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Abstract

This paper deals with the long time asymptotics of the flow X solution to the au-
tonomous vector-valued ODE: X'(¢,x) = b(X (¢, z)) for t € R, with X (0,2) = z a point of
the torus Yy. We assume that the vector field b reads as the product p ®, where p is a non
negative regular function and ® is a non vanishing regular vector field in Yy. In this work,
the singleton condition means that the Hermann rotation set C; composed of the average
values of b with respect to the invariant probability measures for the flow X is a singleton
{¢}. This combined with Liouville’s theorem regarded as a divergence-curl lemma, first
allows us to obtain the asymptotics of the flow X, when b is a nonlinear current field.
Then, we prove a general perturbation result assuming that p is the uniform limit in Yy
of a positive sequence (pn)nen satisfying for any n € N, p < p,, and C,, o is a singleton
{¢n}- It turns out that the limit set C; either remains a singleton, or enlarges to the closed
line segment [Oga, lim,, ¢,] of R%. We provide various corollaries of this perturbation result
involving or not the classical ergodic condition, according to the positivity or not of some
weighted harmonic means of p. These results are illustrated by different examples which
highlight the alternative satisfied by the rotation set C,. Finally, we prove that the sin-
gleton condition allows us to homogenize in any dimension the linear transport equation
induced by the oscillating velocity b(x/e) beyond any ergodic condition satisfied by the
flow X.
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1 Introduction

In this paper we study the large time asymptotics of the solution X (-, z) for x € R?, to the ODE

0X
ot
X(0,2) =z,

(t,x) =b(X(t,x)), tER (1.1)

where b is a C'-regular vector field defined in the torus Yy := R?/Z? (denoted by b € C} (Yy)?)
according to the Z%periodicity (1.13). The solution X (-,z) is well-defined for any x € Yy by
virtue of (1.17). More precisely, we focus on the existence of the limit of X (¢,2)/t as t — oo
for x € Y;. This question naturally arises in ergodic theory, since it involves the dynamic flow

X induced by ODE (1.1), and the Borel measures p on the torus Yy which are invariant for the
flow X, i.e.

VEER Vo e CHY), [ w(X(t)duly) = [ v(0)duty) (1.2
Ya Yy
A strengthened variant of the famous Birkhoff ergodic theorem [15, Theorem 2, Section 1.8

claims that if the flow is uniquely ergodic, i.e. there exists a unique probability measure p on
Yy which is invariant for the flow, then any function f € CJ(Yq) satisfies

: I
VeV, lim {-/ f(X(s,x))ds] — | f) duty), (1.3)
t—oo | T 0 Y,
and the converse actually holds true. In the particular case where f = b, limit (1.3) yields
X(t
veevy lim2hd) / b(y) du(y). (1.4)
t—o0 t Y,

The unique ergodicity condition is a rather restrictive condition on the flow (1.1). Alternatively,
define the set
Iy = {p € M,(Yy) : p invariant for the flow X}, (1.5)
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where .#,(Y;) is the set of probability measures on Yy, and the subset of .%,
& = {p € S, : p ergodic for the flow X}. (1.6)

It is known that the ergodic measures for the flow X are the extremal points of the convex set
4, so that
Iy = conv(&y). (1.7)

Also define for any vector field b € CJ(Y5)? the two following non empty subsets of R%:

e The set of all the limit points of the sequences (X (n,z) /n)n>1 for x € Yy (denoted by

pp(b) in [30])
Xk, x)
z€Yy Ln>1
e The so-called Herman [23] rotation set

¢o={[ () duty) Aif =eone{ [ b{a)duty) af. 09

which is a compact and convex subset of R%.
An implicit consequence of [30, Theorem 2.4, Remark 2.5, Corollary 2.6] shows that
A, C Gy =conv(A,) and #A,=1< #C, =1, (1.10)
Note that by definition (1.8) the equivalence of (1.10) can be written for any ¢ € R?

X(n,x)

X(t,z)

CG={(} & VzeY, lim =( & VreY, lm =¢. (L11)
n—00 —

In the sequel the “singleton condition” means that Herman’s rotation set C, is a singleton {(}.
Proposition 2.1 below provides an alternative proof of (1.11). Then, the “singleton approach”
consists in establishing sufficient conditions on the vector field b to ensure the singleton condi-
tion. The aim of this paper is to exploit this approach either to get the asymptotics of the flow
X for suitable vector fields b, or in the less favorable cases to determine Herman’s rotation set
C, as a closed line segment of RY.

First of all, revisiting Liouville’s theorem for invariant probability measures (see, e.g., [15,
Theorem 1, Section 2.2]) as a divergence-curl lemma (see Proposition 2.2) we obtain (see Propo-
sition 2.4) a rather surprising null asymptotics of the flow X associated with a nonlinear current
field of type b = F(-, Vv), where F(z,¢) is a vector-valued function in C}(Yg; C*(R?))¢ which
is strictly monotonic with respect to variable &, and where v is a scalar potential in th(Yd).

Actually, except the one-dimensional case where b is parallel to a fixed direction so that the
flow can be computed explicitly (see Example 4.1), there are very few examples of vector fields
b for which the asymptotics of the flow X (1.1) is completely known in dimension d > 2. There
are at least three cases:

e If the two-dimensional flow X has a cross section ¥ (see [19, Theorems A,B,D|, [5, Ap-
pendix A] for cross sections to flows, and see also |14, Theorem 2.1]), and if the return
time 7 to X is of type “coboundary plus constant”, i.e. 7(x) = h(f(x)) — h(xz) + T for
x € Yy, where f is the return map to ¥ and h some bounded function, then the asymp-
totics of X (-,z) is a vector in R? independent of z, involving the constant 7" and the
rotation number of f.



e If b is a non vanishing regular field in dimension two, Peirone |31, Theorem 3.1| proved
that the asymptotics of the flow X (-, ) does exist at each point € Y5. Moreover, Peirone
showed that the asymptotics is actually independent of z, i.e. the singleton condition is
satisfied, when for any x € Y3, the flow X(-,z) is not periodic in Y5 according to (1.18).
However, the asymptotics may depend on z in the periodic case, contrary to the statement
of [27, Proposition 14.7.1] which was corrected by Peirone in [31, page 922].

e Under the global rectification condition V¥ b = ¢ in Yy, where ¥ is a C?-diffeomorphism
on the torus Y; and ¢ is a non zero constant vector in R?, the set C, is the singleton
{(de V¥)~!¢} in any dimension (see |9, Corollary 4.1] and Remark 2.1).

In the two former situations the vector field b does not vanish. In order to extend these two
results among others to a vanishing vector field b, a natural question is to know if the singleton
condition is stable under a uniform non vanishing perturbation b, of b for n € N. We provide
a partial answer to this question with the main result Theorem 3.1 of the paper. Restricting
ourselves to a perturbation b, = p, ®, where (p,)nen is a sequence of positive functions in
C’;(Yd) converging uniformly in Yy to some regular function p < p, and where ® is a fixed
vector field, we prove that if C,, = {(,} for any n € N, then the sequence ((,)nen converges to
some ¢ € R%. Moreover, we get that the limit set C, where b = p® = lim,, b,, is the singleton
{C} if p is positive, and that C, is the closed line segment [Oga, (] if p is only non negative. In
Theorem 3.1 it is essential that the vector field ® in b,, = p,, ® is independent of n, otherwise the
perturbation result does not hold in general (see Remark 3.3 and Example 4.1). Moreover, the
two-dimensional Example 4.2 shows that the sequence of singletons (Cp, ),eny may be actually
enlarged to the limit closed line segment C, = [Oga, (] with ¢ # 0. From the perturbation result
we first deduce (see Corollary 3.1) that for a fixed vector field ® € C}(Yy)?, the set of the
positive functions p € C} (Yy) with #Cye = 1 is closed for the uniform convergence in C; (Yy)".
This result does not extend to the larger set composed of the non negative functions p as shown

in Remark 3.4. Then, we prove various corollaries of Theorem 3.1 in terms of the asymptotics
of the ODE’s flow (1.1):

e We show (see Corollary 3.2) that the asymptotics of the flow X(-,z) associated with
b = p® does exist at any point x such that the orbit X (R, x) is far enough from the set

{p=0}.

e When the flow associated with the vector field & admits an invariant probability measure
with a positive density o € Cﬁl(Yd) with respect to Lebesgue’s measure, we prove (see
Corollary 3.3) the following alternative:

— C,p = {Oga} if the harmonic mean of p/o is equal to 0,

— C,o is some closed line segment [Oga, ¢] of R? if the harmonic mean of p/c is positive
(see the two-dimensional Example 4.2).

e As a by-product of Corollary 3.3 we determine (see Corollary 3.4) the set C,¢ in dimension
two when @ is parallel to an orthogonal gradient satisfying an ergodic condition, extending
Peirone’s result |31, Theorem 3.1 (see Remark 3.6) to the case where the vector field b
does vanish. Corollary 3.4 is illustrated in Example 4.4 by the case where b is a two-
dimensional electric field, while dimension three is shown to be quite different. Similarly,
we extend (see Corollary 3.5) the non ergodic case of |9, Corollary 4.1] to a vanishing
vector field b in any dimension (see Example 4.3).



It turns out that the singleton approach cannot be regarded exclusively as an ergodic approach.
It may contain an ergodic condition as in Corollary 3.4. But it may be also independent of any
ergodic condition as in Corollary 3.5. This does make this approach an original alternative to
the classical ergodic approach.

Finally, we apply the asymptotics of the flow (1.1) to the homogenization of the linear
transport equation with an oscillating velocity

ou, x _ d
E(t,x) +b <g> -Vau(t,z) =0 for (t,x) € [0,00) x R, (1.12)
where the vector field b belongs to C}(Yy)?. Tartar [35] and Amirat et al [2, 3, 4] showed

that in general the homogenization of equation (1.12) leads to a nonlocal limit problem. Here,
we focus on the cases where the homogenized equation remains a linear transport equation
with some average velocity (b) of the vector field b. In this perspective, the following works
may be quoted: First, assuming that b is divergence free and the flow associated with b is
ergodic, Brenier [7] proved the convergence of the solution u. in any dimension. This result
was extended by Golse |21, Theorem 8| (see also [22]) for a more general velocity b(z, x/e) with
div,b(z,-) = 0, assuming the ergodicity of the flows associated with the vector fields b(z, -).
Hou and Xin [25] performed the homogenization of (1.12) in dimension two with an oscillating
initial condition u.(0,z) = u°(x, z/¢), assuming that b is a non vanishing divergence free vector
field in R? and that the flow (1.1) is ergodic. To this end, they used a two-scale convergence
approach combined with Kolmogorov’s theorem [28] involving some rotation number. This
two-scale approach based on the divergence free condition was extended by Jabin and Tzaveras
[26] using a kinetic decomposition in the two-scale procedure. Moreover, Tassa [31] extended
the two-dimensional homogenization result of [25], assuming that the flow X associated with b
has an invariant probability measure with a positive regular density with respect to Lebesgue’s
measure. More generally, Peirone [31| proved the convergence of the solution u. to equation
(1.12) in dimension two, under the sole assumption that b does not vanish in Y5. More recently,
the first author proved in |9, Corollary 4.4] (see also [10] for an extension to the non periodic
case) the homogenization of (1.12), replacing the classical ergodic condition by the rectification
condition V¥ b = ¢ for some C?-diffeomorphism ¥ on Y,;, and a non null constant vector ¢ € R?.

In the present case, extending the previous results in the case where the initial condition
u:(0, -) does not oscillate, we prove a new result (see Theorem 5.1) on the homogenization of
the linear transport equation (1.12) in any dimension, only assuming the singleton condition
(without therefore assuming that the velocity of transport equation (1.12) is divergence free).
The results of Section 2 and Section 3 provide various and rather general situations where the
singleton condition applies:

the case of the nonlinear current field in Proposition 2.4,

some of the cases of Corollary 3.3 and Corollary 3.4,

Corollary 3.5 illustrated by Example 4.3,

Example 4.2 when o > 1,

the two-dimensional conductivity case of Example 4.4 under the ergodic condition (4.15).

The paper is organized as follows. In Section 2 we revisit the singleton condition and
the Liouville theorem, from which we deduce the asymptotics of the flow (1.1) when b is a
current field. In Section 3 we establish the perturbation Theorem 3.1 which is the main result
of the paper, and we derive various corollaries on the set C, and on the asymptotics of the
flow X. Section 4 presents four examples which illustrate the results of Section 2 and Section 3.
Section 5 is devoted to the homogenization of the transport equation (1.12) in connection with
the asymptotics of the flow.



Notation

e (e1,...,¢eq) denotes the canonical basis of R, and Oz« denotes the null vector of R?.
e “.” denotes the scalar product in RY, and | - | denotes the euclidian norm in RY.

e Y, for d > 1, denotes the d-dimensional torus R?/Z?, which is identified to the cube [0, 1)?
in R%.

o CF(RY) for k € NU {oo}, denotes the space of the real-valued functions in C*(R?) with
compact support.

o Cf(Yy) for k € NU{oo}, denotes the space of the real-valued functions f € C*(R?) which
are Z’-periodic, i.e.
VeeZ Vo eRY, flz+r) = f(x). (1.13)

o L;(Ys) for p > 1, denotes the space of the real-valued functions in LF (R?) which are
Z%-periodic.

o #(Ry), resp. . (Yy), denotes the space of the Radon measures on RY, resp. Y, and
AM,(Yy) denotes the space of the probability measures on Y.

e The notation .#, in (1.5) will be used throughout the paper.
e 2'(R%) denotes the space of the distributions on R¢.

e [f a is a non negative measurable function in Yy, the arithmetic mean @ and the harmonic
mean g of a are defined in [0, co] by

a::/Yda(y)dy and g i= (/y%)

Definitions and recalls

Let b: RY — R? be a vector-valued function in C'ﬁ1 (Y;)? Consider the dynamical system

X
- (t:2) =b(X(t,7)), tER (1.14)

X(0,z) =z € RL

The solution X (-, z) to (1.14) which is known to be unique (see, e.g., |2, Section 17.4]) induces
the dynamic flow X defined by

X: RxR — R4

(t,z) — X(t2), (1-15)
which satisfies the semi-group property
Vs,t €R, Vo e R, X(s+t,x) = X(s, X(t,2)). (1.16)
The flow X is actually well defined in the torus Yy, since
VteR, VzeRY VeeZd X(t,x+r)=X(tx)+ k. (1.17)



Property (1.17) follows immediately from the uniqueness of the solution X (-, x) to (1.14) com-
bined with the Z4periodicity of b.

For any x € Yy, the solution X (-, x) to (1.14) is said to be periodic in the torus Yy if there
exist T > 0 and k € Z% such that

VteR, X(t+T,z)=X(tz)+ k. (1.18)

If kK = Oga the solution is said to be periodic in R

2 Some variants of classical ergodicity results

2.1 The singleton result

Equivalences (1.11) have been obtained in [30] as a consequence of the so-called ergodic de-
composition theorem. Here, we provide a simpler and more direct proof of (1.11), which is
based on Proposition A.1 (in the Appendix) only involving the weak-* compactness of .Z,(Yy).
Also note that the uniform convergence result below is mentioned in [23, Section 9| with no
reference.

Proposition 2.1 Let b € Cﬁl(Yd)d. Then, the following equivalence holds for any ¢ € R?,

X(t
Cb:{C} & Ve ey, thm¥:(
Y o (2.1)
& (t,) converges uniformly ast — oo to ( on Yy.

Proof of Proposition 2.1. First, assume that C, = {(}. Assume by contradiction that the
second right hand-side of (2.1) does not hold. Then, there exists € > 0 such that for any n € N,
there exist a number 7, > n and a point y,, € Y} satisfying

S /Orn b(X(s,yn))ds — (| >e. (2.2)

T'n

X<7an7 yn) - yn
T'n C

Now, let v, for n € N, be the probability measure on Y, defined by
1 [m
F@) dval) = - [ FCX ) ds for £ € CHY)" (23
Yy n J0

By virtue of Lemma A.2 there exists a subsequence (v, )ken of (v, )neny Which converges weakly
to some probability measure pu € #,(Y;) which is invariant for the flow X. Hence, passing to
the limit as ny — oo both in (2.2) and (2.3) with f := b, we deduce from C, = {(} that

IC—C\z‘/de(y)du(y)—C'zs>0,

which yields a contradiction.
It is clear that the second right-hand side of (2.1) implies the first one.

Finally, let us assume that the first right-hand side of (2.1) holds true with ¢, and let us
prove that C, = {¢}. We thus have

Ve eV lim <%/0 b(X(s,x)) ds) = (.

t—o0
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Then, integrating over Y, the former equality with respect to any probability measure y € %,
then applying successively Lebesgue’s dominated convergence theorem and Fubini’s theorem,
we get that

t—o00

¢ = lim y (%/Otb(X(s,x))ds) dp(z)

:}E&% Ot </Y b(X(s,x))du(x)) ds = /Y b(x) dp(x),

which shows that C, = {(}. This concludes the proof of (2.1). O

Remark 2.1 Stability of the singleton condition by a diffeomorphism on the torus.
A mapping ¥ € CHRY)? is said to be a C'-diffeomorphism on Yy if U satisfies the following
conditions:

o det(V¥(x)) # 0 for any v € RY,
o there exist a matriz A € Z* with | det(A)| = 1, and a mapping ¥y € C} (V) such that

Vz e RY  U(z) = Az + Uy(z). (2.4)

Note that the invertibility of A and the Z-periodicity of Wy in (2.4) imply that ¥ is a proper
function (i.e., the inverse image by the function of any compact set in R? is a compact set).
Hence, by virtue of Hadamard-Caccioppoli’s theorem [15] (also called Hadamard-Lévy’s theo-
rem) the mapping V is actually a C*-diffeomorphism on R?. Also note that due to A=t € 7%,
we have

U(z+ k) —U(z) = Ak € z4

Uz +k) -V z)=A1k €24

hence W well defines an isomorphism on the torus.
Now, let b be a vector field in Cﬁl(Yd)d and let U be a C*-diffeomorphism on Yy. Define the

flow X obtained from ¥ by

VekeZl VxeYy, {

X(t,z) =V (X(t, v (2))) for(t,z) € R x Y. (2.5)

Using the chain rule it is easy to check that the mapping X s the flow associated with the vector
field b € C'ﬁl(Yd)d defined by

b(z) = V(U (2)b(T(x)) forze Y, (2.6)
Combining (2.4) and (2.5) we clearly have

X(t,z) X(t, v (x))
t

exists & lim
t—o0

VreY; lim erists,
t—o0

and in the case of existence of the limit for a given x € Yy, we get the equality

hmM:A(lim M)

t—r00 t—o0
This combined with equivalence (2.1) implies that
4C =1 & #C =1, (2.7)
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and in this case we obtain the equality C; = ACy. Therefore, the singleton condition is stable
by any C*-diffeomorphism on Yy.

In particular, such a diffeomorphism has been used by Tassa [7/] in dimension two, assuming
that the first coordinate by of b does not vanish in Yy and that there exists an invariant probability
measure for the flow associated with b having a density o € C’ﬁl(YQ) with respect to Lebesgue’s
measure. In this case a variant [7/, Theorem 2.3] of Kolmogorov’s theorem [25] (which holds
under the weaker assumption that b is non vanishing) provides a diffeomorphism on Yy which
rectifies the vector field b to a vector field b = a €& with a positive function a € C’ﬁl(Yg) and
a fived direction & € R Under the additional ergodic assumption that the coordinates of &
are rationally independent, the singleton condition is shown to be satisfied [7/, Theorem 4.2].
Corollary 3.4 below provides a more general result in dimension two with a vanishing vector
field b, without using a rectification of the vector field b.

2.2 A divergence-curl result

Liouville’s theorem provides a criterium for a probability measure on a smooth compact mani-
fold in R? (see, e.g., |15, Theorem 1, Section 2.2]) to be invariant for the flow. The next result
revisits this theorem in .#,(Yy) in association with a divergence-curl result on the torus.

Proposition 2.2 Let b € Cf (Yy)? and let p € #,(Yy). Define the Borel measure fi on R by

[ e@ait@) = [ elduts) where o) = 3 pt+n) forg e CARY. (28)

Yy

KEZ
Then, the three following assertions are equivalent:
(1) p is invariant for the flow X, i.e. (1.2) holds,
(i) fib is divergence free in R?, i.e.
div(iib) =0 in 2'(RY), (2.9)
(1i1) pb is divergence free in Yy, i.e.
Vo), | bw): Vo) duty) =0 (210)
Ya

Proof of Proposition 2.2.

Proof of (i) = (ii). Assume that y is invariant for the flow, i.e. (1.2). Let ¢ € C}(R?). Since
by (1.17) we have for any ¢t € R and y € RY,

[o(X (D], ) = D e(X(ty+r) = Y o(X(ty) +r) = p(X(1y)), (2.11)

KkEZ4 KEZ

it follows from (2.8) and the invariance of u that

(Xt 0) dily) = | (Xt ) ) =

Yy

ViR, /Rdgo(X(t,x))dﬂ(x):/

Yy

/Yd ei(y) duly) = / o(z) dii(x).

R4



Taking the derivative of the former expression with respect to ¢, we get that
Vit eR, /Rd b(X(t,x)) - Vo(X(t,z))dia(x) =0,
which at ¢ = 0 yields
Vo € CHRY), /Rd b(z) - V(z)di(x) =0, (2.12)

namely the variational formulation of the distributional equation (2.9).

Proof of (ii) = (i). Conversely, assume that equation (2.9) holds true, and let us prove that
p is invariant for the flow X. Let ¢ € C}(R?) and define the function ¢ € C'(R x R?) by
o(t,z) := (X (t,z)). By the semi-group property (1.16) we have for any s,t € R and z € R?,

0 0
$(q§(s +t, X(—s, x))) = g(gb(t,x)) =0
= g—f(s +t, X(=s,2)) —b(X(—s,2)) - Voo(s + t, X(—s,x)),
which at s = 0 gives the classical transport equation
VteR, Vz ey, aa—f(t,x) = b(x) - V.o(t, ). (2.13)

Hence, since p(X (¢, -)) is in C'(R?) and has a compact support independent of ¢ when ¢ lies in
a compact set of R, we deduce from (2.13) and (2.9) that

vier 4 ([ exeondiw) = [ o) 9. (px0.0) dito) o

or equivalently,

VieR, / (X (t,0)) di(z) = / o) dji(z).

Rd
On the other hand, we have the following result.

Lemma 2.3 ([8], Lemma 3.5) For any smooth function ¢ € C{°(Yy) defined in Yy, there
exists a smooth function p € C°(RY) with compact support in R? such that 1 = vy

Hence, using relation (2.11) and definition (2.8) we get that for any ¢ € Cy°(Y),

veeR, [ w(X(ty)dut) - / oo(X (8, )) du(y) = / o0 X(t, a(y) duly) =

= [ exandit) = [ e@idita) = [ awaut) = [ o) du),

which shows that p is invariant for the low X. We have just proved the equivalence between
the invariance of u for the flow and the distributional equation (2.9) satisfied by /.

Proof of (ii) < (iii). The equivalence between (2.9), or equivalently (2.12), and (2.10) is a
straightforward consequence of the following relation (which is deduced from [b- Vgl; = b- Vi,
and (2.8))

Ve e CURY. [ ba) Viola) o) = [ bu)- Vi) dulo),

Yy
combined with Lemma 2.3. This concludes the proof of Proposition 2.2. 0
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Remark 2.2 Fquation (2.10) can be considered as the divergence free of the vector-valued
measure b in the torus Yy, while equation (2.9) is exactly the divergence free of the vector-
valued measure fib in the space R?. Equation (2.10) is also equivalent to

V(Vi) € CUYa)", /@b@o-vww>mww::(/;b@>mww)-( mthyww), (214

since

Vi € C'I?(Yd)d & (x = Y(r) —x - y Vi(y) dy> € C'ul(Yd).

So, condition (2.14) may be regarded as a divergence-curl result involving the divergence free
vector field p b with the invariant probability measure p and the gradient field Vi with Lebesque’s
measure.

2.3 The case of a nonlinear current field

As a direct consequence of Proposition 2.1 and Proposition 2.2, the following result gives the
asymptotics of the ODE’s flow (1.14) when b is a (non necessarily divergence free) nonlinear
current field.

Proposition 2.4 Let v € C?(R?) be a function such that
Vo e Cf(RY? and # ({z € Yy: Vu(z) = Vu}) < oo, (2.15)

and let F(z,€) € Cul(Yd; CHRY))? be a vector-valued function satisfying

Vo eYy F(x,Vv)=0g
{vmamemeWR%5¢m(ﬂao—ﬂ%my@—m>o (210
Then, the vector field b € CL(Ya)? defined by
b(x) == F(z, Vo(z)) forz € Ya, (2.17)
satisfies
Cp = {Opa}. (2.18)

Proof of Proposition 2.4. Let p be an invariant probability measure on Y, for the flow X
associated with the vector field b (2.17). By virtue of the divergence-curl result (2.10) we have

/ b(x) - Vou(z)du(x) = / F(z,Vu(z)) - Vou(z)du(z) = (/ F(z,Vu(z)) d,u(a:)) - Vo.
Yy Ya Yy
This combined with F(-, Vv) = Og« and the monotonicity (2.16) yields

/Y (F(z, Vo(z)) — F(z,Vv)) - (Vu(z) — Vo) du(z) =0, (2.19)

[ J/
-~

>0

which implies that

(F(z,Vo(z)) — F(z,Vv)) - (Vo(z) = Vo) =0 du(z)-a.e.
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Hence, since F(z,-) is strictly monotonic in the sense of (2.16), we deduce that
Vou(z) = Vv  du(r)-a.e.

Therefore, due to (2.15) the measure p is a convex combination of the Dirac masses

= Z Cy Oy with ¢, >0 and Z ¢, = 1.
ze{Vv=Vv} ze{Vv=Vv}

Finally, this combined with F(-, Vv) = Oga implies that
/ b(y) du(y) = Z ¢ F(z,Vu(x)) = Z cx F(2,Vv) = Oga,
Ya ze{Vo=Vuv} ze{Vo=Vv}

which leads us to (2.18). O

Exemple 2.1 A class of functions F satisfying (2.16) is given by

F(x,8) =Vef(z,§)  for (x,€) € Yy x R?,

where [ € Cﬁl(Yd; C*(RY)), and for any x € Yy, the function f(z,-) is strictly convex in R with
Vv as unique minimizer.
For example, the vector field b is the linear current field

b(z) = A(x)Vu(z) = Vef(z, Vou(z)) foraz ey,

when f is the non negative quadratic functional defined by

[2.6) = S A)E-E for (r,€) € Yo x R,

for any non negative symmetric matriz-valued function A € C’;(Yd)dXd.

Note that in this case, the finite set condition of (2.15) and the strict convexity of f can be
replaced by the unique condition Vv = Oga, or equivalently, v is Z3-periodic. Indeed, let i € %,
be an invariant probability measure for the flow X. Similarly as (2.19), by the divergence-curl
relation (2.10) we have

N /
-~

/Y A(y)Voly) - Voly) duly) = /Y b(y) - Voly) duy) = 0,

>0

which implies that AVv-Vv =0 p-a.e. inYy. However, since the matriz-valued A is symmetric
and non negative, from the Cauchy-Schwarz inequality we deduce that AVv = 0 p-a.e. in Yy,
and thus

[ bt = [ A0)To(0) duty) = 0.

Yy

Therefore, we obtain the desired equality (2.18).
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3 Some new results involving the singleton condition

3.1 A perturbation result

The main result of the paper is the following.

Theorem 3.1 Letbh € C'ﬂl (Yy)? be such that b = p ®, where p is a non negative not null function
in C}(Yy) and @ is a non vanishing vector field in C}(Yy)®. Assume that there exists a sequence
(Pn)nen € Cf (Ya)" such that

(i) for anymn € N, p < p, >0 in Yy, and (pn)nen converges uniformly to p on Yy,
(i) for anyn € N, Cy, = {(,} for some ¢, € R%, where b, := p, .
Then, the sequence (C,)nen converges to some ¢ € RY, and we have the following properties:
o [f p is positive in Yy, then C, = {C}. If in addition d = 2, then { # Oge.
e [f p vanishes in Yy, then C, = [Ora, (]. Moreover, we have {Oga,(} C Ay.

Remark 3.1 In dimension two and in the second alternative of Theorem 3.1, it is not surpris-
ing to obtain for the rotation set Cy a closed line segment with one end at Ogz. Indeed, Franks
and Misiurewicz [17, Theorem 1.2] proved that the rotation set of any two-dimensional contin-
wous flow is always a closed line segment of a line passing through Oz or a unit set. Moreover,
this segment has one end at Ogz2, when it has an irrational slope. However, our perturbation
result provides such a closed line segment in any dimension and for any non zero slope.

The proof of Theorem 3.1 is based on the following lemma.

Lemma 3.1 Let b = p® be a vector field satisfying the assumptions of Theorem 3.1. Also
assume that there exists an invariant probability measure u € %, for the flow associated with b
such that

/Y p(x)du(x) > 0. (3.1)

Then, the sequence (Cp)nen converges to some ¢ € RE. Moreover, for any u € .9, satisfying
(3.1), the two following properties hold true:

/ b(z)du(x) = B¢ where [, = / du(x) € (0,1], (3.2)
Yq {p>0}
tlgrolo XO;’ ?) =( for p-a.e. x € {p>0}. (3.3)

Proof of Lemma 3.1. Let p € %, be an invariant probability measure satisfying (3.1). For any
n € N, define the probability measure u,, on Y; by

dpin,(x) == C, Pz) du(x), where C, = (/Y ;(EJ;) d,u(y)) € (0,00) (3.4)

due to p, > 0 and (3.1). Since pu € %, it follows from equality (2.10) that

VoG, [ pule) ) V(o) din(o) = Co [ pla) Ble) - Tila) duta) =0,

Yy

13



which implies that p, € ., by the equivalence (4)-(iii) of Proposition 2.2. Then, from equality
Cp, = {¢u} we deduce that

Cn _/Y bn () dpn () = Cn/ pn(z) @(2) pl) du(z) = Cn/ b(z) du(z).

Yy Ian(‘r) Yy

Moreover, by Lebesgue’s theorem and (3.1) we get that

-1
lim C, =¢, = (/ d,u(x)) € [1,00).
n—oo {P>0}

Therefore, the sequence ((,)neny converges to some vector ¢ € R? which is independent of p.
Moreover, equality (3.2) holds with 5, :=1/¢, € (0, 1].

Now, let us prove (3.3). By Birkhoff’s theorem there exists g : Y; — R? a measurable
function which by (1.8) and (1.10) satisfies

X
lim —(t’ 7)

t— 00 t

=g(x) € A, CC, for p-ae. x €Yy

(Also see Proposition A.1 of the Appendix to get that g(x) € Cp). Hence, by virtue of (3.2) we

have (s
lim (T’x) = A(x)( for pra.e. x € Yy, (3.5)

t— o0

where A : Yy — [0,1] is a measurable function. Note that, if ( = Oga, then asymptotics (3.5)
clearly implies (3.3). Now, assume that ¢ # Ogrs. Applying successively convergence (3.5),
Lebesgue’s theorem, Fubini’s theorem and the invariance of the measure pu, we get that

([ swa)e= g [ Do =i [ (5 [ ox0)as)

— thiﬂo% Ot (/Yd b(X(s,x))d,u(x)) ds = /Yd b(x) du(z),

or equivalently,

/{ ) = ( /{ ) o)) ¢

since p(z) = 0 implies both that b(x) = Oga and A(z) = 0 due to X(R,z) = {z}. Moreover,
equalities (3.2) give

[ dadu@) = [ ) duta) = g,

Yy {p>0}
which due to ¢ # Ors implies that

/{ R /{ AW (),

or equivalently,
/ (1= A(z)) dp(z) = 0.
{p>0}

Since the function A takes values in [0, 1], the former equality implies that A =1 for p-a.e. in
{p > 0}, which combined with (3.5) yields the desired limit (3.3). O
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Proof of Theorem 3.1. The proof is split according to the two cases Cp # {Oga} and C, = {Oga}.
Case Cp, # {Ora}. First of all, note that if u € %, satisfies

/Y b(x) dp(x) # Oga, (3.6)
then, we have
tLp@wmw%=Y”§3me>>a (3.7)

namely (3.1) holds true.
By Lemma 3.1 the sequence ({,)nen converges to some ¢ € RY.

On the one hand, if p is positive in Yy, then for any p € .#, satisfying (3.6) and thus (3.7),
we have 5, =1 in (3.2) so that

¢= [ bx)du(z) # Opa.
Yy
The convexity of C, thus implies that C, = {(}.
On the other hand, if p vanishes in Yy, i.e. if there exists a € Y, such that p(a) = 0, then
Opa € Cp, since the Dirac distribution ¢, at the point « is invariant for the flow associated
with b. Moreover, take u € ., satisfying (3.6) (recall that C, # {Ora}). Then, by (3.7) we have

n({p>0}) > 0.

Hence, by (3.3) and (1.10) we get that ¢ € A, C Cp. Therefore, from (3.2) and from the
convexity of C, we deduce that C, = [Oga, (] with ¢ # Oga.

Case C, = {Oga}. Note that the function p may either be positive or vanish in Y, (except in
dimension d = 2, see the end of the proof), and that we only have to prove that the sequence
(Cn)nen converges to Oga. To this end consider a subsequence ((,, )xen Which converges to some

~

¢ € R% Up to extract a new subsequence, we may assume that the sequence (pi,, )ren converges
weakly * to some probability measure i on Y. Passing to the limit in the divergence-curl
relation (2.10) satisfied by p,, € S, :

Ve € CLY. [ Bu(o): Viola) din, () =0 (33)

and using the uniform convergence of b, to b combined with the fact that u, is a probability
measure for any n € N, we get that

VoGl [ ) Viole) dite) = (3.9)
Yy
so that i € .%, again by the equivalence (i)-(¢i7) of Proposition 2.2. Similarly, we have
¢ = lim ¢,, = lim b, () dpin, (x) = / b(x) dji(x) = Oga,
oo Y,

where the last equality follows from ji € .%, and C, = {Oga}. Therefore, the whole sequence
(Cn)nen converges to Oa.
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Finally, let us focus on the specific two-dimensional case when p > 0 in Y; and C, = {(}.
Assume by contradiction that ( = Ogz. Hence, by the second equality of (1.9) there exists an
ergodic invariant probability measure p € &, for the flow X associated with b such that

/Y ) d(x) = O

Now, consider the homeomorphism /' on Y5 homothopic to identity whose associated lift in R?
is given by F':= X (1,+), i.e. Fom = mo F where 7 is the canonical projection from R? on Y.
Then, by Fubini’s theorem and by the invariance of ;1 we have

/Y2 (ﬁ(x) — ) dp(z) = /Y2 (X(1,2) — z) du(z) = /5/2 (/01 b(X(t,x))dt> du(z)

= /01 (/Y2 b(X(t,a:))du(a:)) = /Y2 b(z) dp(x) = Oge,

namely the mean translation of the lift F with respect to the ergodic invariant probability
measure f is Ogz. Therefore, by virtue of [16, Theorem 3.5] the homeomorphism F' has a fixed
point xy in Ys, i.e. there exists k € Z? such that

X(l,l’g) =T + k),
which implies that

lim X(nv :EO)
n—oo n

=k.

However, since C, is the unit set {Og2}, we deduce from (2.1) that & = Og2. Hence, we get
that X (1,x) = o, i.e. the trajectory X (-, z) is periodic in R?. Therefore, by the preliminary
remark to the proof of [31, Theorem 3.1] this periodicity implies that the vector field b = p ®
does vanish in R?, a contradiction. We have just proved that ¢ # Oge.

The proof of Theorem 3.1 is now complete. 0

Remark 3.2 In the setting of Theorem 3.1, Example 4.2 below provides a two-dimensional
case of vector field b = p® with a vanishing function p, in which Cy s a closed line segment
of R? not reduced to a singleton, and thus #A, > 2.

Remark 3.3 Theorem 3.1 cannot be extended to the more general case where the direction ®
of b, also depends on n, as shown in Example 4.1 below. More precisely, the independence
of ® with respect to n is crucial for the proof of Theorem 3.1 to build in (3.4) the invariant
probability measure p,, € F,, from a given invariant probability measure p € %.

Corollary 3.1 Let ® be a non vanishing vector field in Cﬁl(Yd)d. Then, we have for the uniform
convergence topology in Cé)(Yd),
{peCi(Ya): p>0and #Cho =1} ={pe C/(Ya) : p> 0 and # A, =1}

(3.10)
is a closed subset of {p € Ci(Ya) : p> 0}.

Proof of Corollary 3.1. The equality of the sets in (3.10) follows directly from (1.10). More-
over, the fact that the first set is closed is a straightforward consequence of the first case of
Theorem 3.1. Il
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Remark 3.4 Ezample 1 of [20] provides a two-dimensional case where the vector field b* = ®*,
ie. p* =1, is such that #A¢« = 2. Therefore, by (3.10) there exists an open ball B* centered
at p* =1 such that #A,o+ > 1 for any p € B*.

On the contrary, the assertion (3.10) of Corollary 3.1 does not hold in general when condition
p > 0 is enlarged to condition p > 0. Indeed, in the setting of Theorem 3.1 the two-dimensional
Example 4.2 provides a sequence of fields (b, = pp ®)n>1 which converges uniformly in Yy to
some field b = p®, so that Cp is not reduced to a singleton while Cy, is a singleton for any
n > 1. Therefore, in this case the set

{’I"EC;(Yd)ZTZO and#er):l}:{rGCﬁl(Yd):rzO and#Am:l}

is not closed in {r € C}(Yy) : v > 0}.

3.2 Applications to the asymptotics of the ODE’s flow

The first result provides the asymptotics of the flow X (-, z) at any point  whose orbit does
not meet the set {p =0} in Yj.

Corollary 3.2 Assume that the conditions of Theorem 3.1 hold with a vanishing function p.
Denote by m the canonical projection from R? on the torus Yy, and define for x € R?,

Yy

F,=7n(X(R,z)) ", (3.11)
i.e. the closure in Yy of the projection on Yy of the orbit X (R, z) of x. Then, we have

X(t
VeeY, F,nN{p=0}=0 = tlim X(t,z)

— 00

= (. (3.12)

Proof of Corollary 3.2. Let x € Yy be such that F, N {p = 0} = @. First, by virtue of
Proposition A.1 with g = b and x,, = z, any limit point derived from the asymptotics X (¢, )/t
as t — oo, is of the form

/ b(y)du(y) for some u € %,
Yy

Let us prove that the support of such an invariant probability measure pu is contained in the
closed set F,. By Lemma A.2 y is a limit point for the weak-x topology of some sequence
(Un)en In A, (Yq) given by

1 [m™
f@) dval) = - [ FX () ds for £ € CHY)
Yy n J0
Let f € C{(Yy) which is zero in F,. Then, since 7(X(s,z)) € F, for any s € R, we have
f(y) dvn(y) = 0.
Yy
Passing to the limit in the previous equality we get that for any f € C{(Yy) which is zero in F,,

Yf@mezQ

which means that the support of u is contained in F,.
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Now, let a be a limit point of X (¢,x)/t as t — oo. Then, we have
o= [ Wy)duty) with supp(n) C £ € {p> 0}
Ya

Clearly, we have (3.1) and 5, = 1 in (3.2), which implies that

/Y b(y) duly) = C.

Therefore, any limit point a is equal to the constant vector ¢ obtained in Theorem 3.1, which
implies that
X(t
lim 202 _ ¢
t— 00 t
The desired implication (3.12) is thus established. O

The following result provides some conditions on the direction ® of the vector field b = p P,
which allows us to specify the result of Theorem 3.1 when the function p vanishes.

Corollary 3.3 Consider a vector field b= p® € C}(Y3)?, a sequence (pn)nen € C} (Yg)Y and
b, = pn ® satisfying the assumptions of Theorem 3.1. Also assume that there exists a positive
function o € C’ﬁl(Yd) such that o ® is divergence free in RY, and that p vanishes in Yy.

We have the following alternative involving the harmonic mean p/o of p/o:

) pr/_a =0, then the flow X associated with b satisfies the asymptotics

X
vrevy, lm 2% g, (3.13)
t— oo
e Ifp/o >0, then we have
Co= 0w ¢) with Ci=p/o | @(w)aty)dy. (3.14)
Ya

Proof of Corollary 3.3. Since o ® is divergence free in R? and o is Z%periodic, by virtue of
Proposition 2.2 the probability measure on Yy: o(z)/d dz, where @ > 0 is the arithmetic mean
of o, is an invariant probability measure for the flow associated with the vector field ®, i.e.
o(z)/ddr € Ip.

For every n € N, define the probability measure pu, on Y, by

oo v o ([ o) o

Due to o(x)/d dx € S4 we have by Proposition 2.2

dpiy,(x) :=

VGV, [ bula) Vi@ din(e) = Co [ @) Vi) ola) dz =0

Yy

which again by Proposition 2.2 implies that wu, € %, . This combined with the singleton
assumption C,, = {(,} yields

Cn:/y by () dpn () :C’n/y O (z) o(z) dx. (3.16)
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o If p/o =0, then by Fatou’s lemma we get that

:/Yd%dygliggf(/yﬁl;%))dy),

which implies that the sequence (C},),en tends to 0. Hence, by (3.16) the sequence ((, )nen
converges to ( = Oga. Therefore, by the second case of Theorem 3.1 we have C, = {Oga},
or equivalently by (2.1), the null asymptotics (3.13) holds.

o If p/_a > (, then from the convergence of p,, to p, the inequality p, > p and Lebesgue’s
theorem we deduce that

: o) oo oW, 1
s va Pn(Y) dy_/yd o) ” p/_0< ’

which by (3.15), (3.16) implies that
¢ = lim Gu=pJo [ Bw)oly)dy.
n—oo Yd
Therefore, again by the second case of Theorem 3.1 we obtain the set C, (3.14).
O

Remark 3.5 In the two-dimensional case of Corollary 3.3, if p is in Ot?(Yé) and vanishes at
some point xo € Yo, then the harmonic mean p/o is 0. Indeed, since p is non negative, o is a
critical point of p. Hence, we get that for any x close to x,

1 o(x

= _V? T T —Zg) L —T OI’—ZE2 an us ) ¢
pla) = 5 V2plao) (v =) (x = a0) +olle o) amd thus T5 >

which implies that o/p ¢ L'(Y3) and p/o = 0. Therefore, the null asymptotics (3.13) holds.
Otherwise, if o

#{z € Ys: p(x) =0} € (0,00),

and if for any xo € Ya with p(xg) = 0 we have for any x close to xy,
p(x) > co |z — xo|™®,  for some ag € (1/2,1) and ¢q > 0,

(note that the former condition remains compatible with p € C}(Y2)), then p/o > 0. Indeed,
we are led by a translation to xq = Ogr2, and passing to polar coordinates we deduce that for any

ro € (Oa 1/2);
dx " dr
s =27 a1 < Q.
{ze€Ya:|z|<ro} |ZL’| 0 o T

Therefore, we get the full closed line segment (3.14) for the limit set C,.

In Example 4.2 below we will provide a two-dimensional example of such an enlarged limit set
Cp obtained from a sequence of singleton sets (Cp, )nen where b, = p, ® has a fized direction ®.
These results also apply to Corollary 3.4 replacing 1/o by a.

The next result uses both Theorem 3.1, Corollary 3.3 and the two-dimensional ergodic
approach of [31].
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Corollary 3.4 Let b be a two-dimensional vector field in C’ﬁl (Y5)? such that b= p®, with p a
non zero non negative function in C}(Y3), and

®=aR,Vu inYs, (3.17)

where a is a positive function in C'ﬁl(YQ), Vu is a non vanishing gradient field in Oﬁl()/g)2 and
R, is the — /2 rotation matriz of R**%. Also assume that

Vi € 7%\ {Op:}, ( Vu(y) dy> -k # 0. (3.18)

Y
We have the following cases:

o [f p is positive in Yy, then the flow X associated with b satisfies the asymptotics
X(t,x)

Vo eYs, tlim = ,0/ R, Vu(y) dy. (3.19)
— 00 — Jy,

o [f p vanishes in Yy and ap = 0, then the flow X satisfies the null asymptotics

X(t,z)

VreY, lim = Oge. (3.20)
t— o0

e [f p vanishes in Yy and ap > 0, then the set Cy is given by

Cp = [Oge,¢]  with (:= %/ R, Vu(y) dy # Oge. (3.21)
Y

Proof of Corollary 3.4. Consider the sequence (0,),en defined by

C, dy )1
on, := — where C, =ap, = / —_— , 3.22
apPn n ( Ya (apn)(y) ( )

where (pn)nen is a sequence in C}(Y3)" satisfying the condition (i) of Theorem 3.1
First, note that by definition (3.22) the vector field b, := p, ¢ satisfies

fo N — % d=0C,R, Vu (3.23)

(recall that C,, is a positive constant) so that b, is orthogonal to Vu. Hence, the function u is
invariant by the flow X,, associated with b, i.e.

VeeY, VteR, u(X,(t,z))=u(x). (3.24)

This combined with the irrationality (or ergodicity) condition (3.18) implies that the flow X,
has no periodic solution in Y5 according to (1.18). Otherwise, there exists x € Y5, T' > 0, and
k € Z? such that X,,(T,z) = z + k, hence it follows that

u(z) = uw(X,(T,x)) = u(z + K). (3.25)

Moreover, since Vu is Z2-periodic, the function

z — u(z) — ( Vu(y) dy) -z is Z*-periodic.

Yo
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This combined with (3.25) yields

( | Vuly) dy> k=0,

Hence, from the incommensurability condition of (3.18) we deduce that x = Ogz2. The flow
X,(+,z) is thus T-periodic, namely X, (R,z) is a closed orbit. However, by virtue of the
preliminary remark of the proof of [31, Theorem 3.1] this leads us to a contradiction since
b, = pn ® is non vanishing. Therefore, the flow X,, associated with b,, has no periodic solution
in Y5. Then, using the second step of the proof of |31, Theorem 3.1] we get the existence of a
vector ¢, € R? such that

X, (.
vieY, lim 2nlb® o (3.26)
t— o0 t

or equivalently by (2.1), C,, = {(,}, namely the condition (ii) of Theorem 3.1 holds. Moreover,
due to (3.23) 0, b, is divergence free in R?, or equivalently, in the torus sense (2.10)

Vi € Cf (Yy), /Y bp(z) - Vip(x) 0 () dz = 0.

Hence, by virtue of Proposition 2.2 ¢,(z)dx is an invariant probability measure for the flow
X, which combined with (3.23) implies that

/Y 0u(y) baly) dy = C, / R.Vuly)dy € Cy, = {C.}. (3.27)

Yo

Let us conclude:

e If pis positive in Y, then from equality (3.27) and the uniform convergence of p,, to p > 0
we deduce that

lim (, =¢:=C | R,Vu(y)dy, where C := lim C, = ap.
n—oo I

Y2 n—oo

Therefore, by the first result of Theorem 3.1 we get that C, = {(}, or equivalently by (2.1),
asymptotics (3.19) is satisfied.

e Otherwise, p vanishes in Y. Moreover, by (3.17) the vector field a='® is clearly divergence

free in R%. Therefore, by virtue of Corollary 3.3 with ¢ = a™!, we deduce the null

asymptotics (3.20) if ap = 0, and the set C, (3.21) if ap > 0. The fact that ¢ # Oge in
(3.21) follows immediately from the ergodic condition (3.18).

The proof is now complete. O

Remark 3.6 The condition (3.17) on the direction ® of the vector field b = p® may seem to
be quite restrictive at the first glance. Actually, we can deduce (3.17) from the existence of a
function v € C*(Ys) and a constant ¢ > 0 satisfying the inequality

®-Vu>c inR% (3.28)

This inequality means that the equipotential {v = 0} (or any equipotential of v) is transverse to
each orbit Y (R, z), v € R?, of the flow Y associated with ®. In other words, the equipotential
{v =0} can be regarded as a Siegel’s curve [32, Lemma 3] for the flow Y in R? rather than in
the torus Ys. Assuming that b is non vanishing and that the flow X associated with b has no
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periodic trajectory in Yy according to (1.18) (which is an ergodic type condition) and using a
Siegel’s curve in the torus, Peirone [71, Theorem 3.1] has proved that the asymptotics of the
flow X (-, x) does exist for any x € Ys and is independent of x, or equivalently by (2.1), that C,
is a singleton. Therefore, condition (3.17) and the ergodic condition (3.18) play the same role
for the vector field ® as Peirone’s conditions for the vector field b through a similar Siegel’s
curve approach. However, working with the non vanishing vector field ® rather than b allows us
to obtain some new asymptotics when the vector field b = p ® does vanish with the non negative
function p.

Now, let us check that condition (3.28) implies condition (3.17) under some (minor) ad-
ditional assumptions. To this end, we will follow the same procedure as [12, Theorem 2.15]
derived for a gradient field. Since we have for any x € Ys,

VteR, %(U(Y(t,x))) = (®-Vou)(Y(t,x)) >c >0,

the mapping t — v(Y (t,x)) is a C'-diffeomorphism on R, hence there exists a unique 7(x) € R
such that

v(Y(r(z),z)) =0,
namely the trajectory Y (-, x) reaches the equipotential {v = 0} at time 7(x). The uniqueness
of T combined with the semi-group property of the flow Y easily implies that

Ve eYy ViteR, 7(Y(tz)) =71(x)—t. (3.29)

Moreover, by the implicit functions theorem and the C*'(R x R?) reqularity of the flow Y, the
function T belongs to C*(R?). Then, define the positive function oo € C*(R?) by

7(x)
oo(z) := exp (/0 (div®)(Y(s,x)) ds) for x € R2. (3.30)

From now on, assume that div (®) € C'(R?). Then, the function oo belongs to C'(R?). By
using (3.29) and the semi-group property of the flow Y, then making the change of variable
r=s+t, we get that

(z)
Ve eYy VteR, oo(Y(t,x)) =exp (/t (div @) (Y (r, z)) dr) :

Neaxt, taking the derivative of the previous equality at t = 0, we obtain that
Voo - ® + oo div (®) = div (69 ®) =0 in R?,

or equivalently, there exists a function uy € C*(R?) such that
1
(I) = — RJ_VUO mn R2.
00

This is nearly the desired condition (3.17) except that the function oy is not necessarily 7>-
periodic. However, also assuming that the function og is bounded from below and above by
positive constants, the averaging procedure of [12, Theorem 2.17] allows us to build a positive
periodic function o € L;?O(Yg) satisfying

div(c ®) =0 in R?

which is equivalent to condition (3.17) with a := 1/o. But the regularity of o is not ensured.
Finally, to get the regularity o € Cﬁl(}/g), it 1s enough to assume in addition that oy and Vo
are uniformly continuous in R? (see [12, Remark 2.19]).
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In contrast with Corollary 3.4 the following result uses both Theorem 3.1 and the non-ergodic

approach of [9] in any dimension, and provides an alternative approach to the two-dimensional
Corollary 3.4.

Corollary 3.5 Ford > 2 and n € N*, let U,, = (u},ua, ..., uq) be a sequence of vector fields
in C*(Yq)? with VU, € C}(Yg)™?, and let a be a positive function in C(Yy) such that

det(VU,) >0 inYy

1
P = m converges uniformly in Yy to some p € C’;(Yd) (3.31)

Then, the sequence of vector fields (b, )nen defined by

a R Vus ifd=2
by, = pn®, where & := (3.32)
a(Vug X -+ x Vuy) ifd>2

converges uniformly in Yy to the vector field b = p ®. Moreover, we have:

o [f p is positive in Yy, then the flow X associated with b satisfies the asymptotics

a R, Vu d ifd=2
X(t.2) ap | 2(y) dy f

VoY, |lim S = (= (3.33)
ap/ (Vug X -+« x Vug)(y)dy if d > 2,
Yy

where ap 1s the harmonic mean of p.

o If p vanishes in Yy and ap = 0, then the flow X associated with b satisfies the asymptotics

X(t
VeeYy lim t,2) = Opa. (3.34)
t— oo
o [f p vanishes in Yq and ap > 0, then we get the set
%/ R Vuy(y) dy # Oge if d =2
Cy = [Oga, (] with = e (3.35)
ap [ (Vuy x -+ X Vug)(y)dy # Opa  if d > 2.
Yy
Proof of Corollary 3.5. We have
apn, Vul - Ry Vugy ifd=2
b, - Vuy = = ap, det(VU,) =1 inYy, (3.36)
ap, Vut - (Vug X -+ x Vuy) ifd>2
and
1 b R Vus ifd=2
apnn_ Viug X -+ - X Vuy ifd>2
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is divergence free in R?. Hence, from [9, Corollary 4.1] we deduce that C;, is the singleton {¢,}
with

/ (apyn) ' (y) buly) dy =apn | RiVus(y)dy if d =2
Yy Yo

Cn = = (3.37)
/ (apn) ™" (y) dy = %/ (Vg X -+ X Vug)(y)dy if d > 2,
Yy Yy

where ap, is the harmonic mean of ap;,.
Let us conclude:

e If p > 0 in Yy, then the sequence (ap,)~! converges uniformly to (ap)~! in Y;. Therefore,
by the first case of Theorem 3.1 combined with (3.37) we get that C, = {(}, or equivalently
by (2.1), asymptotics (3.33) holds.

e Otherwise, p vanishes in Y. Moreover, by (3.32) the vector field a~'® is clearly divergence
free in R2. Therefore, by virtue of Corollary 3.3 with ¢ = a™!, we deduce the null
asymptotics (3.34) if ap = 0, and the set C;, (3.35) if ap > 0. It remains to prove that

¢ # Oga in (3.35). By the definition of U, and (3.31) we have

/ Vul(y) - RiVus(y)dy >0 ifd=2
det(VU)(y)dy =4~ *
Y2 >0 Vul(y) - (Vug X -+« X Vug)(y) >0 if d > 2.

Yq

Hence, from the quasi-affinity of the determinant (see, e.g., [18, Section 4.3.2]), namely:

det ( / VU, (1) dy) _ / det (YU, )(y) dy > 0,
Y2 Y2
we deduce that

vup - (/ RNW) = [ Vu! R, Vuy >0 if d=2
YQ Y2

Yo
Vu’f( Vugx--‘x/ Vud>: Vuy - (Vug x -+ x Vug) >0 if d> 2.
Yd Yd Y(i Yd

Therefore, again using the quasi-affinity of the determinant (multiplying the second equal-
ity by any constant vector of R? to get a determinant) we get that

Yo

/ (Vug X -+ X Vug)(y) dy :/ Vus(y)dy x -+ x | Vug(y)dy #0 if d > 2,
Yd Yd

Yy
which implies that ¢ # Oga in (3.35).
O

Remark 3.7 In Corollary 3.4 and in the two-dimensional case of Corollary 3.5, the vector
field b, has the same form b, = p,a R Vu. In Corollary 3.4 the function p, is arbitrary,
while Vu satisfies the ergodic condition (3.18). On the contrary, in the two dimensional case
of Corollary 3.5 p, does depend on the functions a and Vu by (3.31), while Vu is arbitrary.
Therefore, these results provide two quite different approaches on the asymptotics of the flow:
an ergodic one using [71] and a non-ergodic one using [9].
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4 Examples

The following counter-example shows that Theorem 3.1 does not extend to a vector-valued
perturbation.

Exemple 4.1 Consider the vector fields b and b, defined by
b(x) =a(x)er and by(x) = ay(z) (€1 + Yme2), forz €Yy and n € N,

where a is a non negative function in C'ﬁl(Yg), an = a+1/n, and (V,)nen 1S a positive sequence
in R\ Q which converges to 0. In this case, the flows associated with the vector fields b and b,
can be computed explicitly.

On the one hand, by the ergodic case of [7/, Section 3.1] with the irrational rotation num-
ber v, the flow X, associated with the vector field b, satisfies the asymptotics

Xn(t,x)

VreY, lim = a, (e1 + Yn €2),
t—o0 -

where a, is the harmonic mean of a,, or equivalently by (2.1),

Cbn = {Cn} with Cn = a_n(el + M 62)- (41)

On the other hand, by the non-ergodic case of [3/, Section 3.1] with the rational rotation
number 0 and its extension when a vanishes in Yo, the flow X associated with the vector field
b satisfies the asymptotics

VreY, lim

t—o00

X(t,z) { a(-e; +x)ey if a(-e; + x) is positive in Ys

0 if a(-e1 + x) vanishes in Ys,

where a(- ey + x) is the harmonic mean defined by

a(-e1 +z) = (/Y m)_ for xz € Ys,

or equivalently, the set A, (1.8) is given by
A, = {a(-61+:v)61 cx € YQ}
Moreover, the function (x — a(-e; —l—x)) 15 continuous on the compact set Y. It is clear at

any point x € Ya such that a(-e; 4 x) is positive. Otherwise, if a(-e1 + x) € Cf (Y1) vanishes
in Y1, by Fatou’s lemma we get that for any sequence (x,)nen converging to x,

1 o 1 . 1
0o=————<lminf [ ——— | = lim | ——— | = .
a(-ey; + ) n—oo \ a(-e; + ) n—oo \ a(-e; + x,)

Hence, the set Ay, is actually a closed line segment of R?, which by (1.10) implies that
Cp = conv(Ay) = A, = {a(' er+x)ex € Yg} ) (4.2)

In particular, when a vanishes in Yy, we get that

€Yo

Cp = [Oge, ¢]  with (:= (max a(-ep + IB)) er.

25



Therefore, taking into account (4.1), contrary to the second case of Theorem 3.1 we may have

ae; = lim ¢, #( = (max a(-e; —|—3:)> e;.
n—oo €Yy —
For example, take
a(x) := sin®(mxy) +sin’(7as)  for v = (w1, 72) € R

Then, it follows that

1 ds dx,
0 2 2 dry > 7
a Jy, \Jy, sin®(mzq) + sin®(7z) v, sin®(ray) + 1

dt
(for any 1 € Y1 and$2:%> = min(/ — )
v, sin®(

zE€Y) Tt + mxy) + sin®(7z2)

1
= min| —— |,
z€Ys (a(-el —|—x)>

a <max a(-e; + x).
TEYy —— "

which implies that

Therefore, Theorem 3.1 does not extend in general to the case where the direction ® of the
vector field b, = p, ® also depends on n.

Finally, note that the inclusion {Ogz,(} C Ay of the second case of Theorem 3.1 is not in
general an equality, since in the particular case (4.2) A, is the closed line segment [Ogz, (].

The second example shows that the singleton condition is not in general asymptotically
preserved under the assumptions of Theorem 3.1.

Exemple 4.2 Let Vu € C/(Y3)* be satisfying the ergodic condition (3.18), let (pn)nen be the
sequence of positive functions in CJ(Yz) defined by

pn(x) == (sin®(ma1) + sin®(wza) + 1/n)"  forx € Ys, with o € (1/2,1).

and let (by)nen be the sequence of vector fields defined by b, := p, R Vu. Hence, by the
asymptotics (3.19) of Corollary 3.4 the rotation set Cp,, is a unit set.

On the other hand, since the function (t — t*) is uniformly continuous in [0,00), the
sequence (pp)nen converges uniformly in Yy to the function

p(x) == (sin®(may) + sin®(rz0))"  for x = (21, 22) € Y,
which belongs to C}(Ya) due to o > 1/2, and vanishes at the sole point (0,0) in the torus Ys.
Moreover, we have for any x close to (0,0),
¢t 1 c
w2 = pla) = |z
so that p > 0 due to o < 1 (see Remark 3.5). Therefore, by the asymptotics (3.21) of Corol-
lary 3.4 we obtain that

for some ¢ > 1,

1
dx

C, = [Oge, th (= _ Ry Vuly) dy + Ogo.

p = [Og2,¢]  with ¢ (/Y2 )/Yd 1 Vu(y) dy # Og

(sin®(mz1) + sin®(7,))

Note that, if a > 1, then p = 0. Therefore, by the asymptotics (3.20) of Corollary 3.4 we get
that Cb = {ORQ}-
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The third example illustrates Corollary 3.5.

Exemple 4.3 Let U, = (u?, uy,...,ug) € C*(Yy)4, d > 2 and n > 1, be such that VU, is
Z2-periodic, the functions us, ..., uq only depend on the variables ¥’ = (zo,...,24),

u(z) = /Owl fn(ctl,tl") and A(z') = det (B;Z (95/)}

where (fn)nen @S a positive sequence in C'jjl(Yd)N which converges uniformly to f < f, in Yy.
Ezxpanding the determinant with respect to its first column we have

>>O forx € Yy,

2<i,j<d

VeeYy det(VU,)(x)= ?n((a;)) >0 and p,(z) = m — p(z) == f(ac/) < pn(x)

uniformly in Yy, so that condition (3.31) is fulfilled with a = 1. Define the vector field b, in
C;(Yd)d by (3.32). Therefore, the sequence (b,)nen converges uniformly in Yy to the function b
given by

f(z)

) A@)
"= )
A(x")

Moreover, due to the 1-periodicity of V. uf with respect to the variable x1, we have

! 1
wewn ['v () ano
0 fn(twr/)

which implies the existence of a positive constant ¢, such that

R Vuy(x) ifd=2
forx €Yy,

(Vug x -+ X Vug)(x) if d> 2,

V' e R /1 i _ Cn- (4.3)
’ 0 fn(t,iL'/)

Hence, from inequality f < f, and Fatou’s lemma we deduce that

1 1
Va' e R limsupe, < / L/ < liminf/ L} = liminf ¢,
0 f(t>$) 0 fn(t7m)

n—oo n—oo n—oo

which implies that

boodt

Vi e R / = lim c,. (4.4)
0 f(tv .T,) n—roo

Then, we have the following alternative:

o [f f s positive in Yy, then by wvirtue of the first case of Corollary 3.5 we obtain the
asymptotics of the flow associated with b

R, Vu d ifd=2
X(t.2) B/YZ 1 Vus(y) dy f

Ve Yd, tli}r{.lo T = .
p | (Vug x---xVug)(y)dy ifd>2,
Yy

o= ([ 5em)
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o If f wanishes at some point vy € Yy, then since f(-,x() is in Cf (Y1) and vanishes at
t = (z9)1, we have by (4.4)

ot boodt
Vo' e R™Y lim ¢, = lim / — = / ——— = 00. (4.5)
oo n=o0 Jo  fult,2') o Jf(t,x0)

Assume by contradiction that [ > 0. Then, using successively Lebesgque’s theorem with
inequality f < f,, Fubini’s theorem and equality (4.3), we get that

dv dx , [ dt :
o0 > —— = lim = lim dx —— || = lim ¢,
Yy f(x) n—00 Yy fn<x> =00 Yai-1 0 fn(t7 T ) n—o0

which contradicts (4.5). Hence, we deduce that f = 0, and due to the positivity of A we

get that .
B N ( Yq ?Ez; dx) =0

Therefore, by virtue of the second case of Corollary 3.5 we obtain the null asymptotics (3.34).

Note that the third case of Corollary 3.5 cannot arise when the functions us, ... ,uq are inde-
pendent of the variable x.

The fourth example deals with the case of an electric field. It is based on the divergence-
curl Proposition 2.2, and illustrates the framework of Theorem 3.1. We cannot characterize
precisely the set C, except in the two-dimensional ergodic case. However, the two-dimensional
case and the three-dimensional case are shown to be quite different.

Exemple 4.4 Let o € C}(Yy) be a positive function with de o(y)dy = 1. Consider the vector-

valued function U € C?(RY)? (see, e.g., [20, Theorem 8.13]) unique solution (up to an additive
constant vector) to the conductivity problem

Div(eDU) = Opa  in R?
{ (0DU) = 0g o

y—Uy) —vy is Z-periodic,

where DU = (VU)T and the vector-valued operator Div consists in the divergence of the columns
of cDU. The variational formulation of (4.6) reads as

DU € C}(Yy)" and YV € C}(Yy)", / o(y)DU (y) : DY(y) dy = 0. (4.7)
Ya
In (4.7) “:7 denotes the scalar product in R defined by

M : N :=tr(MTN) for M, N € R™,

The so-called homogenized matriz (see, e.g., [0, Chapter I, Section 2.3]) associated with the
conductivity o is defined by

xv:demwm% (48)

which is known to be symmetric positive definite. Also define the associated electric field

by = Vuy = V(UX) = DUX  for A € R4\ {Oa}. (4.9)
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Case d = 2: Alessandrini and Nesi [1, Theorems 1,2] have proved that U is a C*-diffeomorphism
of R? with
det(DU) >0 in Ys. (4.10)

Let A € R?\ {Ogz}. As a consequence (see [1, Proposition 2]) the gradient field by defined by
(4.9) does not vanish in Ys. Hence, the set of invariant probability measures %, for the flow

associated with by does not contain any Dirac measure.
Moreover, by (4.7) and (4.9) we have

Vi € Cf(Ya), /Y bA(y) - V(y) o(y) dy = / o(y)Vur(y) - Vi (y) dy = 0, (4.11)

Y

which by virtue of the equivalence (i)-(iii) of Proposition 2.2 implies that o(x) dz is an invariant
probability measure with positive density. Therefore, by definition (4.8) we can only conclude
that (recall that A* is positive definite and X is non zero)

mx:l}uwa@myeqx (4.12)

On the other hand, let 1 € S, be an invariant probability measure for the flow X associated
with by. By the divergence-curl relation (2.14) and (4.6) we have

bA(y)|* u(dy) = /

Yo

mvaW@:(Lm@W@)w (4.13)

Yo

Due to inequality (4.10) the gradient field by = DUM does not vanish in Y. Hence, since i is a
probability measure, we deduce that p({bx # 0}) > 0, which implies that the first term of (4.13)
s positive. Therefore, we get that

Orz # [ ba(y) du(y) € Cp,.

Y
This combined with (4.12) yields
{A*A} C G, C R?\ {0g:}. (4.14)
We may tmprove the former result under the extra ergodic condition
Vi € Z*\ {Oge}, (A*N) -k #0. (4.15)

Indeed, since by (4.11) o by is divergence free, by a classical duality argument there exists a
potential vy with Vv, € C'ﬁl(Yg)Q, such that o by = R Vv, in Yy. Moreover, since by (4.12)

/ Vua(y)dy = — RL/ o(y)ba(y)dy = — R A™),
YQ YQ

condition (4.15) means that the gradient field Vv, satisfies the ergodic condition (3.18). Hence,
the vector field by = 1/ R Vv, satisfies the first result of Corollary 3.4 with u := vy, a :=1/0
and p := 1. Therefore, the flow X, associated with by satisfies asymptotics (3.19) which reads
as
X (t
VaeYs, tlim le/a R, Vu(y)dy = A%\,
% —

) Ys
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or equivalently by (2.1), we obtain that
Cp, = {A*A} (4.16)

Case d = 3: Contrary to the two-dimensional case with the positivity (4.10), by virtue of
[11, Theorem 4.1] there exists a positive conductivity o, € L°(Y3) such that the vector-valued
function U, solution to the equation (4.6) with o, has a determinant which changes sign.

More precisely, the conductivity of [11] rescaled by its Ys-average value denoted by o., (recall
that o.(x) dx has to be a probability measure) takes two values: o, = 1 in a cubic symmetric
lattice of interlocking rings which do not intersect, and 0., = v < 1 elsewhere in R®. The
conductivity o is thus not reqular. However, enlarging each ring with a width d, < 1, we can
build a new conductivity o € 0113(}/'3) (also depending on ) whose values pass from 1 on the
boundary of each ring to v on the boundary of the corresponding enlarged ring. Then, it is easy
to check that for v and d., small enough, the matriz-valued fonction DU defined by (4.6) with
the reqular conductivity o has a determinant which also changes sign. Thus, by a continuity
continuity argument we get that

Jyo € Y3, det(DU)(yo) = 0, (4.17)

which implies that there exists A € R® \ {Ogs} such that DU (yo)\ = Ogs. Hence, the gradient
field by defined by (4.9) vanishes at point yo. Therefore, in contrast with the two-dimensional
result (4.12) we obtain the more complete result

A = / ba(y) o(y) dy € Co, \ {Ons} and [Oms, A*A] C Gy, (4.18)
Y3

since the Dirac mass oy, belongs to %, and

/Y ba(y) d,o(dy) = br(40) = O

Result (4.18) corresponds to the second case of Theorem 3.1. In contrast with the result (4.14)
of the two-dimensional case, we obtain that

[Ogs, A*A] C Cy,. (4.19)

5 Homogenization of linear transport equations

The following theorem is an extension of various homogenization results |7, 21, 22, 25, 31|
(and the references therein) of linear transport equations with an oscillating velocity, which are
based on the classical ergodic approach. Here, in a regular and periodic framework the ergodic
approach is replaced by the singleton approach of Section 2.1, whose a very particular case has
been first obtained in [, Corollary 4.4].

Theorem 5.1 Let b be a vector field in C}(Yq)* and let ug € C*(R?). Consider the transport
equation with the oscillating velocity b(x/e):

88% —b(z/e) - Vu. =0 in (0,00) x R (5.1)
u:(0, ) = up(x) forz € R
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Assume that there exists a vector ( € R? such that

X(t, )

VaeYy, tlgglo = ¢, (5.2)

where X is the flow (1.15) associated with the vector field b. Then, the solution u. to transport
equation (5.1) converges strongly in Lt ([0,00) x RY) for any p € [1,00), to up(x + () which
is solution to the transport equation (5.1) with the constant velocity ¢ in place of b(x/¢).

Proof of Theorem 5.1. Let X be the flow associated to the vector field b. By e-rescaling the
flow X, let us define the flow X, associated with the oscillating vector field b(z/<) by

V(t,z) € (0,00) x Yy, X.(t,x):=eX (é, g) = :L‘—i—S/é b <X(s,§)> ds. (5.3)

Taking into account the regularity conditions the characteristics method induced by the flow
X, implies that the solution u. to (5.1) is given by

V(t,z) €[0,00) x Y, ua(t,z) = uo(Xe(t, ) = up (x + 5/5 b (X(s, g)) ds) . (5.4)

0
On the other hand, let (&,),en be a positive sequence converging to 0. Let (¢, x) € (0,00) x Yy,
set t, := t/e, and x, := x/e,. Then, by virtue of Proposition A.1 the limit points of the

sequence
t

e 1 [in
v, = 5n/ b (X(s, £)) ds =t X —/ b(X(s,x,))ds
0 En tn 0

belong to t C,. However, by (5.2) combined with equivalence (2.1) we have C, = {¢}. Hence,
for any positive sequence (g, ),en converging to 0, the whole sequence (v,,)nen converges to ¢ ¢,
which combined with (5.3) implies that

V(t,z) € (0,00) X Yg, 1iII(l) Xc(t,z) =+t (5.5)

Moreover, making the change of variable r = £ s in (5.3) we have

¢
V(t,x) €0,00) x Yo, X.(t,z)=x +/ b (X(f, E)) dr.
0 €' €
This combined with the boundedness of b and Lebesgue’s theorem implies that the pointwise
convergence (5.5) of X, holds actually in Lt ([0,00) x R?) for any p € [1,00). Therefore, by
the expression (5.4) with uy € C'(R?), u.(¢,x) converges strongly in L? ([0,00) x R?) for any

p € [1,00), to the function ug(x + ¢ (), which concludes the proof. O

A Derivation of invariant probability measures

Let T; for t € R, be the mapping from C{(Y;) into itself defined by
(Tof)(x) == f(X(t,z)) for feC{(Yy) and z € Y. (A.1)

When a flow preserves the set of the continuous functions on a compact metric space, the
existence of an invariant probability measure for the flow is a classical statement which can be
derived thanks to a weak compactness argument applied to sequences of probability measures
defined from the Birkhoff time averages in (1.5) (see, e.g., |15, Theorem 1, Section 1.8] in the
discrete time case). The following result adapts this statement restricting it to the limit points
of the Birkhoff time averages for a given fixed function, adding possible variations of the spatial
parameter x in the averages.
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Proposition A.1 Let b € C'ﬁl(Yd)d. There exists an invariant probability measure on Yy for
the flow X (1.15) associated with b. Moreover, let g € CQ(Y)?, let (zn)nen € (RN, and let
(tn)nen € RY be such that lim, t, = oco. Then, for any limit point a € R? of the sequence
(tn)nen € (RYN defined by

:—/ X(s,z,))ds, neN, (A.2)

there exists a probability measure p € M,(Yy) (independent of g) which is invariant for the flow
X and which satisfies

az/yg(y)du(y)- (A.3)

Proof of Proposition A.1. We will use the following result which is proved below.
Lemma A.2 Let (y,)nen € (RN, let (rp)neny € RY be such that lim, r, = oo, and let v,,
n € N, be the probability measure defined by
f(y) dvn(y . / f(X(s,yn))ds  for f e CP(Ya). (A.4)
Yy n
Then, there exists a subsequence (Vy, )ken Of (Vn)nen which converges weakly x to some proba-
bility measure j1 € Mp(Yy) which is invariant for the flow X.

Let a be a limit point of the sequence (u,)nen (A.2), namely

. 1
a = lim
n—oo t@(n)

Lo(n)
/ 9(X(t, o)) dt,
0

for some strictly increasing sequence (6(n))nen of integer numbers. Set 7, := tomy, Yn = To(n),
and consider the associated sequence (v, ),en of probability measures on Yy given by (A.4). By
Lemma A.2 we can extract a subsequence (v, )xey Which converges weakly * to some invariant
probability measure pu € %, for the flow X. We thus have

Vfedi(Ya), lim /Y f(y) dvn, (y) = Yf(y)du(y),

which applied to each coordinate f = g - e; of the vector-valued g, yields

. 1
a = lim
k—o0 T,g(nk)

to(ny,)
/ 9(X (5, %)) ds = lim | g(y) dvy, (y) = / 9(y) dp(y).
0 — Jyy Y,
O
Proof of Lemma A.2. Since Yy is a compact metrizable space, there exists a subsequence
(U, Jken Of (Vn)nen Which converges weakly * to some probability measure p € #,(Y;), namely
for any f € C(Yy),

£ o () = / "X ds — [ f@)duty). (A5)

Y, k—oo Jy,

Let us prove that p is invariant for the flow X. For the sake of simplicity denote 7, := 7,,,
2k = Yp, and pg = v,,. Let t € Rand f € C’f(Yd). By the semi-group property of the flow
(1.16) we have

/Ydmf)( e / F(X(s -+t 20)) ds.



By the change of variable r = s + ¢, it follows that

| @nwane =+ [ rxeaar

T t+Tp t
L [ )y ar v - / FX ) dr— ~ [ (X, 2)) dr
Tk Jr 0

Tk 0 Tk

Since f is bounded and ¢ € R is fixed, we deduce from (A.5) that

lim [ (Tif)(y) dp(y) = Yf(y)du(y).

k—o0 Yy

However, by the definition of p we also have

im [ (Tf)(y) dualy) = / (T.f)(y) du(y).

k—00 Y, Y,

Hence, we get that

VIER VI e [ @NW ) = [ 1)du)

which implies that y is invariant for the flow X. O
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