) ∈ C0
c ([0, T ]×Rd;L∞] (Yd)) be an admissible

function with compact support in [0, T ]×Rd×Yd. Consider the linear transport equation with
oscillating data

∂uε
∂t

(t, x)− b(x/ε) · ∇xuε(t, x) = f(t, x, x/ε) in (0, T )× Rd

uε(0, x) = u0(x, x/ε) for x ∈ Rd,

(3.3)

which by [10, Proposition II.1, Theorem II.2] has a unique solution in L∞((0, T );L2(Rd)).
We have the following criterion for the homogenization of equation (3.3).

Theorem 3.2 Let b be a divergence free vector field in C1
] (Yd)

d, and let X be the flow (1.11)
associated with b. Then, we have the equivalence of the two following assertions:

(i) There exists ζ ∈ Rd such that the flow X satisfies the asymptotics

lim
t→∞

X(t, x)

t
= ζ, a.e. x ∈ Yd, (3.4)

or, equivalently, Db = {ζ}.

(ii) There exists ζ ∈ Rd such that for any admissible functions u0(x, y) ∈ C0
c (Rd;L2

] (Yd)) with

compact support in [0, T ] × Rd, and f(t, x, y) ∈ C0
c ([0, T ] × Rd;L∞] (Yd)) with compact

support in [0, T ] × Rd × Yd, the solution uε to (3.3) converges weakly in L2((0, T ) × Rd)
to the solution u(t, x) to the transport equation

∂u

∂t
(t, x)− ζ · ∇xu(t, x) = f(t, x, ·) in (0, T )× Rd

u(0, x) = u0(x, ·) for x ∈ Rd.

(3.5)
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Moreover, in both cases we have ζ = b.

Proof of Theorem 3.2.

(i)⇒ (ii). First of all, note that, since b is divergence free in Rd, by Proposition 1.1 Lebesgue’s
measure is an invariant probability measure for the flow X associated with b, which implies
that b ∈ Db = {ζ} and ζ = b.

Now, let u0(x, y) ∈ C0
c (Rd;L2

] (Yd)) be an admissible function with compact support in

[0, T ]×Rd, and let f(t, x, y) ∈ C0
c ([0, T ]×Rd;L∞] (Yd)) be an admissible function whose support

is contained in [0, T ]×K, K being a compact set of Rd.
Denote bε(x) := b(x/ε) which is divergence free in Rd, and denote fε(t, x) := f(t, x, x/ε) which is
uniformly bounded in [0, T ]×Rd and is compactly supported in [0, T ]×K. Formally multiplying
(3.3) by uε(t, x), integrating by parts over Rd and using Cauchy-Schwarz inequality, we get that
for any t ∈ (0, T ),

1

2

d

dt

(∫
Rd

u2ε(t, x) dx

)
=

1

2

d

dt

(∫
Rd

u2ε(t, x) dx

)
− 1

2

∫
Rd

div(bε)(x)u2ε(t, x) dx

=

∫
K

fε(t, x)uε(t, x) dx ≤ Cf

(∫
Rd

u2ε(t, x) dx

)1/2

,

where Cf is a non negative constant only depending on f . This can be justified following the
proof of [10, Proposition II.1]. Hence, we deduce the estimate

‖uε(t, ·)‖L2(Rd) ≤ ‖uε(0, ·)‖L2(Rd) + Cf T a.e. t ∈ (0, T ). (3.6)

Therefore, estimate (3.6) combined with (recall that the admissible function ψ(t, x, y) = u0(x, y)
satisfies (3.2))

lim
ε→0
‖uε(0, ·)‖L2(Rd) = ‖u0(x, y))‖L2(Rd×Yd),

implies that the sequence uε is bounded in L∞((0, T );L2(Rd)). Then, up to a subsequence,
uε(t, x) two-scale converges to some function U(t, x, y) ∈ L2((0, T ) × Rd;L2

] (Yd)), and uε(t, x)

converges weakly in L2((0, T )× Rd) to the mean value

u(t, x) := U(t, x, ·) =

∫
Yd

U(t, x, y) dy for a.e. (t, x) ∈ (0, T )× Rd. (3.7)

Next, we follow the two-scale procedure of the proof of [15, Theorem 2.1]. Putting the test
function ϕ(t, x) ∈ C1

c ([0, T ) × Rd) in the weak formulation of (3.3), and integrating by parts
we have

−
∫
(0,T )×Rd

∂ϕ

∂t
(t, x)uε(t, x) dtdx−

∫
Rd

ϕ(0, x)u0(x, x/ε) dx

+

∫
(0,T )×Rd

b(x/ε) · ∇xϕ(t, x)uε(t, x) dtdx =

∫
Rd

ϕ(t, x) f(t, x, x/ε) dtdx.

Then, passing to the two-scale limit and using that u0(x, y) and f(t, x, y) are admissible func-
tions for two-scale convergence, we get that

−
∫
(0,T )×Rd×Yd

∂ϕ

∂t
(t, x)U(t, x, y) dtdxdy −

∫
Rd×Yd

ϕ(0, x)u0(x, y) dxdy

+

∫
(0,T )×Rd×Yd

b(y) · ∇xϕ(t, x)U(t, x, y) dtdxdy =

∫
(0,T )×Rd×Yd

ϕ(t, x) f(t, x, y) dtdxdy,
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or, equivalently, by Fubini’s theorem

−
∫
(0,T )×Rd

∂ϕ

∂t
(t, x)u(t, x) dx−

∫
Rd

ϕ(0, x)u0(x, ·) dx

+

∫
(0,T )×Rd

U(t, x, ·) b · ∇xϕ(t, x) dtdx =

∫
Rd×Yd

ϕ(t, x) f(t, x, ·) dtdx.
(3.8)

Similarly, passing to the two-scale limit with the admissible test function ε ϕ(t, x)ψ(x/ε) for
any ϕ(t, x) ∈ C1

c ([0, T )× Rd) and any ψ ∈ C1
] (Yd), we get that∫

(0,T )×Rd×Yd
ϕ(t, x) b(y) · ∇yψ(y)U(t, x, y) dtdxdy

=

∫
(0,T )×Rd

ϕ(t, x)

(∫
Yd

U(t, x, y) b(y) · ∇yψ(y) dy

)
dtdx = 0,

which by Proposition 1.1 implies that

divy(U(t, x, ·) b) = 0 in D ′(Rd), a.e. (t, x) ∈ (0, T )× Rd. (3.9)

Then, applying Lemma 2.2 with σ0 = 1, for a.e. (t, x) ∈ (0, T ) × Rd, the function U(t, x, ·)
is an invariant function for the flow X associated with b related to Lebesgue’s measure, and
so are the positive and negative parts U±(t, x, ·) of U(t, x, ·). Hence, again by Lemma 2.2 the
measures U±(t, x, y) dy are invariant for X, which by the definition (1.20) of Db = {ζ}, implies
that

U±(t, x, ·) b =

∫
Yd

b(y)U±(t, x, y) dy =

(∫
Yd

U±(t, x, y) dy

)
ζ a.e. (t, x) ∈ (0, T )× Rd. (3.10)

From (3.10) and (3.7) we deduce that

U(t, x, ·) b = U(t, x, ·) ζ = u(t, x) ζ a.e. (t, x) ∈ (0, T )× Rd. (3.11)

Putting this equality in the weak formulation (3.8), we get that for any ϕ(t, x) ∈ C1
c ([0, T )×Rd),

−
∫
(0,T )×Rd

∂ϕ

∂t
(t, x)u(t, x) dx−

∫
Rd

ϕ(0, x)u0(x, ·) dx

+

∫
(0,T )×Rd

u(t, x) ζ · ∇xϕ(t, x) dtdx =

∫
(0,T )×Rd

ϕ(t, x) f(t, x, ·) dtdx,

which is the weak formulation of the homogenized transport equation (3.5).

(ii) ⇒ (i). First of all, note that the set Db contains the mean b, since by the free divergence
of b and by Proposition 1.1, Lebesgue’s measure is an invariant probability measure for the
flow X associated with b.

Now, let us prove that any invariant probability measure σ(x) dx with σ ∈ L1
] (Yd), for the

flow X satisfies the equality σ b = ζ, which will yield the desired equality Db = {ζ}. To this
end, let us first show this for any invariant probability measure v(x)/v dx with v ∈ L∞] (Yd). By
virtue of Proposition 1.1 such a function v is solution to the equation

div(v b) = b · ∇v = 0 in D ′(Rd). (3.12)
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Let θ ∈ C1
c (Rd), and define for ε > 0 the function uε ∈ C1([0, T ];L∞(Rd)) by

uε(t, x) := θ(x+ t ζ) v(x/ε) for (t, x) ∈ [0, T ]× Rd, (3.13)

where ζ is the vector involving in the homogenized equation (3.5). By (3.12) we have

∂uε
∂t

(t, x)− b(x/ε) · ∇xuε(t, x)

= v(x/ε) ζ · ∇xθ(x+ t ζ)− v(x/ε) b(x/ε) · ∇xθ(x+ t ζ)− 1/ε θ(x+ t ζ) (b · ∇yv)(x/ε)

=
(
v(x/ε) ζ − (v b)(x/ε)

)
· ∇xθ(x+ t ζ) = f(t, x, x/ε),

where

f(t, x, y) :=
(
v(y) ζ − (v b)(y)

)
· ∇xθ(x+ t ζ) for (t, x, y) ∈ [0, T ]× Rd × Yd, (3.14)

is an admissible function in C0
c ([0, T ]× Rd;L∞] (Yd)) with compact support in [0, T ]× Rd × Yd.

Moreover, we have uε(0, x) = θ(x) v(x/ε) for x ∈ Rd, where θ(x) v(y) ∈ C0
c (Rd;L2

] (Yd)) with

compact support in [0, T ]×Rd, is also an admissible function. Therefore, the function uε defined
by (3.13) is solution to the transport equation (3.3) with the right-hand side (3.14). Hence, by
the homogenization assumption the sequence uε(t, x) converges weakly in L2((0, T ) × Rd) to
the function u(t, x) = θ(x+ t ζ) v which is solution to the homogenized equation (3.5), i.e.

∀ (t, x) ∈ [0, T ]× Rd,
∂u

∂t
(t, x)− ζ · ∇xu(t, x) = f(t, x, ·) =

(
v ζ − v b

)
· ∇xθ(x+ t ζ).

But, directly from the expression u(t, x) = θ(x+ t ζ) v, we also deduce that

∀ (t, x) ∈ [0, T ]× Rd,
∂u

∂t
(t, x)− ζ · ∇xu(t, x) = 0.

Equating the two former equations we get that for any θ ∈ C1
c (Rd),

∀ (t, x) ∈ [0, T ]× Rd,
(
v ζ − v b

)
· ∇xθ(x+ t ζ) = 0,

which implies that
v b = v ζ. (3.15)

Now, let σ be a non negative function in L1
] (Yd) with σ = 1, such that σ(x) dx is an invariant

measure for the flow X, or, equivalently, by Lemma 2.2 applied with σ0 = 1, the function σ
is invariant for X with respect to Lebesgue’s measure. Hence, for any n ∈ N, the truncated
function σ ∧ n is also invariant for X. Equality (3.15) applied with v = σ ∧ n ∈ L∞] (Yd), yields

(σ ∧ n) b = σ ∧ n ζ −→
n→∞

σ b = σ ζ = ζ.

Thus, we obtain the desired equality Db = {ζ} = {b}, which owing to Proposition 2.1 concludes
the proof of Theorem 3.2. �

Remark 3.1 From equation (3.9) Hou and Xin [15] used the ergodicity of the flow X to deduce
that U(t, x, ·) is constant a.e. (t, x) ∈ (0, T ) × Rd. However, this condition is not necessary.
Indeed, the less restrictive condition used in the above proof is that Db is reduced to the unit
set {ζ}. This combined with Lemma 2.2 on invariant measures and functions leads us to equality
(3.11), and allows us to conclude.
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4 A picture of comparisons between the seven conditions

In the sequel we denote:

Rec if there exist a C2-diffeomorphism Ψ on Yd and ξ ∈ Rd such that ∇Ψ b = ξ in Yd.

Erg if the ergodic condition (1.17) holds with an invariant probability measure for X,
which is absolutely continuous with respect to Lebesgue’s measure,

Asy-a.e. if there exist ζ ∈ Rd such that lim
t→∞

X(t, x)/t = ζ, a.e. x ∈ Yd.
Asy-e. if there exist ζ ∈ Rd such that lim

t→∞
X(t, x)/t = ζ, ∀x ∈ Yd.

#Cb=1 if the unit set condition holds for Herman’s set Cb.

#Db=1 if the unit set condition holds for the set Db.

Hom if the homogenized equation (3.5) holds when b is divergence free in Rd.

Theorem 4.1 Let b ∈ C1
] (Yd)

d be a non null but possibly vanishing vector field such that there
exists an invariant probability measure σ0(x) dx with σ0 ∈ L1

] (Yd), for the flow X associated
with b, or, equivalently, Db 6= Ø. Then, we have a complete array (see Figure 1 below) of all
the logical connections between the above seven conditions, in which:

- A grey square means a tautology.

- A square with ⇐ means that the condition of the top line implies the condition of the left
column, but not the converse in general.

- A square with ⇑ means that the condition of the left column implies the condition of the
top line, but not the converse in general.

- A square with ⇔ or m means that the conditions of the top line and of the left column are
equivalent.

- A dark square means that the conditions of the top line and the left column cannot be
compared in general.

- Finally, if a square involves condition Hom, then the other condition must be considered
under the assumption that b is divergence free in Rd.

Remark 4.1 We may have both #Cb = 1 and Db = Ø.
To this end, consider a gradient field b = ∇u with u ∈ C2

] (Yd), such that ∇u 6= 0 a.e. in Yd.
On the one hand, by virtue of [8, Proposition 2.4] we have Cb = {0}. On the other hand,
assume that there exists an invariant probability measure σ(x) dx with σ ∈ L1

] (Yd), for the flow
associated with ∇u. Then, by virtue of Proposition 1.1 we have∫

Yd

σ(x) |∇u(x)|2 dx =

∫
Yd

σ(x)∇u(x) · ∇u(x) dx = 0,

which implies that σ = 0 a.e. in Yd, a contradiction with σ = 1. Therefore, we get that Db = Ø.

Proof of Theorem 4.1.

Condition Rec. By virtue of [6, Corollary 4.1] condition Rec implies condition #Cb = 1 which
by Proposition 1.2 is equivalent to condition Asy-e.. Moreover, condition Asy-e. clearly implies
condition Asy-a.e. which by Proposition 2.1 is equivalent to condition #Db = 1, and by The-
orem 3.2 is equivalent to condition Hom. Therefore, condition Rec implies condition Asy-a.e.,
condition Asy-e., condition #Cb=1, condition #Db=1, and condition Hom.

On the other hand, note that if the vector field b vanishes, then condition Rec cannot hold
true. Otherwise, in equality ∇Ψ b = ζ the constant vector ζ is necessarily nul, hence due to the
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Rec Erg Asy-a.e. Asy-e. #Cb =1 #Db =1 Hom

Rec ⇑ ⇑ ⇑ ⇑ ⇑

Erg ⇑ ⇑ ⇑

Asy-a.e. ⇐ ⇐ ⇐ ⇐ ⇔ ⇔

Asy-e. ⇐ ⇑ ⇔ ⇑ ⇑

#Cb =1 ⇐ ⇑ m ⇑ ⇑

#Db =1 ⇐ ⇐ m ⇐ ⇐ ⇔

Hom ⇐ ⇐ m ⇐ ⇐ m

Figure 1: Logical connections between the seven conditions

invertibility of ∇Ψ, b is the nul vector field, which yields a contradiction. Therefore, since all
other conditions may be satisfied with a vanishing vector field b according to the examples of [8,
Section 4] combined with Proposition 2.1 and Theorem 3.2, condition Rec cannot be deduced
in general from any of the other six conditions.

Conditions Rec and Erg cannot be compared. [6, Corollary 4.1] provides a two-dimensional and
a three-dimensional example in which condition Rec holds true, but not condition Erg.

Condition Erg. By virtue of Birkhoff’s theorem condition Erg implies condition Asy-a.e. which
is equivalent to condition #Db=1 (by Proposition 2.1) and is equivalent to condition Hom (by
Theorem 3.2).

Conditions Erg and #Cb = 1 cannot be compared. Since condition Rec implies #Cb = 1, but
condition Rec does not imply in general condition Erg (by [6, Corollary 4.1]), by a transitivity
argument condition #Cb=1 does not imply in general condition Erg.

On the other hand, extending the two-dimensional results of Oxtoby [20] and Marchetto [17]
to any dimension by a different approach, Example 4.1 and Proposition 5.1 below deal with a
d-dimensional Stepanoff flow [23, Section 4] defined by

∂S

∂t
(t, x) = bS(S(t, x)) = ρS(S(t, x)) ξ, t ∈ R

S(0, x) = x ∈ Rd,

(4.1)
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where ρS is a non negative function in C1
] (Yd) with a finite positive number of roots in Yd and

σS := 1/ρS ∈ L1
] (Yd), and where ξ is a constant vector of Rd with incommensurable coordinates.

Under these conditions σS(x)/σS dx is the unique invariant probability measure on Yd for the
flow S, which does not load the zero set of ρS, and S is ergodic with respect to the measure
σS(x)/σS dx. Hence, condition Erg holds true with the probability measure σS(x)/σS dx.
Moreover, Proposition 5.1 shows that DbS = {ζ} and CbS = [0, ζ] with ζ = (1/σS) ξ 6= 0.
Therefore, condition Erg does not imply in general condition #Cb=1, or, equivalently, condition
Asy-e..

Conditions #Cb = 1 and #Db = 1. Since Db is assumed to be non empty, condition #Cb = 1
clearly implies condition #Db=1.

In contrast, as above mentioned the Stepanoff flow induces that DbS = {ζ} and CbS = [0, ζ]
with ζ ∈ Rd\{0}. Alternatively, Example 5.1 below provides a different class of two-dimensional
vanishing vector fields b such that Db is a singleton, while Cb is a closed line segment not reduced
to a singleton. Therefore, condition #Db=1 does not imply in general #Cb=1.

Condition #Db = 1. Since condition #Cb = 1 implies condition #Db = 1, but #Cb = 1 does not
imply in general condition Erg, by a transitivity argument condition #Db = 1 does not imply
in general condition Erg. Moreover, since condition #Cb = 1 is equivalent to condition Asy-e.,
but condition #Db=1 does not imply in general #Cb=1, condition #Db=1 does not imply in
general condition Asy-e..

Condition Hom. Here, we assume that the vector field b is divergence free in Rd.
On the one hand, consider the constant vector field b = e1 in Rd, which induces the flow

X(t, x) = x+ t e1 for (t, x) ∈ R× Rd.

Then, any function f ∈ L1
] (Yd) independent of variable x1 is invariant for the flowX with respect

to any invariant probability measure which is absolutely continuous with respect to Lebesgue’s
measure. Hence, the flow X is not ergodic with respect to such an invariant probability measure.
Moreover, we have immediately Cb = Db = {e1}. Therefore, condition Hom which is equivalent
to condition #Db = 1 (by Theorem 3.2), does not imply in general condition Erg.

On the other hand, the two-dimensional divergence free Oxtoby example [20, Section 2] com-
bined with the uniqueness result of [20, Theorem 1] (see Example 4.1) provides a flow which
is ergodic with respect to Lebesgue’s measure, and such that Cb is not a unit set (see Proposi-
tion 5.1). Therefore, since condition Erg implies condition Hom (see, e.g., [15, Theorem 3.2])
condition Hom does not imply in general condition #Cb = 1. Finally, condition Hom does not
imply in general either condition Erg, or condition #Cb=1, or, equivalently, condition Asy-e..

The rest of the implications can be easily deduced from the former arguments. �

Exemple 4.1 Oxtoby [20] provided an example of a free divergence analytic two-dimensional
vector field b with (0, 0) as unique stationary point in Y2, such that the associated flow X is
ergodic with respect to Lebesgue’s measure, and such that Lebesgue’s measure is the unique
invariant measure for the flow X among all the invariant probability measures which do not
load the point (0, 0). Oxtoby’s example is actually based on a Stepanoff flow (4.1), where ρS
is a non negative function in C1

] (Y2) with (0, 0) as unique stationary point, and where ξ is
a constant vector of R2 with incommensurable coordinates. Stepanoff [23, Section 4] proved
that Birkhoff’s theorem applies if σS := 1/ρS is in L1

] (Y2), which is not incompatible with the
analyticity for ρS. A suitable candidate for ρS is then the function (see [8, Example 4.2] for
another application)

ρS(x) :=
(
sin2(πx1) + sin2(πx2)

)β0 for x ∈ Y2, with β0 ∈ (1/2, 1). (4.2)
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More generally, Oxtoby [20, Theorem 1] proved that any two-dimensional flow homeomorphic
to a Stepanoff flow with a unique stationary point x0, admits a unique invariant probability
measure µ for the flow S (4.1) satisfying µ({x0}) = 0, and that S is ergodic with respect
to µ. Twenty five years later, Marchetto [17, Proposition 1.2] extended this result to any flow
homeomorphic to a Stepanoff flow with a finite number of stationary points in Y2.

5 A new approach of Stepanoff flow

In this section, we extend the two-dimensional results of [20, 17] to any dimension d ≥ 2, using
a non ergodic and elementary approach based on some classical tools of PDE’s analysis (mol-
lification, truncation) combined with the characterization of invariant functions of Lemma 2.2.

Proposition 5.1 Consider a d-dimensional, d ≥ 2, Stepanoff flow S (4.1) where ρS ∈ C1
] (Yd)

is non negative with a finite positive number of roots (the stationary points for S) in Yd and
σS := 1/ρS ∈ L1

] (Yd), and where ξ ∈ Rd has incommensurable coordinates. Then, the measure
σS(x)/σS dx is the unique invariant probability measure on Yd for the flow S, which does not
load the zero set of ρS. The flow S is also ergodic with respect to the measure σS(x)/σS dx.
Moreover, we have DbS = {ζ} and CbS = [0, ζ], where ζ := 1/σS ξ.

Remark 5.1 Similarly to [20, 17] the result of Proposition 5.1 actually extends to any flow
which is homeomorphic to a Stepanoff flow.
Indeed, let Ψ be a C2-diffeomorphism on Yd (see [8, Remark 2.1]). Define the flow X̂ obtained
through the homeomorphism Ψ from the flow X associated with a vector field b ∈ C1

] (Yd)
d, by

X̂(t, x) := Ψ
(
X(t,Ψ−1(x))

)
for (t, x) ∈ R× Yd. (5.1)

According to [8, Remark 2.1] the homeomorphic flow X̂ is the flow associated with the vector
field b̂ ∈ C1

] (Yd)
d defined by

b̂(x) = ∇Ψ(Ψ−1(x)) b(Ψ−1(x)) for x ∈ Yd. (5.2)

Now, let µ be a probability mesure on Yd, and let µ̂ be the image measure of µ by Ψ defined by∫
Yd

ϕ(x) dµ̂(x) =

∫
Yd

ϕ(Ψ(y)) dµ(y) for ϕ ∈ C0
] (Yd).

By (5.1) we have
∀ϕ ∈ C0

] (Yd),

∫
Yd

ϕ
(
X̂(t, x)

)
dµ̂(x) =

∫
Yd

ϕ
(
Ψ(X(t, y))

)
dµ(y),

∀ ρ ∈ C0
] (Yd), µ̂({ρ = 0}) = µ({ρ ◦Ψ = 0}),

∀ f ∈ L1
] (Yd), f̂ := f ◦Ψ−1, ∀ t ∈ R, f̂

(
X̂(t, x)

)
= f

(
X(t,Ψ−1(x))

)
a.e. x ∈ Yd.

(5.3)

Also note that, if µ is invariant for X, so is µ̂ for X̂. Therefore, if the homeomorphic flow X̂ is a
Stepanoff flow S satisfying the assumptions of Proposition 5.1, we easily deduce from (5.3) that
Proposition 5.1 holds true for the flow X. Namely, there exists a unique invariant probability
measure µ on Yd for the flow X, which does not load the zero set of ρS ◦ Ψ. Moreover, the
measure µ is absolutely continuous with respect to Lebesgue’s measure with an a.e. positive
density, and the flow X is ergodic with respect to µ.
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Remark 5.2 Assuming the uniqueness result of Proposition 5.1, the ergodicity of σS(x)/σS dx
and equality CbS = [0, ζ] can also be proved using standard arguments of ergodic theory. Indeed,
let EbS be the set of all the ergodic invariant probability measures for the flow S. Recall (see, e.g.,
[9, Theorem 2, Chapter 1]) that IbS = conv (EbS), and that two elements in EbS are either equal,
or mutually singular. Now, if µ ∈ EbS satisfies µ({x0}) > 0 for some zero of ρS, then µ = δx0
due to δx0 ∈ EbS . Next, since σS(x)/σS dx is the unique invariant probability measure on Yd
for the flow S, which does not load the zero set of ρS, it follows from equality IbS = conv (EbS)
that the flow S is ergodic with respect to σS(x)/σS dx. Hence, EbS is the finite set

EbS =
{
σS(x)/σS dx

}
∪
{
δx : ρS(x) = 0

}
. (5.4)

Therefore, σS bS/σS = ζ provides the unique non zero contribution in CbS through EbS , which
by convex combination implies that CbS = [0, ζ]. Equality IbS = conv (EbS) and property (5.4)
also give DbS = {ζ}.

Proof of Proposition 5.1. Assume that µ is an invariant probability measure for the flow S (4.1),
which does not load the zero set of ρS. Then, by virtue of Proposition 1.1 the Borel measure µ̃
on Rd defined by (1.21) is solution to the equation

div(µ̃ bS) = div(ρS µ̃ ξ) = 0 in D ′(Rd).

Hence, applying Lemma 5.2 below with the measure ν = ρS µ which is connected to the measure
ν̃ = ρS µ̃ by (1.21), there exists a constant c ∈ R such that ρS(x) dµ(x) = c dx on Yd, i.e.

∀ϕ ∈ C0
] (Yd),

∫
Yd

ϕ(x) ρS(x) dµ(x) =

∫
Yd

c ϕ(x) dx.

Then, we get that for any n ≥ 1,

∀ϕ ∈ C0
] (Rd),

∫
Yd

ϕ(x)

ρS(x) + 1/n
ρS(x) dµ(x) =

∫
Yd

c
ϕ(x)

ρS(x) + 1/n
dx. (5.5)

However, since measure µ does not load the finite zero set of ρS in Yd (at this point this
assumption is crucial), we have

ϕρS
ρS + 1/n

−→
n→∞

ϕ dµ(x)-a.e. in Yd, with

∣∣∣∣ ϕρS
ρS + 1/n

∣∣∣∣ ≤ ‖ϕ‖∞ ∈ L1
] (Yd, µ)

ϕ

ρS + 1/n
−→
n→∞

ϕ

ρS
dx-a.e. in Yd, with

∣∣∣∣ ϕ

ρS + 1/n

∣∣∣∣ ≤ ‖ϕ‖∞ρS ∈ L1
] (Yd).

Therefore, passing to the limit as n→∞ owing to Lebesgue’s theorem in (5.5), we get that

∀ϕ ∈ C0
] (Yd),

∫
Yd

ϕ(x) dµ(x) =

∫
Yd

c ϕ(x)σS(x) dx.

We thus obtain the equality dµ(x) = σS(x)/σS dx, which shows the uniqueness of an invariant
probability measure for the flow S, which does not load the zero set of ρS. Conversely, σS bS = ξ
is clearly divergence free, which by Proposition 1.1 implies that µ is an invariant probability
measure for the flow S. We have just proved that µ is the unique invariant probability measure
for the flow S, which does not load the zero set of ρS.
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Now, let us prove that the flow S is ergodic with respect to the measure dµ(x) = σS(x)/σS dx.
To this end, let f ∈ L1

] (Yd) be an invariant function for the flow S with respect to measure µ.
Let T±n be the truncation functions at level n ∈ N, defined by

T±n (t) :=
(
(± t) ∨ 0)

)
∧ n for t ∈ R.

Then, the functions T±n (f) ∈ L∞] (Yd) are also invariant functions for the flow S with respect to
measure µ. We know that σS(x) dx is an invariant measure for the flow S. Hence, by virtue
of Lemma 2.2 the Radon measures dµ±n (x) := (T±n (f)σS)(x) dx are invariant for S, which by
relation (1.21) and Proposition 1.1 implies that

µ̃±n bS = µ±n bS = (T±n (f)σS bS)(x) dx = T±n (f)(x) ξ dx

are divergence free in Rd. Therefore, applying Lemma 5.2 with measures dν(y) = T±n (f)(y) dy
which satisfy ν̃ = ν, the functions T±n (f) agree with constants c±n ∈ R a.e. in Yd. However, since
the sequences T±n (f) converge strongly in L1

] (Yd) to the non negative and the non positive parts
f± of f , the sequences c±n converge to some constants c± in R. Hence, the function f = f+−f−
agrees with the constant c+ − c− a.e. in Yd. This proves the desired property.

Next, since σS(x)/σS dx is the unique invariant probability measure on Yd for the flow S,
among the invariant probability measures which are absolutely continuous with respect to
Lebesgue’s measure, we have

DbS =

{∫
Yd

ρS(x) ξ σS(x)/σS dx

}
= {1/σS ξ}.

Note that the former equality can be alternatively deduced from the ergodicity of the flow S
combined with Theorem 4.1.
On the other hand, set bn := bS + 1/n for n ≥ 1. Since ξ has incommensurable coordinates, we
have (see [8, Example 4.1])

Cbn = {ζn} where ζn :=

(∫
Yd

dx

ρS(x) + 1/n
dx

)−1
ζ.

Finally, since the function ρS vanishes in Yd, by virtue of [8, Theorem 3.1] we obtain that

CbS = [0, ζ], where ζ = lim
n→∞

ζn = 1/σS ξ.

Note that the ergodic approach of Remark 5.2 alternatively shows that CbS = [0, ζ]. The proof
of Proposition 5.1 is now complete. �

Lemma 5.2 Let ν ∈ M](Yd), let ν̃ ∈ Mloc(Rd) be the Borel measure on Rd connected to the
measure ν by relation (1.21), and let ξ ∈ Rd be a vector with incommensurable coordinates.
Assume that ν̃ ξ is divergence free in Rd, i.e.

∀ϕ ∈ C∞c (Rd),

∫
Rd

ξ · ∇ϕ(x) dν̃(x) = 0. (5.6)

Then, there exists a constant c ∈ R such that dν(y) = c dy on Yd.

Remark 5.3 In Lemma 5.2 the incommensurability of ξ′s coordinates is also a necessary con-
dition to get (5.6). Indeed, assume that there exists a non nul integer vector k ∈ Zd \ {0}
such that k · ξ = 0. Then, for any non constant Z-periodic function θ ∈ C1

] (Y1), the function(
τ : x 7→ θ(k · x)

)
belongs to C1

] (Yd), τ̃(x) dx = τ(x) dx, and

∀x ∈ Rd, div(τ ξ)(x) = θ′(k · x) k · ξ = 0,

so that the conclusion of Lemma 5.2 does not hold true.
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Proof of Lemma 5.2. Let (φn)n∈N be a sequence of mollifiers in C∞c (Rd) with φn = 1. Applying
successively Fubini’s theorem twice and (5.6), the convolution φn ∗ ν̃ ∈ C∞(Rd) satisfies for any
n ∈ N and for any ϕ ∈ C∞c (Rd),∫

Rd

(∫
Rd

φn(x− y) dν̃(y)

)
ξ · ∇ϕ(x) dx =

∫
Rd

(∫
Rd

φn(x− y) ξ · ∇ϕ(x) dx

)
dν̃(y)

=

∫
Rd

(∫
Rd

φn(x) ξ · ∇xϕ(x+ y) dx

)
dν̃(y) =

∫
Rd

(∫
Rd

ξ · ∇yϕ(x+ y) dν̃(y)

)
φn(x) dx = 0,

or, equivalently,
div
(
(φn ∗ ν̃) ξ

)
= ∇(φn ∗ ν̃) · ξ = 0 in Rd. (5.7)

Now, consider ξ1, . . . , ξd−1 (d−1) vectors in Rd such that (ξ1, . . . , ξd−1, ξ) is an orthogonal basis
of Rd, and let Λ be the matrix in R(d−1)×d whose lines are the vectors ξ1, . . . , ξd−1, i.e. its entries
are given by Λij = ξij for (i, j) ∈ {1, . . . , d−1} × {1, . . . , d}. Then, make the linear change of
variables

Rd → Rd

x 7→ y = (Λx, ξ · x) = (ξ1 · x, . . . , ξd−1 · x, ξ · x).

Since (5.7) means that (φn ∗ ν̃)(x) is independent of the variable yd = ξ ·x, it follows that there
exists a function θn ∈ C∞(Rd−1) such that

∀x ∈ Rd, (φn ∗ ν̃)(x) = θn(Λx).

Moreover, due to (1.21) and the Zd-periodicity of (φn)], we have for any x ∈ Rd and k ∈ Zd,

(φn ∗ ν̃)(x+ k) =

∫
Rd

φn(x+ k − y) dν̃(y) =

∫
Yd

(φn)](x+ k − y) dν(y)

=

∫
Yd

(φn)](x− y) dν(y) =

∫
Rd

φn(x− y) dν̃(y) = (φn ∗ ν̃)(x),

which implies that the function φn∗ν̃ is also Zd-periodic. As a consequence, the regular function
θn satisfies the periodicity condition

∀ k ∈ Zd, ∀x ∈ Rd−1, θn(x+ Λk) = θn(x).

Hence, by virtue of the density Lemma 5.3 below we get that θn is a constant cn ∈ R, and thus
φn ∗ ν̃ = cn in Rd. Therefore, by Fubini’s theorem we have for any ϕ ∈ C∞c (Rd),∫

Rd

cn ϕ(x) dx =

∫
Rd

(∫
Rd

φn(x− y) dν̃(y)

)
ϕ(x) dx =

∫
Rd

(∫
Rd

φn(x− y)ϕ(x) dx

)
dν̃(y),

where the function
(
y 7→

∫
Rd φn(x − y)ϕ(x) dx

)
converges uniformly to ϕ on Rd as n → ∞,

whose support is included in a fixed compact set of Rd, and which is bounded uniformly by
‖ϕ‖∞. Therefore, passing to the limit as n→∞ thanks to Lebesgue’s theorem with respect to
measure ν̃, we get that the sequence (cn)n∈N converges to some c ∈ R, and that

∀ϕ ∈ C∞c (Rd),

∫
Rd

c ϕ(x) dx =

∫
Rd

ϕ(y) dν̃(y).

Hence, we deduce the equality dν̃(x) = c dx on Rd, or, equivalently, dν(y) = c dy on Yd by
virtue of Remark 1.1. This concludes the proof of Lemma 5.2. �
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Lemma 5.3 Let ξ be a vector in Rd for d ≥ 2, with incommensurable coordinates, let ξ1, . . . , ξd−1

be (d−1) vectors in Rd such that (ξ1, . . . , ξd−1, ξ) is an orthogonal basis of Rd, and let Λ be
the matrix in R(d−1)×d whose lines are the vectors ξ1, . . . , ξd−1. Then, the lattice ΛZd is dense
in Rd−1.

Proof. Lemma 5.3 follows easily from [3, Proposition 6 & Corollary, Section VII.7] which leads
one to Kronecker’s approximation theorem [3, Proposition 7, Section VII.7]. For the reader’s
convenience we propose a more direct proof.
Since matrix Λ has rank (d−1) and Ker(Λ) = R ξ, we may assume, up to reorder the vectors,
that the vectors Λe1, . . . ,Λed−1 are linearly independent and that there exist d real numbers
α1, . . . , αd−1, α satisfying

Λed =
d−1∑
i=1

αi Λei and ed −
d−1∑
i=1

αi ei = α ξ. (5.8)

Replacing the vector ed in the first equality of (5.8) and using that Λξ = 0, we get that

ΛZd =
d∑
i=1

ZΛei =
d−1∑
i=1

(Z + αi Z) Λei.

Assume that there exists j ∈ {1, . . . , d − 1} such that the set (Z + αj Z) is not dense in R,
or, equivalently, αj ∈ Q. Taking the j-th and d-th coordinates in the second equality of (5.8),
it follows that ξj + αj ξd = 0, which contradicts the incommensurability of ξ’s coordinates.
Therefore, the set ΛZd is dense in Rd−1, which concludes the proof. �

Exemple 5.1 Consider a two-dimensional vector field b = ρ0R⊥∇u such that ρ0 ∈ C1
] (Y2) is

a.e. positive in Y2 and does vanish in Y2, and such that ∇u ∈ C1
] (Y2)

2 does not vanish in Y2
and ∇u has incommensurable coordinates. Also assume that σ0 := 1/ρ0 ∈ L1

] (Y2). An example
of such a function is given by (4.2). Note that, by virtue of Proposition 1.1 the probability
measure σ0(x)/σ0 dx is invariant for the flow X associated with b.

Now, let σ ∈ L1
] (Y2) be a non negative function with σ = 1, such that div(σb) = 0 in R2. By

Proposition 1.1 σ(x) dx is an invariant probability measure for the flow X. Hence, by Fubini’s
theorem we have for any T > 0,∫

Y2

σ(x) b(x) dx =
1

T

∫ T

0

(∫
Y2

σ(x) b(X(t, x)) dx

)
dt =

∫
Y2

(
X(T, x)− x

T

)
σ(x) dx. (5.9)

On the other hand, since the function ρ0 does vanish in Y2 together with ρ0 > 0 a.e. in Y2,
from [8, Lemma 3.1] applied with the invariant probability measure dµ(x) := σ0(x)/σ0 dx, we
deduce that

lim
T→∞

X(T, x)

T
= ζ :=

σ0 b

σ0
=
R⊥∇u
σ0

6= (0, 0) a.e. x ∈ Y2.

Therefore, passing to the limit T →∞ in equality (5.9) thanks to Lebesgue’s theorem, we get
that for any invariant probability measure σ(x) dx with σ ∈ L1

] (Y2),∫
Y2

σ(x) b(x) dx = ζ 6= (0, 0),

which thus implies that Db = {ζ}. However, by virtue of [8, Corollary 3.4] we obtain that
Cb = [0, ζ]. Therefore, we have #Cb =∞, while #Db = 1.
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Remark 5.4 The result of Example 5.1 can be deduced from the Proposition 5.1 combined
with Remark 5.1, using Kolmogorov’s theorem [16] (see, e.g., [22, Lecture 11], and see also [24,
Theorem 2.1] for an elementary proof when one of the coordinates of the vector field does not
vanish). Indeed, since the divergence free field R⊥∇u of Example 5.1 does not vanish in Y2,
by virtue of Kolmogorov’s theorem there exists a C1-diffeomorphism on Y2 which transforms
the flow X associated with the vector field b = ρ0R⊥∇u, to a Stepanoff flow satisfying the
assumptions of Proposition 5.1 provided the zero set of ρ0 is finite. Therefore, Remark 5.1
allows us to conclude.

We can extend Example 5.1 to the following variant of [8, Corollary 3.4], which provides a
general framework where the sets Cb and Db may differ.

Proposition 5.4 Let b = ρΦ ∈ C1
] (Y2)

2 be a vector field, where ρ ∈ C1
] (Y2) is a non negative

function with a positive finite number of roots, and where Φ ∈ C1
] (Y2)

2 is a non vanishing vector

field. Also assume that there exists a function u ∈ C1(Y2) with ∇u ∈ C0
] (Y2)

2, such that ∇u
has incommensurable coordinates and Φ · ∇u = 0 in Y2. Then, the exists a vector ζ ∈ R2 such
that Cb = [0, ζ], together with Db = Ø or Db = {ζ}.

Proof. First of all, define for n ≥ 1, the function ρn := ρ + 1/n > 0, and the vector field
bn := ρn Φ. By the equality Φ · ∇u = 0 in Y2, we get that u is an invariant function for
the flow Xn associated with the vector field bn, with respect to Lebesgue’s measure. Then,
following the proof of [8, Corollary 3.4], from the ergodic case of [21, Theorem 3.1] and the
incommensurability of ∇u’s coordinates, we deduce that there exists a vector ζn ∈ R2 such that
Cbn = {ζn}.

On the one hand, since the function ρ vanishes in Y2, by the second case of [8, Theorem 3.1]
it turns out that the sequence (ζn)n≥1 converges to some ζ ∈ R2, and that Cb = [0, ζ].

On the other hand, assume that the set Db is non empty. Then, there exists an invariant
probability measure σ(x) dx with σ ∈ L1

] (Y2), for the flow X associated with the vector field b,
i.e. σ(x)/σ dx ∈ Ib. Following the proof of [8, Corollary 3.3] define the probability measure
µn by

dµn(x) := Cn
ρ(x)

ρn(x)
σ(x) dx where Cn :=

(∫
Yd

ρ(x)

ρn(y)
σ(y) dy

)−1
.

Note that Cn < ∞, since ρ σ is non negative and not nul a.e. in Y2. Due to σ(x)/σ dx ∈ Ib,
by Proposition 1.1 we have

∀ϕ ∈ C1
] (Y2),

∫
Yd

bn(x) · ∇ϕ(x) dµn(x) = Cn

∫
Yd

b(x) · ∇ϕ(x)σ(x) dx = 0,

which again by Proposition 1.1 implies that µn ∈ Ibn . This combined with Cbn = {ζn} yields

ζn =

∫
Yd

bn(x) dµn(x) = Cn

∫
Yd

b(x)σ(x) dx = Cn σ b

which is actually independent of σ. Due ρ > 0 a.e. in Y2, by Lebesgue’s theorem we get that
the sequence (Cn)n≥1 converges to σ = 1. Hence, we deduce that

ζ = lim
n→∞

ζn = σ b

which is also independent of σ. Therefore, we obtain that Db = {ζ}, which concludes the proof
of Proposition 5.4. �
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