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Abstract

This paper is devoted to the study of Markov kernels on general measurable space
under a first-order minorization condition and a modulated drift condition. The fol-
lowing issues can be addressed: Existence and uniqueness of invariant measures, recur-
rence/transience properties including Harris-recurrence property, convergence in total
variation of iterates, Poisson’s equation, perturbation schemes and rate of convergence
of iterates including the so-called geometric ergodicity. All theses issues are discussed in
the present document except the non-geometric rate of convergence of iterates, which will
be included soon to form our final text. All the results reported here focus on Markov
kernels using a residual kernel approach. This turns out to be a very simple and efficient
way to deal with all mentioned issues on Markov kernels. In particular, the document is
essentially self-contained.
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1 Introduction

The purpose of this work is to study Markov kernels on general measurable space under the
so-called Minorization and modulated Drift conditions, generically denoted here by M & D
conditions. The following issues are addressed: Existence and uniqueness of invariant mea-
sures, recurrence/transience properties including Harris-recurrence property, convergence in
total variation of iterates of the Markov kernel in the aperiodic and periodic cases, Poisson’s
equation, perturbation schemes, and finally rates of convergence in weighted total variation
norms of iterates including the so-called geometric ergodicity. All these issues are discussed
in the present document except the non-geometric rates of convergence of iterates, which will
be included soon to form our final text on Markov kernels under conditions M & D. This last
issue will be a revisited version of the material to be found in [HL23a]. In this document, the
focus is on non-negative kernels, adopting in this sense the point of view in Seneta’s book
[Sen06] where discrete Markov chains are studied via non-negative matrices. It can also be
thought of as a tribute to Nummelin’s book [Num84] from which the idea of the treatment of
Markov kernels via a residual kernel approach is borrowed. However, we decide here to keep
a total focus on this kernel framework from the beginning to the end. This turns out to be
a very simple and efficient way to deal with all mentioned issues on Markov kernels.

The M & D conditions are nowadays well known, widely illustrated and used in the lit-
erature on Markov chains via the splitting technique for extending the materials on atomic
Markov chains to the non-atomic case, or via the coupling technique to derive convergence
rates. Both techniques are based on a minorization condition. The reference books on this
topic are [Num84, MT09] and more recently [DMPS18]. Here we use neither the splitting
technique, nor the coupling construction. This also implies that no regeneration type-method
is used here. Actually, with the exception of Sections 6 and 8 which contain a few (fairly
elementary) spectral theory arguments for studying the geometric ergodicity, the only prereq-
uisite for this work is the handling of non-negative kernels. Indeed, the choice we have made
to consider Markov kernels satisfying a minorization condition allows us to work immediately
with the residual kernel, from which the issues on invariant measures, recurrence/transience
including Harris-recurrence and convergence of iterates, can be treated simply. Then addi-
tional modulated drift conditions enable us to investigate series of residual kernel iterates,
from which solutions to Poisson’s equation and the perturbation issue as a by-product are
easily deduced. Also mention that the recent book [BH22] proposes a relevant and interesting
study under additional weak topological conditions, such as the weak Feller condition. This
point of view is not addressed in our work.

The theory in [Num84, MT09, DMPS18] is developed under general minorization con-
ditions involving, either the so-called definition of small-set (or small-function), or the even
more general definition of petite sets. Both of these definitions are based on some n−th iterate
of the transition kernel. In our work we have chosen to focus on the first-order minorization
condition with small-function, which corresponds to the definition [Num84, Def. 2.3] at first
order (n := 1). This choice provides a relatively simple, straightforward, homogeneous and
self-contained presentation, dealing first with the residual kernel, then with the Markov ker-
nel. Note that using small-functions instead of small-sets requires here no additional effort.
The choice of the order one for small-functions or small-sets is also motivated by the fact
that most of classical examples of Markov chains verifying a minorization condition satisfy
it at the first order. We therefore found it interesting to emphasise the order one, as long
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as the results are complete and the first-order minorization condition does not need to be
strengthened by artificial assumptions.

All the results in this work apply to any discrete-time homogeneous Markov chain, pro-
vided that the M & D conditions are fulfilled. For such examples, readers can consult
the reference books [Num84, MT09, DMPS18, BH22], as well as the following more spe-
cialized works: [FM00, FM03, AF10, DFM16] in the context of the Metropolis algorithm,
[TT94, DFM16] for autoregressive models, [LH07, LH12] for queueing systems, [JT02] for
Markov chains associated with the mean of Dirichlet processes, [Mey08] for Markov models
in control. Classical instances of V−geometrically ergodic Markov chains can be found in e.g
[MT09, RR04, DMPS18].

Although our method differs substantially from the splitting or coupling based methods,
the conditions sometimes added to the M & D assumptions are related to the classic ones
(e.g. accessibility, irreducibility, period). Here these additional assumptions can be directly
introduced under their simplified form, i.e. expressed with the small-function. Other condi-
tions, such as reversibility, only concern the form of the Markov kernel and correspond to
standard assumptions. Finally, as previously quoted, the central point is that a non-negative
kernel approach is used for deriving all the proposed material. All the needed prerequisites
are recalled in Subsection 2.1. The few probabilistic material you need (see Subsection 2.2)
is applying well-known formulas inducing the marginal laws of the Markov chain and the
iterates of its transition kernel to deal with Harris-recurrence in Subsection 4.1. Of course,
most of statements expressed in terms of Markov kernels in this work can be translated into
a purely probabilistic form for discrete-time homogeneous Markov chains with general state
space. To facilitate a comparative reading with the statements in reference probabilistic works
as [Num84, MT09, DMPS18], the probabilistic interpretation of the main quantities used in
this paper is reported in Appendix A. Further discussions are included in bibliographical
comments at the end of each section.

2 Main notations and prerequisites

The main notations and definitions used throughout this document are gathered in this
section. Most of them are concerned with non-negative kernel calculus. They are standard
and the material of this section can be omitted in a first reading.

Let (X,X ) be a measurable space and X ∗ := X \{∅} be the subset of non-trivial elements
of X . For any A ∈ X ∗, we denote by 1A the indicator function of A defined by 1A(x) := 1 if
x ∈ A, and 1A(x) := 0 if x ∈ Ac, where Ac := X \A.

2.1 Measures and kernels

� We denote by B the sets of bounded measurable real-valued functions on (X,X ). The
subset of non-zero and non-negative functions in B is denoted by B∗

+.

� Non-negative measures on (X,X ). We denote by M+ (resp. M∗
+,b) the set of

non-negative (resp. finite positive) measures on (X,X ). For any µ ∈ M+ and any
µ-integrable function g : X→R, µ(g) denotes the integral

∫
X g(x)µ(dx). Let µ be a

positive measure on (X,X ). Then a set A ∈ X is said to be µ−full if µ(1Ac) = 0.
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For µ ∈ M+ and any non-negative measurable function f , we denote by f · µ the
non-negative measure on (X,X ) defined by: ∀A ∈ X , (f ·µ)(1A) :=

∫
X 1A(x)f(x)µ(dx).

� Non-negative kernel on (X,X ). A non-negative kernel K on (X,X ) is a map K :
X×X →[0,+∞] satisfying the two following properties:

(i) For every A ∈ X , the function x 7→ K(x,A) from X into [0,+∞] is a measurable
function on (X,X ),

(ii) For every x ∈ X, the set function A 7→ K(x,A) from X into [0,+∞] is a non-
negative measure on (X,X ), denoted by K(x, dy) or K(x, ·).

The set of non-negative kernels on (X,X ) is denoted by K+. An element K ∈ K+ is
said to be bounded if the function x 7→ K(x,X) is bounded on X.

� Product of two non-negative kernels. If K1 and K2 are in K+, then K2K1 is the
element of K+ defined by

∀x ∈ X, ∀A ∈ X , (K2K1)(x,A) :=

∫
X
K1(y,A)K2(x, dy). (1)

The above term (K2K1)(x,A) is well-defined in [0,+∞]: indeed y 7→ K1(y,A) is a
measurable function from X into [0,+∞], and its integral is then computed w.r.t. the
non-negative measure K2(x, dy). If K1 and K2 are both bounded, then so is K2K1.

� Product of a non-negative measure by a non-negative measurable function.
For any µ ∈ M+ and any measurable function f : X→[0,+∞], we define the following
non-negative kernel, denoted by f ⊗ µ,

∀x ∈ X, ∀A ∈ X , (f ⊗ µ)(x,A) := f(x)µ(1A). (2)

� Product of a non-negative kernel by a non-negative measure. Any µ ∈ M+

may be obviously considered as a non-negative kernel (i.e. ∀x ∈ X, µ(x,A) := µ(1A)). If
µ ∈ M+ and K ∈ K+, then the product µK is given as a special case of Definition (1),
that is

∀x ∈ X, ∀A ∈ X , (µK)(x,A) :=

∫
X
K(y,A)µ(dy). (3)

Note that µK ∈ M+ since it does not depend on x ∈ X. The measure µ is said to be
K−invariant if µK = µ.

� Iterates of a non-negative kernel. Let K ∈ K+. For every n ≥ 1 the n−th iterate
kernel of K, denoted by Kn, is the element of K+ defined by induction using the above
formula (1). By convention K0 is defined by: ∀x ∈ X, ∀A ∈ X , K0(x,A) = 1A(x)
(i.e. K0(x, ·) is the Dirac measure at x).

� Functional action of a non-negative kernel. Let K ∈ K+. We also denote by K
its functional action defined by

∀x ∈ X, (Kg)(x) :=

∫
X
g(y)K(x, dy), (4)
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where g : X→R is any measurable function assumed to be K(x, ·)−integrable for every
x ∈ X. For such a function g, we have

|Kg| ≤ K|g|, i.e. ∀x ∈ X, |(Kg)(x)| ≤ (K|g|)(x), (5)

where |g| denotes the absolute value of g (or its modulus if g is C−valued). Obviously
K is a linear action.

If K1,K2 ∈ K+ and if g : X→R is a measurable function such that g1 := K1g is
well-defined as well as K2g1, then

(K2K1)(g) = (K2 ◦K1)(g)

where the first term (K2K1)(g) denotes the functional action on g of the product kernel
K2K1 given in (1), while K2 ◦K1 denotes the usual composition of maps. In particular,
for every n ≥ 1, the functional action of the n−th iterate kernel of Kn of K is the n−th
iterate for composition of the functional action of K. Finally note that the functional
action of the kernel K0 is the identity map I (i.e. (K0g)(x) = g(x) for any x ∈ X),
which corresponds to the standard convention for linear operators.

Most questions involving a non-negative kernel can be addressed through its functional
action, and this is the choice that will generally be made in this document. In particular
Inequality (5) will be used repeatedly in this work.

� Functional action of a non-negative measure. If µ ∈ M+ (thus µ ∈ K+), then
its functional action (see (4)) is given by

∀x ∈ X, (µg)(x) :=

∫
X
g(y)µ(dy),

that is µg := µ(g)1X, provided that g is µ−integrable.

� Order relation for non-negative kernels. If K1 and K2 are in K+, the inequality
K1 ≤ K2 means that

∀g : X→[0,+∞) measurable, 0 ≤ K1g ≤ K2g

provided that K1g and K2g are well-defined (if not, this inequality still holds but in
[0,+∞]). In particular, this implies that

∀x ∈ X, K1(x, dy) ≤ K2(x, dy), i.e. ∀x ∈ X, ∀A ∈ X , K1(x, 1A) ≤ K2(x, 1A).

In connection with this order relation, we shall often write K ≥ 0 for recalling that
K ∈ K+. When K1,K2 are bounded non-negative kernels, the inequality K1 ≤ K2

holds true if, and only if, K := K2 −K1 is a non-negative kernel, where K is defined
by K(x,A) := K2(x,A)−K1(x,A) for any x ∈ X and A ∈ X .

Recall that
K1,K2 ∈ K+ =⇒ K1K2 ∈ K+ and K2K1 ∈ K+

from the definition of the products of two elements ofK+ (see (1)). From this, the follow-
ing expected rules for sum and product can be easily deduced for any K,K1,K2,K

′
1,K

′
2
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in K+ (i.e. each element in (6a)-(6c) is a non-negative kernel):

K1 ≤ K2, K
′
1 ≤ K ′

2 =⇒ K1 +K ′
1 ≤ K2 +K ′

2 (6a)

K1 ≤ K2, K ∈ K+ =⇒ KK1 ≤ KK2 and K1K ≤ K2K (6b)

K1 ≤ K2 =⇒ ∀n ≥ 0, K n
1 ≤ K n

2 . (6c)

Properties (6a)–(6c) will be used repeatedly hereafter, mainly through the functional
action of the involved non-negative kernels.

� Series of kernels. For any (Ki)i∈I ∈ K I
+ where I is any countable set I, the element

K :=
∑

i∈I Ki is defined in K+ by

∀x ∈ X, ∀A ∈ X , K(x,A) :=
∑
i∈I

Ki(x,A).

The following formula holds for all sequences (Kn)n≥0 ∈ K N
+ and (K ′

n)n≥0 ∈ K N
+ :

+∞∑
k,n=0

KnK
′
k = KK ′ with K :=

+∞∑
n=0

Kn and K ′ :=
+∞∑
k=0

K ′
k. (7)

Since this formula is repeatedly used in this work, let us give a proof. Let x ∈ X and
A ∈ X . Then (7) is obtained from the following equalities in [0,+∞]:

+∞∑
k,n=0

(KnK
′
k)(x,A) =

+∞∑
k,n=0

∫
X
K ′
k(y,A)Kn(x, dy)

=

+∞∑
n=0

( +∞∑
k=0

∫
X
K ′
k(y,A)Kn(x, dy)

)

=
+∞∑
n=0

∫
X

( +∞∑
k=0

K ′
k(y,A)

)
Kn(x, dy)

=
+∞∑
n=0

∫
X
K ′(y,A)Kn(x, dy) =

∫
X
K ′(y,A)K(x, dy).

Indeed the first equality is just the definition of KnK
′
k, the second one is due to Fubini’s

theorem for double series of non-negative real numbers, the third one follows from the
monotone convergence theorem w.r.t. each non-negative measure Kn(x, dy), and finally
the fourth and fifth ones are due to the definition of K ′(y,A) and K(x, dy) respectively.

� Markov and submarkov kernels. A non-negative kernel K is said to be Markov
(respectively submarkov) if K(x,X) = 1 (respectively K(x,X) ≤ 1) for any x ∈ X. In
both cases, K is obviously a bounded kernel.

If K is a Markov kernel, then an element A ∈ X is said to be K−absorbing if K(x,A) =
1 for any x ∈ A. An element A ∈ X is said to be an atom forK if the following condition
holds: ∀(x1, x2) ∈ A×A, K(x1, dy) = K(x2, dy) (such a set is sometimes called a proper
atom too, e.g. see [Num84, Def. 4.3]).

IfK is a submarkov kernel, thenK(B) ⊂ B. A function g ∈ B is said to beK−harmonic
if Kg = g on X. When K is Markov, then the function 1X is always K−harmonic.
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� Restriction of functions, measures ans kernels to a subset. For any E ∈ X we
denote by XE the σ−algebra induced by X on the set E, i.e. XE := {A ∩ E,A ∈ X}.
For any g ∈ B, the restriction gE to E of g is the bounded XE−measurable function
defined on E by: ∀x ∈ E, gE(x) = g(x). If η ∈ M+, then the restriction ηE to E of η is
the non-negative measure on (E,XE) defined by: ∀A′ ∈ XE , ηE(1A′) = η(1A∩E) where
A is any element in X such that A′ = A∩E. If K ∈ K+, then the restriction KE of K to
E is the non-negative kernel on (E,XE) defined by: ∀x ∈ E, ∀A′ ∈ XE , KE(x,A

′) =
K(x,A ∩ E) where A is any element in X such that A′ = A ∩ E. When the notation
of the function/measure/kernel on X involves an index, the restriction to E is denoted
by ·|E to avoid confusion (for instance, if ηi ∈ M+, the restriction of ηi to E is denoted
by ηi|E). Finally observe that, if K is Markov on (X,X ) and E is K−absorbing, then
KE is a Markov kernel on (E,XE).

� V−weighted space and V−weighted total variation norm. Let V : X→(0,+∞)
be any measurable function. For every measurable function g : X→R, we set

∥g∥V := sup
x∈X

|g(x)|
V (x)

∈ [0,+∞],

and we define the V−weighted space

BV :=
{
g : X→R,measurable such that ∥g∥V < ∞

}
.

Note that B1X = B. The following obvious fact will be repeatedly used hereafter:

∀g ∈ BV , |g| ≤ ∥g∥V V, i.e. ∀x ∈ X, |g(x)| ≤ ∥g∥V V (x).

If (µ1, µ2) ∈ (M∗
+,b)

2 is such that µi(V ) < ∞, i = 1, 2, then the V -weighted total
variation norm ∥µ1 − µ2∥′V is defined by

∥µ1 − µ2∥′V := sup
∥g∥V ≤1

∣∣µ1(g)− µ2(g)
∣∣. (8)

If V = 1X, then ∥ · ∥′1X = ∥ · ∥TV is the standard total variation norm.

� The Lebesgue space Lp(η) and Lp(η). Let η be a positive measure on (X,X ).
For p ∈ [1,+∞) we denote by Lp(η) the space of all the measurable complex-valued
functions on X such that η(|f |p) < ∞. Moreover (Lp(η), ∥ · ∥p) denotes the standard
Banach space composed of the classes modulo η of the functions in Lp(η) with norm
defined by

∥f∥p ≡ ∥f∥p,η := (η(|f |p))1/p.

As usual the space (L∞(η), ∥·∥∞) is the Banach space composed of the classes modulo η
of complex-valued measurable functions f on X such that ∥f∥∞ <∞ where

∥f∥∞ ≡ ∥f∥∞,η := inf
{
c ∈ [0,+∞) : |f | ≤ c η-a.e. on X

}
. (9)
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2.2 Markov chain

A Markov chain (Xn)n≥0 on the state space X with transition/Markov kernel P is a family
of random variables (r.v.) on a probability space (Ω,F ,P) such that

∀f ∈ B, E[f(Xn+1) | σ(X0, . . . , Xn)] = (Pf)(Xn)

where σ(X0, . . . , Xn) is the sub-σ−algebra of F generated by the r.v’s X0, . . . , Xn. In par-
ticular, for any A ∈ X ,

E[1A(Xn+1) | σ(X0, . . . , Xn)] = (P1A)(Xn) =

∫
A
P (x, dy) = P (x,A).

Assertions a)-b) below are relevant to link iterated kernels and the Markov chain. The
classical statements c)-d) are prerequisites on occupation and hitting times of a set A, which
are only used in Subsection 4.1 to study the Harris-recurrence property.

a) We have for any k ≥ 0, E[f(Xn+k) | σ(X0, . . . , Xn)] = (P kf)(Xn).

b) The probability P when P{X0 = x} = 1, is denoted by Px, and Ex is the expectation
under Px.

c) Let A ∈ X . Then the function defined by

∀x ∈ X, g∞
A (x) := Px

{ +∞∑
n=1

1{Xn∈A} = +∞
}

(10)

is bounded on X and P−harmonic, e.g. see [DMPS18, Prop. 4.2.4], [Num84, Th. 3.4].

d) Let A ∈ X and let gA be the function on X defined by

∀x ∈ X, gA(x) = Px{TA <∞} (11)

where TA := inf{n ≥ 0 : Xn ∈ A} is the hitting time of the set A. Then gA is superhar-
monic, i.e. PgA ≤ gA, and we have (e.g. see [Num84, Th. 3.4], [DMPS18, Th. 4.1.3]):

g∞
A = lim

n→+∞
↘ PngA. (12)

3 Minorization condition, invariant measure and recurrence

In this section a standard first-order minorization condition on the Markov kernel P is in-
troduced: P ≥ ψ ⊗ ν where ν ∈ M∗

+,b and ψ ∈ B∗
+. This allows us to decompose P as the

sum of two submarkovian kernels R := P −ψ⊗ ν, called the residual kernel, and ψ⊗ ν. Two
quantities of interest are defined from the residual kernel and its iterates: first the positive
measure µR :=

∑+∞
k=0 νR

k, second the R−harmonic function h∞
R := limnR

n1X. Then the ex-
istence of a P−invariant positive measure and the classical recurrence/transience dichotomy
are studied according that µR(ψ) = 1 or not (equivalently ν(h∞

R ) = 0 or not).
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3.1 The minorization condition (M ν,ψ) and the residual kernel

Recall that B∗
+ is the set of non-negative and non-zero measurable bounded functions on X

and that M∗
+,b is the set of finite positive measures on (X,X ). Let P be a Markov kernel

on (X,X ). Let us introduce the minorization condition which is in force throughout this
document:

∃(ν, ψ) ∈ M∗
+,b × B∗

+ : P ≥ ψ ⊗ ν (i.e. ∀x ∈ X, P (x, dy) ≥ ψ(x) ν(dy)). (Mν,ψ)

The function ψ is called a first-order small-function in the literature on the topic of Markov
chains. That the non-negative function ψ in (Mν,ψ) is bounded is required since ψ(x) ν(1X) ≤
P (x,X) = 1 for any x ∈ X and ν(1X) > 0. Moreover for any (ψ, ϕ) ∈ B∗

+ × B∗
+ such that

ψ ≥ ϕ, if (Mν,ψ) is satisfied then so is (Mν,ϕ).

Under (Mν,ψ), let us introduce the following submarkov kernel, called the residual kernel,
which is central in the analysis here of the Markov kernel P :

R ≡ Rν,ψ := P − ψ ⊗ ν (i.e. ∀x ∈ X, R(x, dy) := P (x, dy)− ψ(x)ν(dy)). (13)

The most classical instance of minorization condition is when ψ := 1S for some S ∈ X ∗,
that is

∃(ν, S) ∈ M∗
+,b ×X ∗ : P ≥ 1S ⊗ ν (i.e. ∀x ∈ X, P (x, dy) ≥ 1S(x) ν(dy)), (Mν,1S )

in which case the residual kernel is:

R ≡ Rν,1S := P − 1S ⊗ ν.

Such a set S is called a first-order small-set.

The following statement provides a general framework for Condition (Mν,ψ) to hold.
Moreover this proposition shows that, even if the minorizing measure ν is defined from
(Mν,1S ) with some set S, this condition (Mν,1S ) is not the only one possible.

Proposition 3.1 Assume that

∀x ∈ X, P (x, dy) ≥ q(x, y)λ(dy) (14)

where q(·, ·) is a non-negative measurable function on X2 and λ is a positive measure on X.
Let S ∈ X ∗ be such that the measurable non-negative function qS defined by

∀y ∈ X, qS(y) := inf
x∈S

q(x, y)

is not λ−null, that is: λ(1A) > 0 where A := {y ∈ X : qS(y) > 0}. Let ν ∈ M∗
+,b and

ψS ≥ 1S be defined by

ν(dy) := qS(y)λ(dy) and ∀x ∈ X, ψS(x) := 1S(x) inf
y∈A

q(x, y)

qS(y)
. (15)

Then P satisfies Condition (Mν,ψS
) and so (Mν,1S ).
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Proof. For any fixed x ∈ S, we have ν(1X) ≤
∫
X q(x, y)λ(dy) ≤ P (x,X) = 1 from the

definition of ν, qS and from (14). Thus ν is finite and ν(1A) > 0, so that ν ∈ M∗
+,b. Next, from

the definition of ψS we obtain the following property: ∀(x, y) ∈ S×A, q(x, y) ≥ qS(y)ψS(x).
In fact this inequality holds for every (x, y) ∈ X2 since q(x, y) ≥ 0. Finally it follows from
(14) that, for every x ∈ X, we have P (x, dy) ≥ ψS(x)qS(y)λ(dy), i.e. P satisfies (Mν,ψS

).
Note that ψS ≥ 1S from the definition of the function qS , so that (Mν,1S ) is satisfied. □

The next kernel identity (17) is the first key formula of this work. Recall that the residual
kernel R := P −ψ⊗ ν is a submarkov kernel, so that the n−th iterate kernel Rn of R defined
by induction using Formula (1) is a submarkov kernel too. Also recall that by convention
R0(x, ·) is the Dirac measure at x. Finally note that, for every k ≥ 1, we have ν Rk ∈ M+,b

(see (3)).

Lemma 3.2 Let P satisfy Condition (Mν,ψ). Then we have

∀n ≥ 1, 0 ≤ Rn ≤ Pn, (16)

Pn = Rn +
n∑
k=1

Pn−kψ ⊗ νRk−1, (17)

and
+∞∑
n=0

Pn =

+∞∑
n=0

Rn +

( +∞∑
n=0

Pnψ

)
⊗
( +∞∑
k=0

νRk
)
. (18)

Proof. We have 0 ≤ R ≤ P , thus 0 ≤ Rn ≤ Pn using (6c). Set T0 := 0 and Tn := Pn − Rn

for n ≥ 1. Note that Property (17) is equivalent to

∀n ≥ 1, Tn =
n∑
k=1

Pn−kψ ⊗ νRk−1. (19)

Equality (19) is clear for n = 1 since T1 = P −R = ψ ⊗ ν. Next we have for any n ≥ 2

Pn − Tn = Rn = Rn−1R = (Pn−1 − Tn−1)(P − T1),

so that Tn = Pn−1T1 + Tn−1R. Then (19) holds for n ≥ 2 by an easy induction based on the
previous equality for Tn: For instance use the functional action of kernels to check that, for
every g ∈ B, if Tn−1g =

∑n−1
k=1 ν(R

k−1g)Pn−1−kψ, then Tng =
∑n

k=1 ν(R
k−1g)Pn−kψ.

From (17) and the convention for P 0 = R0 we obtain that (see (7))

+∞∑
n=0

Pn =

+∞∑
n=0

Rn +

+∞∑
n=1

n∑
k=1

Pn−kψ ⊗ νRk−1 =

+∞∑
n=0

Rn +

+∞∑
k=1

+∞∑
n=k

Pn−kψ ⊗ νRk−1

=
+∞∑
n=0

Rn +

( +∞∑
n=0

Pnψ

)
⊗
( +∞∑
k=0

νRk
)

Thus (18) holds and the proof of Lemma 3.2 is complete. □

Under Condition (Mν,ψ), we have 0 ≤ R1X ≤ 1X. Since R is a non-negative kernel, we
get 0 ≤ Rn+11X ≤ Rn1X for any n ≥ 0. Thus the sequence (Rn1X)n≥0 is non-increasing so
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that it converges point-wise. Consequently we can define the following measurable function
h∞

R : X→[0, 1]:
h∞

R := lim
n

↘ Rn1X. (20)

Note that h∞
R is R−harmonic: indeed, for every x ∈ X, we have (Rn+1h∞

R )(x) = (RRnh∞
R )(x),

so that h∞
R (x) = (Rh∞

R )(x) from Lebesgue’s theorem applied to the finite non-negative mea-
sure R(x, dy) observing that Rnh∞

R ≤ Rn1X ≤ 1X.

Under Condition (Mν,ψ) let µR denote the positive measure on (X,X ) (not necessarily
finite) defined by

µR :=
+∞∑
k=0

νRk. (21)

Note that the measure µR is positive from µR(1X) ≥ ν(1X) > 0. The measure µR as well as
the function h∞

R are used throughout this section.

3.2 P−invariant measure

First prove the following simple lemma.

Lemma 3.3 Assume that P satisfies Conditions (Mν,ψ). Let g be a P−harmonic function.
Then we have

∀n ≥ 0, ν(g)
n∑
k=0

Rkψ = g −Rn+1g. (22)

In particular we have

∀n ≥ 0, 0 ≤ ν(1X)
n∑
k=0

Rkψ = 1X −Rn+11X ≤ 1X. (23)

Proof. Let g ∈ B be such that Pg = g. We have ν(g)ψ = (I − R)g from the definition (13)
of R. Then Property (22) follows from

∀n ≥ 0, ν(g)
n∑
k=0

Rkψ =

( n∑
k=0

Rk
)
(I −R)g =

n∑
k=0

Rkg −
n+1∑
k=1

Rkg = g −Rn+1g.

Since P1X = 1X, Property (22) with g := 1X is nothing else than (23). □

Recall that the positive measure ν in (Mν,ψ) is finite (i.e. ν(1X) <∞).

Proposition 3.4 Let P satisfy Condition (Mν,ψ). Then the function series
∑+∞

k=0R
kψ

point-wise converges and is bounded on X. More precisely we have

0 ≤ ν(1X)
+∞∑
k=0

Rkψ = 1X − h∞
R ≤ 1X. (24)

Moreover we have µR(ψ) =
∑+∞

k=0 ν(R
kψ) ∈ [0, 1], and the following equivalences hold

µR(ψ) = 1 ⇐⇒ ν(h∞
R ) = 0 ⇐⇒ µR(h

∞
R ) = 0. (25)
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Note that the property µR(ψ) ≤ 1 implies that there exists A ∈ X ∗ such that µR(1A) <∞.

Proof. It follows from (23) that the series of non-negative functions
∑+∞

k=0R
kψ point-wise

converges. When n growths to +∞ in (23), we get the equality in (24) from the definition (20)
of h∞

R .

Next integrate w.r.t. the measure ν in (24) and apply the monotone convergence theorem to
get 0 ≤ ν(1X)µR(ψ) = ν(1X)− ν(h∞

R ) ≤ ν(1X). Since ν(1X) > 0, it follows that µR(ψ) ∈ [0, 1]
and the first equivalence in (25) holds. Since Rh∞

R = h∞
R , we have from (21) that ν(h∞

R ) = 0
implies that µR(h

∞
R ) = 0. Finally, we have µR(h

∞
R ) ≥ ν(h∞

R ) ≥ 0 from the definition (21) of
µR so that µR(h

∞
R ) = 0 implies that ν(h∞

R ) = 0. The proof of the second equivalence in (25)
is complete. □

Theorem 3.5 (P−invariant positive measure) Assume that P satisfies Condition (Mν,ψ).
Then the following assertions hold.

1. If µR(ψ) = 1 (or equivalently ν(h∞
R ) = 0), then µR is a P−invariant positive measure.

2. If there exists ζ ∈ B∗
+ such that ν(ζ) > 0 and µR(Pζ) = µR(ζ) < ∞, then we have

µR(ψ) = 1.

In particular, if ν(ψ) > 0, then

µR is P−invariant ⇐⇒ µR(ψ) = 1 ⇐⇒ ν(h∞
R ) = 0 ⇐⇒ µR(h

∞
R ) = 0.

Recall that the condition ν(ψ) > 0 is the so-called strong aperiodicity property.

Proof. From the definitions (13) of R and (21) of µR, the following equalities hold in [0,+∞]:

∀A ∈ X , µR(P1A) = µR(R1A) + ν(1A)µR(ψ) = µR(1A) + ν(1A)
(
µR(ψ)− 1

)
since we have µR(R1A) = µR(1A) − ν(1A) in [0,+∞]. Consequently, if µR(ψ) = 1, then µR

is a P−invariant positive measure and Assertion 1. is proved. Next, if ζ ∈ B∗
+ satisfies the

assumptions in Assertion 2., then we deduce from µR(ζ) = µR(Pζ) = µR(ζ)+ν(ζ)
(
µR(ψ)−1

)
that µR(ψ) = 1. In the last assertion, that µR(ψ) = 1 implies the P−invariance of µR is just
Assertion 1. Next, if ν(ψ) > 0 and µR is P−invariant, then Assertion 2. can be applied to
ζ := ψ since we know that µR(ψ) <∞ from Proposition 3.4, so that we have µR(ψ) = 1. The
two last equivalences are (25). □

Theorem 3.6 (P−invariant probability measure) If P satisfies Condition (Mν,ψ), then
the following assertions are equivalent.

1. There exists a P−invariant probability measure η on (X,X ) such that η(ψ) > 0.

2. µR(1X) =
∑+∞

k=0 ν(R
k1X) <∞.

Under any of these two conditions, the following probability measure on (X,X )

πR := µR(1X)
−1 µR with µR :=

+∞∑
k=0

νRk ∈ M+
∗,b (26)

is P−invariant with µR(ψ) = 1 and πR(ψ) = µR(1X)
−1 > 0.
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Proof. Assume that Assertion 1. holds. Then apply Formula (17) to 1X and compose on the
left by η to get 1 = η(Rn1X) + η(ψ)

∑n
k=1 ν(R

k−11X). It follows that

0 ≤ η
(
Rn1X

)
= 1− η(ψ)

n∑
k=1

ν(Rk−11X)

from which we deduce that µR(1X) =
∑+∞

k=1 ν(R
k−11X) ≤ η(ψ)−1 < ∞ since η(ψ) > 0 by

hypothesis. This proves that Assertion 1. implies Assertion 2.

Conversely, if Assertion 2. holds, then Assertion 2. of Theorem 3.5 can be applied with
ζ := 1X. Indeed, ν(1X) > 0 and µR(P1X) = µR(1X) < ∞ since P is Markov. Hence
we have µR(ψ) = 1, so that µR is P−invariant from Assertion 1. of Theorem 3.5. Thus
πR := µR(1X)

−1 µR is a P−invariant probability measure such that πR(ψ) = µR(1X)
−1 > 0.

□

The following standard example of uniform ergodicity illustrates Theorem 3.6. Moreover,
the well-known rate of convergence of ∥Pn(x, ·)− πR(·)∥TV is obtained from Formula (17).

Example 3.7 (Uniform ergodicity) Let P satisfy Condition (Mν,1X), that is there exists
ν ∈ M∗

+,b such that P ≥ 1X ⊗ ν. In other words the whole state space X is a first-order
small-set for P . Then Condition 2. of Theorem 3.6 holds and we have

∀n ≥ 1, ∀x ∈ X, ∥Pn(x, ·)− πR(·)∥TV ≤ 2(1− ν(1X))
n

where πR is the P−invariant probability measure given by (26). Indeed the residual kernel
R ≡ Rν,1X is here R = P − 1X ⊗ ν so that we have R1X = (1 − ν(1X))1X. Consequently we
obtain that

∀n ≥ 1, Rn1X = (1− ν(1X))
n1X.

Thus µR(1X) =
∑+∞

k=0 ν(R
k1X) = 1, and it follows from Theorem 3.6 that the probability

measure πR given in (26) is P−invariant (πR = µR here). Moreover Formula (17) gives

∀n ≥ 1, Pn = Rn + 1X ⊗ µn with µn :=
n∑
k=1

νRk−1.

Consequently we have

∀n ≥ 1, Pn − 1X ⊗ πR = Rn − 1X ⊗
+∞∑

k=n+1

νRk−1,

from which we derive that

∀n ≥ 1, ∀x ∈ X, ∥Pn(x, ·)− πR∥TV ≤ ∥Rn(x, ·)∥TV +

∥∥∥∥ +∞∑
k=n+1

νRk−1

∥∥∥∥
TV

= Rn(x, 1X) +

+∞∑
k=n+1

ν(Rk−11X)

= 2(1− ν(1X))
n.

15



3.3 Recurrence/Transience

If P satisfies Condition (Mν,ψ), then P is said to be recurrent if the following condition
holds:

∀A ∈ X : µR(1A) > 0 =⇒
+∞∑
k=0

P k1A = +∞ on X (i.e. ∀x ∈ X,
+∞∑
k=0

P k(x,A) = +∞), (27)

where µR is the positive measure on (X,X ) defined in (21). Note that if A ∈ X is such that
ν(1A) > 0 then µR(1A) > 0. Observe that Equality (18) reads as

+∞∑
n=0

Pn =

+∞∑
n=0

Rn +

( +∞∑
n=0

Pnψ

)
⊗ µR (28)

and this equality is relevant in this section. To get a complete picture of recurrence/transience
property for P satisfying Condition (Mν,ψ) in the next statement, let us introduce the fol-
lowing definition. The Markov kernel P is said to be irreducible if

+∞∑
n=1

Pnψ > 0 on X, i.e. ∀x ∈ X, ∃q ≡ q(x) ≥ 1, (P qψ)(x) > 0. (29)

Recall that under (Mν,ψ), we have µR(ψ) ∈ [0, 1] from Proposition 3.4, and that µR is a
P−invariant positive measure when µR(ψ) = 1, or equivalently ν(h∞

R ) = 0 (see (25)), from
Theorem 3.5. Finally, recall that ∥ · ∥1X denotes the supremum norm on B (i.e. ∥g∥1X :=
supx∈X |g(x)|).

Theorem 3.8 Let P satisfy Condition (Mν,ψ). Then the following assertions hold.

1. Case µR(ψ) = 1 (or equivalently ν(h∞
R ) = 0). The Markov kernel P is recurrent if and

only if P is irreducible (see (29)). When P is recurrent, µR is the unique P−invariant
positive measure η (up to a multiplicative positive constant) such that η(ψ) < ∞, and µR

is σ−finite.

2. Case µR(ψ) < 1 (or equivalently ν(h∞
R ) > 0). The function series

∑+∞
k=0 P

kψ is bounded
on X. If P is irreducible, then P is not recurrent, more precisely P is transient in the
following sense: Defining for every k ≥ 1 the set Ak := {x ∈ X :

∑k
j=0(R

jψ)(x) ≥ 1/k}
we have

X = ∪+∞
k=1Ak and ∀k ≥ 1, ck := ∥

+∞∑
n=0

Pn1Ak
∥1X <∞.

Actually we have: ∀k ≥ 1, ck ≤ k(k + 1)(ν(1X)
−1 +M) with M := ∥

∑+∞
k=0 P

kψ∥1X.

When P is irreducible, we have the following characterization of recurrence.

Corollary 3.9 Assume that P satisfies Conditions (Mν,ψ) and is irreducible. Then

P is recurrent ⇐⇒ µR(ψ) = 1 ⇐⇒ ν(h∞
R ) = 0 ⇐⇒ µR(h

∞
R ) = 0.

Proof. Assume that µR(ψ) ∈ [0, 1). Then P is not recurrent from the second assertion of
Theorem 3.8. This proves the first direct implication. The converse one follows from the first
assertion of Theorem 3.8. The two last equivalences are (25). □
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The proof of Theorem 3.8 is based on the the two following lemmas.

Lemma 3.10 Let P satisfy Condition (Mν,ψ). If P is irreducible then the following state-
ments hold:

1.
∑+∞

n=0R
nψ > 0 on X and µR(ψ) > 0.

2. If µR(ψ) = 1 (or equivalently ν(h∞
R ) = 0) then

∑+∞
n=0 P

nψ = +∞ on X.

Proof. We prove Assertion 1. by contradiction. Assume that there exists x ∈ X such that∑+∞
n=0(R

nψ)(x) = 0. Then we have h∞
R (x) = 1 from (24). From the definition of h∞

R (x) and
Rn1X ≤ 1, it then follows that: ∀n ≥ 1, (Rn1X)(x) = 1. Hence we deduce from Formula (17)
and (Pn1X)(x) = 1 that

∀n ≥ 1,
n∑
k=1

(Pn−kψ)(x) ν(Rk−11X) = 0.

In particular the first term of this sum of non-negative real numbers is zero, that is we
have: ∀n ≥ 1, (Pn−1ψ)(x) ν(1X) = 0. Since P is irreducible (see (29)), we know that there
exists q ≡ q(x) ≥ 1 such that (P qψ)(x) > 0. Then the previous equality with n = q + 1
implies that ν(1X) = 0: Contradiction. This proves the first part of Assertion 1. Next,
since µR(ψ) =

∑+∞
n=0 ν(R

nψ) = ν(
∑+∞

n=0R
nψ) from monotone convergence theorem, we have

µR(ψ) > 0. Assertion 1. is proved. Next, if µR(ψ) = 1, then Equality (28) applied to ψ and
Assertion 1. imply that

∑+∞
n=0 P

nψ = +∞ on X. □

Lemma 3.11 Let P satisfy Condition (Mν,ψ) with µR(ψ) > 0. If P is recurrent, then∑+∞
k=0 P

kψ = +∞ on X.

Proof. Since µR(ψ) > 0, there exists ε > 0 such that the set Fε := {x ∈ X : ψ(x) ≥ ε}
satisfies µR(1Fε) > 0 (otherwise we would have µR({x ∈ X : ψ(x) > 0}) = 0, thus µR(ψ) = 0).
From recurrence and 1Fε ≤ ψ/ε, we obtain that

∑+∞
n=0 P

nψ = +∞ on X. □

Now, let us provide a proof of Theorem 3.8.

Proof of Theorem 3.8. Assume that µR(ψ) = 1. If P is irreducible, then
∑+∞

k=0 P
kψ = +∞ on

X from Assertion 2. of Lemma 3.10. It follows from (28) applied to 1A that
∑+∞

k=0 P
k1A = +∞

for every A ∈ X such that µR(1A) > 0, i.e. P is recurrent. Conversely, if P is recurrent, then
it follows from µR(ψ) = 1 and Lemma 3.11 that

∑+∞
n=0 P

nψ = +∞ on X. Thus P satisfies
(29), i.e. P is irreducible. Now assume that P is recurrent, thus irreducible. Let η be a
P−invariant positive measure on (X,X ) such that η(ψ) <∞. Then η is σ−finite due to the
following well-known argument. Let Q :=

∑+∞
n=0 2

−(n+1)Pn be the Markov resolvent kernel
associated with P . Then Qψ > 0 on X from (29). Hence we have X = {Qψ > 0} = ∪k≥1Ek
with Ek := {Qψ ≥ 1/k}, and η(1Ek

) ≤ k η(Qψ) = k η(ψ) < ∞ from Markov’s inequality.
Thus η is σ−finite. Next prove by contradiction that η(ψ) > 0. Assume that η(ψ) = 0. Then
we obtain that η(1Ek

) = 0 for any k ≥ 1 from the last inequality above, so that η(1X) = 0
since X = ∪k≥1Ek: This is impossible since η is a positive measure on (X,X ). Now recall that
µR is P−invariant under the assumption µR(ψ) = 1 due to Theorem 3.5, and prove that η =
η(ψ)µR. From (17) and the P−invariance of η we obtain that: ∀n ≥ 1, η ≥ η(ψ)

∑n
k=1 νR

k−1.
Thus η ≥ η(ψ)µR from the definition (21) of µR. Next, since both η and µR are σ−finite
from the above, it follows from the Radon-Nikodym theorem that there exists a measurable
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function v on X such that η(ψ)µR = v · η with 0 ≤ v ≤ 1X η−a.e.. Let λ be the non-negative
measure on (X,X ) defined by: λ := (1X − v) · η. Since η(Qψ) = η(ψ) < ∞ by hypothesis
with Q defined above, we obtain that the function v × (Qψ) is η−integrable too, so that

λ(Qψ) =

∫
X
(Qψ)(x) η(dx)−

∫
X
(Qψ)(x) v(x) η(dx) = η(Qψ)− η(ψ)µR(Qψ) = 0

from the P−invariance of both η and µR and from the assumption µR(ψ) = 1. It follows that
λ = 0 since Qψ > 0 on X. Thus we have v = 1X η−a.e., so that η(ψ)µR = η. Assertion 1. of
Theorem 3.8 is proved.

Now assume that µR(ψ) < 1. Thus we have ν(h∞
R ) > 0 from (25). Recall that Rh∞

R = h∞
R .

Then, Formula (17) applied to h∞
R and the equality Rh∞

R = h∞
R give

∀n ≥ 1, Pnh∞
R = h∞

R + ν(h∞
R )

n−1∑
k=0

P kψ,

from which we deduce that: ∀n ≥ 1,
∑n−1

k=0 P
kψ ≤ ν(h∞

R )−11X since h∞
R ≥ 0 and Pnh∞

R ≤ 1X
from h∞

R ≤ 1X. Consequently the function
∑+∞

k=0 P
kψ is bounded on X. Now assume that P is

irreducible. Recall that µR(ψ) > 0 from Lemma 3.10. Thus, as in the proof of Lemma 3.11,
there exists ε > 0 and a set Fε such that µR(1Fε) > 0 and 1Fε ≤ ψ/ε. We deduce that∑+∞

n=0 P
n1Fε is bounded on X. Consequently P is not recurrent. Next let us prove that P is

transient as defined in Theorem 3.8. We have X = ∪+∞
k=1Ak. Indeed, otherwise there would

exist x ∈ X such that: ∀k ≥ 1,
∑k

j=0(R
jψ)(x) < 1/k, so that

∑+∞
j=0(R

jψ)(x) = 0: This

contradicts Lemma 3.10. Finally let k ≥ 1. Observing that 1Ak
≤ k

∑k
j=0R

jψ, we obtain
that (see (7))

+∞∑
n=0

Rn1Ak
≤ k

+∞∑
n=0

Rn
( k∑
j=0

Rjψ

)
= k

k∑
j=0

Rj
( +∞∑
n=0

Rnψ

)

≤ k ν(1X)
−1

k∑
j=0

Rj1X ≤ k(k + 1)ν(1X)
−11X (using (24) and R1X ≤ 1X).

Moreover, integrating the previous inequality w.r.t the positive measure ν, it follows from the
monotone convergence theorem that µR(1Ak

) ≤ k(k+1). Then the last inequalities combined
with Formula (28) applied to 1Ak

provide

+∞∑
n=0

Pn1Ak
≤ k(k + 1)

[
ν(1X)

−1 +M
]
1X with M := ∥

+∞∑
k=0

P kψ∥1X .

The proof of Theorem 3.8 is complete. □

Recall that P is irreducible (see (29)) if, and only if, the function series
∑+∞

k=0 P
kψ takes

its values in (0,+∞]. Thus, when P is irreducible, the recurrence/transience dichotomy can
also be addressed focusing solely on this function series.

Corollary 3.12 Assume that P satisfies Condition (Mν,ψ) and is irreducible. Then the
following alternative holds:
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1. There exists some x ∈ X such that
∑+∞

k=0(P
kψ)(x) = +∞: In this case P is recurrent, and

µR is the unique P−invariant positive measure η (up to a multiplicative positive constant)
such that η(ψ) <∞. Moreover we actually have

∑+∞
k=0 P

kψ = +∞ on X. This corresponds
to the case µR(ψ) = 1 of Theorem 3.8.

2. There exists x ∈ X such that
∑+∞

k=0(P
kψ)(x) < ∞: In this case the function series∑+∞

k=0 P
kψ is bounded on X, and P is transient in the sense given in Assertion 2. of

Theorem 3.8.

Proof. Recall that µR(ψ) ∈ (0, 1] from Proposition 3.4 and Lemma 3.10. In Case 1., the
function series

∑+∞
k=0 P

kψ is not bounded on X, so that P satisfies Case 1. of Theorem 3.8.
It follows from Lemma 3.11 that

∑+∞
k=0 P

kψ = +∞ on X. In Case 2., P is not recurrent from
Lemma 3.11, so that Case 2. of Theorem 3.8 applies. □

When the positive measure µR is finite (i.e. µR(1X) < ∞), then we have µR(ψ) = 1 from
Theorem 3.6. Moreover any P−invariant probability measure π is such that π(ψ) <∞ since
ψ is bounded. Therefore, the following statement is a direct consequence of Assertion 1. of
Theorem 3.8.

Corollary 3.13 Assume that P satisfies Condition (Mν,ψ) with µR(1X) < ∞ and is irre-
ducible. Then P is recurrent, and the probability measure πR given in (26) is the unique
P−invariant probability measure.

Actually, depending on the nature of the state space X and the particular form of the
Markov kernel P , there are many classical results that ensure the existence of a P−invariant
probability measure (see Subsection 3.5). Then the link with Corollary 3.13 can be specified
as follows.

Proposition 3.14 Assume that P satisfies Condition (Mν,ψ) and is irreducible. If P admits
an invariant probability measure, then it is unique and equal to πR given in (26).

Proof. If η(ψ) = 0 then for every n ≥ 1 we have η(Rn1X) = 1 using (17) applied to 1X and
integrating w.r.t. the P−invariant probability measure η. Hence it follows from Lebesgue’s
theorem w.r.t. η that η(h∞

R ) = 1 with h∞
R given in (20). Thus η(h∞

R ) = η(1X), from which we
deduce that h∞

R = 1X η−a.s. since h∞
R ≤ 1X. Hence there exists x ∈ X such that h∞

R (x) = 1.
This provides

∑+∞
k=0(R

kψ)(x) = 0 from (24), which contradicts Assertion 1. of Lemma 3.10.
We have proved that η(ψ) > 0, so that µR(1X) <∞ from Theorem 3.6. Then Equality η = πR

follows from Corollary 3.13. □

3.4 Further statements

The two first following propositions are used in the bibliographic discussions of Subsection 3.5.
The second one may be relevant to check the condition µR(1A) > 0 in the definition (27) of
recurrence. The third proposition is only used in the proof of Propositions 5.12 and 5.13
related to discussion on drift conditions in Section 5.

Proposition 3.15 If P satisfies Condition (Mν,ψ) with µR(ψ) > 0, then P is irreducible
(see (29)) if, and only if,

∀A ∈ X : µR(1A) > 0 =⇒
+∞∑
n=1

Pn1A > 0 on X. (30)
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Proof. Equality (28) reads also as
∑+∞

n=1 P
n =

∑+∞
n=1R

n+
(∑+∞

n=0 P
nψ

)
⊗µR since P 0 = R0.

Thus, we have

∀A ∈ X , ∀x ∈ X,
+∞∑
n=1

Pn(x,A) ≥ µR(1A)

+∞∑
n=0

(Pnψ)(x),

from which we deduce that the irreducibility condition (29) implies Condition (30). Con-
versely assume that Condition (30) holds. Since there exists ε > 0 such that µR(1{ψ≥ε}) > 0

from µR(ψ) > 0, it follows from (30) that
∑+∞

n=1 P
nψ ≥ ε

∑+∞
n=1 P

n1{ψ≥ε} > 0 on X, i.e. (29)
holds. □

Let us introduce the following Markov resolvent kernel

Q :=

+∞∑
n=0

2−(n+1)Pn. (31)

Proposition 3.16 If P satisfies Condition (Mν,ψ), then the following equivalence holds for
every A ∈ X :

µR(1A) > 0 ⇐⇒ ν(Q1A) > 0.

Proof. Let A ∈ X . From (17) we obtain that

Q1A =
+∞∑
n=0

2−(n+1)Rn1A +
+∞∑
n=1

2−(n+1)
n∑
k=1

ν(Rk−11A)P
n−kψ

=

+∞∑
n=0

2−(n+1)Rn1A +

( +∞∑
k=1

2−kν(Rk−11A)

)( +∞∑
n=0

2−(n+1)Pnψ

)
. (32)

Then integrating w.r.t. ν, it follows from the monotone convergence theorem that

ν(Q1A) =

+∞∑
n=0

2−(n+1)ν(Rn1A) +

( +∞∑
k=1

2−kν(Rk−11A)

)( +∞∑
n=0

2−(n+1)ν(Pnψ)

)
.

Next from the definition (21) of µR we have: µR(1A) = 0 ⇔ ∀k ≥ 0, ν(Rk1A) = 0. It
follows from the above equality that µR(1A) = 0 is equivalent ν(Q1A) = 0 since all the terms
involved in this equality are non-negative. □

Proposition 3.17 If P satisfies Condition (Mν,ψ) and is irreducible, then every non-empty
P−absorbing set is µR−full.

Proof. Let B ∈ X ∗ be a P−absorbing set, that is satisfying: ∀n ≥ 1, ∀x ∈ B, Pn(x,Bc) = 0.
Let Q be defined in (31). Formula (32) applied to A := Bc provides

∀x ∈ B, 0 =

+∞∑
n=1

2−(n+1)Rn(x,Bc) +

( +∞∑
k=1

2−kν(Rk−11Bc)

)
(Qψ)(x).

Since P is irreducible (see (29)), we know that (Qψ)(x) > 0, so that we have: ∀k ≥
1, ν(Rk−11Bc) = 0. Thus µR(1Bc) = 0 from the definition (21) of µR. □
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3.5 Bibliographic comments

Here we discuss point by point the definitions and results concerning the classical concepts
of this section, i.e. irreducibility, recurrence/transience properties and invariant measures, in
link with the books [Num84, MT09, DMPS18]. A detailed historical background on these
properties can be found in [Num84, pp. 141-144], [MT09, Sec. 4.5, 8.6,10.6] and [DMPS18,
Sec. 9.6,10.4,11.6]. In discrete state space, we refer for example to [Nor97, Bré99, Gra14] (see
also [Mey08, App. A] for an overview on Markov chains in modern terms).

A) Small-set and small-functions. Let ℓ ≥ 1. Recall that a set Sℓ ∈ X ∗ is said to be a
ℓ−order small-set for P in the standard literature on the topic of Markov chains (e.g. see
[Num84, MT09, DMPS18]), if the following condition holds

∃νℓ ∈ M∗
+,b : P ℓ ≥ 1Sℓ

⊗ νℓ (i.e. ∀x ∈ X, P ℓ(x, dy) ≥ 1Sℓ
(x) νℓ(dy)). (33)

The extension to ℓ−order small-functions writes as (see [Num84, Def. 2.3, p. 15])

∃(νℓ, ψℓ) ∈ M∗
+,b × B+

∗ : P ℓ ≥ ψℓ ⊗ νℓ (i.e. ∀x ∈ X, P ℓ(x, dy) ≥ ψℓ(x) νℓ(dy)). (34)

Our minorization condition (Mν,ψ) is nothing other than [Num84, Def. 2.3] with order
one. Finally recall that S ∈ X ∗ is said to be petite (e.g. see [MT92]) if it is a small-
set of order one for the Markov resolvent kernel

∑+∞
n=0 anP

n for some (an)n ∈ [0,+∞)N

such that
∑+∞

n=0 an = 1. The notion of petite sets is not used in this work. The specific
resolvent kernel

∑+∞
n=0 2

−(n+1)Pn in (31) is only used to prove that µR is σ−finite in
Assertion 1. of Theorem 3.8, and in part D) below to support the current bibliographic
discussion and to provide a sufficient condition for having h∞

R = 0 in Corollary 4.18.

B) Residual kernels and invariant measure. The representation (21) of P−invariant mea-
sure via the residual kernel was introduced in [Num84, Th. 5.2, Cor. 5.2] under the
minorization condition (Mν,ψ) and the recurrence assumption, so that the positive mea-
sure µR necessarily satisfies µR(ψ) = 1 there. The P−invariance of µR under the sole
Condition (Mν,ψ) was proved in [HL23b] in the specific case when µR(1X) < ∞: This
corresponds to Theorem 3.6. This result is extended to the general case in Theorem 3.5,
that is: under the single minorization Condition (Mν,ψ), the P−invariance of µR is ac-
tually guaranteed when µR(ψ) = 1, and is even equivalent to this condition under the
additional strong aperiodicity assumption ν(ψ) > 0. Consequently, contrary to the state-
ment [Num84, Th. 5.2, Cor. 5.2, p. 73-74], the P−invariance of µR is here related directly
to the condition µR(ψ) = 1, which makes it possible to carry out this study independently
of the recurrence property, and even independently of any irreducibility condition on P .
Recall that the key point in the proof of Theorem 3.5 is the kernel identity (17).

C) Accessibility and irreducibility conditions. Recall that if P satisfies Condition (Mν,1S )
then the set S is said to be a first-order small set. Let us comment Condition (29)
in case ψ := 1S . This condition then means that the set S is accessible according to
[DMPS18, Def. 3.5.1, Lem. 3.5.2]. On the other hand recall that a Markov kernel P
is said to be irreducible according to [DMPS18, Def. 9.2.1] if it admits an accessible
small set. Thus our definition (29) of irreducibility for a Markov kernel P satisfying
Condition (Mν,1S ) coincides with that of [DMPS18] in case of a first-order small set.
Now, thanks to Proposition 3.15, let us recall the link with the irreducibility notion
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used in [Num84, MT09]. First, in connection with the condition µR(1S) = 0 which
is not addressed in Proposition 3.15, observe that this condition implies the transience
of P from Theorem 3.8. Moreover this condition cannot hold under Condition (29)
from Assertion 1. of Lemma 3.10 since µR(1S) = ν(

∑+∞
n=0R

n1S). Finally, nor can this
condition be satisfied under the strong aperiodicity condition ν(1S) > 0 since µR ≥ ν.
Thus the discussion may be conducted assuming that P satisfies Condition (Mν,1S ) with
µR(1S) > 0 (i.e. ∃k ≥ 0, ν(Rk1S) ̸= 0). Then it follows from Proposition 3.15 that our
definition of P irreducible (see (29)) is equivalent to the µR−irreducibility of P as defined
in [Num84, p. 11] and [MT09, p. 82], that is (30).

D) Maximal irreducibility measures. Although the notion of maximal irreducibility measures
is not explicitly addressed in this work, it has to be discussed since it plays an important
role in [Num84, MT09, DMPS18]. First note that, if P satisfies Conditions (Mν,1S )
and (29), then µR is an irreducibility measure using the classical terminology in [MT09,
DMPS18] (see Item C)). Actually µR is a maximal irreducibility measure according to
the definition [DMPS18, Def. 9.2.2]: Every accessible set A ∈ X is such that µR(1A) > 0.
Indeed A is accessible reads as Q1A > 0 on X where Q is defined in (31). Next, if
Q1A > 0 on X then ν(Q1A) > 0, so that µR(1A) > 0 from Proposition 3.16. Of course
Conditions (Mν,1S ) and (29) also ensure that the minorizing measure ν is an irreducibility
measure since ν(1A) > 0 implies that µR(1A) > 0. However ν is not maximal a priori. As
is well known, any irreducibility measure η is absolutely continuous w.r.t. the maximal
irreducibility measure µR since the condition η(1A) > 0 implies that Q1A > 0 on X from
the definition of η−irreducibility, so that µR(1A) > 0 due to the above.

E) Recurrence/transience and uniqueness of invariant measure in recurrence case. Our def-
inition (27) of recurrence corresponds to that in [Num84, pp. 27-28] and [MT09, p. 180]
with µR as maximal irreducibility measure. From the discussion in Item C), this also
corresponds to the recurrence definition [DMPS18, Def. 10.1.1]. The transience prop-
erty used in Theorem 3.8 is that provided in [MT09, p. 171 and 180] and [DMPS18,
Def. 10.1.3]. The Recurrence/Transience dichotomy stated in Theorem 3.8 is a well-
known result for irreducible Markov chains, e.g. see [Num84, Th. 3.2, p. 28], [MT09,
Th. 8.0.1] and [DMPS18, Th. 10.1.5]. The novelty in Theorem 3.8 is that this dichotomy
can be simply declined according to whether µR(ψ) = 1 or µR(ψ) ∈ [0, 1) under the
minorization condition (Mν,ψ).

As indicated in Item B), the existence of P−invariant positive measures is obtained in our
work under the minorization Condition (Mν,ψ) and independently of any irreducibility
condition on P (Theorem 3.5). Existence of P−invariant positive measures is classically
proved under the recurrence assumption. In fact this is usually done together with the
uniqueness issue. Under the recurrence assumption the existence and uniqueness (up
to a positive multiplicative constant) of a P−invariant positive measure is obtained in
[Num84, Th. 5.2, Cor. 5.2, p. 73-74] using the representation (21). This result is proved
in [MT09, Th. 10.4.9] and [DMPS18, Th. 11.2.5] via splitting techniques, providing the
classical regeneration-type representation of P−invariant positive measures.

Note that Proposition 3.14 does not extend to infinite invariant measures, as illustrated
in [DMPS18, Ex. 9.2.17] where the irreducible Markov kernel of a random walk on X = Z
(the set of integers) is shown to admit at least two infinite and not proportional invariant
positive measures. Such a Markov kernel is transient: Otherwise, Case 1 of Theorem 3.8
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would apply, and irreducibility property would imply uniqueness for invariant measures
(up to a multiplicative positive constant).

F) Strong aperiodicity condition ν(ψ) > 0. This condition is a particular case of the aperi-
odicity condition introduced in Subsection 4.2.

G) The splitting construction. To conclude this bibliographic discussion, it is worth re-
membering that the concept of small-set has a natural and crucial probabilistic inter-
est in splitting or coupling techniques: This is the thread and backbone of the books
[Num84, MT09, DMPS18]. Here this probabilistic aspect is not addressed. In this work,
the minorization condition (Mν,ψ) allows us to write the Markov kernel P as the sum of
two non-negative kernels: the residual kernel R := P − ψ ⊗ ν and the rank-one kernel
ψ ⊗ ν. That R is non-negative is the crucial point to define all the quantities related
to R in this section, especially the positive measure µR (see (21)) and the function h∞R
(see (20)). Actually one of the key points of the present section and of the next ones is
the kernel identity (17). This formula is already present in Nummelin’s book [Num84,
Eq. (4.12)]. It seems that the sole way to obtain a probabilistic sense of this formula is
to use the split Markov chain introduced in [Num78]. The idea is to introduce an appro-
priate enlargement of the state space of the original Markov chain in order to obtain a
new Markov chain - the split chain - which has an atom. Then most of statements on the
original chain are derived from applying results (obtained for example by the regeneration
method) on atomic chains to this split chain. Thus, using the splitting construction re-
quires switching from the original chain to the split chain for assumptions, and vice versa
for results. The enlargement of the state space consists roughly in tagging the transitions
of the original chain according to the occurrence of a ψ−dependent tossing coin in order
to reflect the decomposition R + ψ ⊗ ν of P in two submarkovian kernels. We refer to
[Num84, Sec. 4.4], [CMR05, Sec. 14.2], [MT09, Chap. 5] for details. See also [Num02] for
a readable survey on this topic in the case of Markov chain Monte Carlo (MCMC) kernels.
Here, the kernel-based point of view allows us to study the general Markov chains in a
single step. There is no need to resort to an intermediate class of Markov chains, e.g.
atomic chains, before dealing with the general case via what may appear to be a technical
device, e.g. the split chain. To turn back to our key formula (17), [Num84, Eq. (4.24)]
provides a probabilistic interpretation from the splitting construction. What is new here
is that we are exploiting Formula (17) solely as a kernel identity. The price to pay for this
presentation is that we only consider Markov kernels satisfying a first-order minorization
condition.

Appendix A gives the probabilistic interpretation of the main quantities used in this
document. This should facilitate the comparative reading with the statements in reference
probabilistic works as [Num84, MT09, DMPS18]. And, as for formula (17), all these
probabilistic formulas are obtained from the split chain.

4 Harris recurrence and convergence of the iterates

Assume that the Markov kernel P satisfies the first-order minorization condition (Mν,ψ) and
recall that h∞

R := limnR
n1X (point-wise convergence, see (20)), where R ≡ Rν,ψ is the residual

kernel given in (13). Condition h∞
R = 0 is stronger than ν(h∞

R ) = 0. Under this condition
h∞

R = 0, the results of the previous section are revisited in the following theorem with an
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additional result on the P−harmonic functions. Next, still under Condition h∞
R = 0, the

Markov kernel P is shown to be Harris-recurrent, and the convergence in total variation norm
of the iterates of P to its unique invariant probability measure is obtained when µR(1X) <∞
and P satisfies an aperiodicity condition. The periodic case is addressed in Subsection 4.3.
Finally, introducing a drift inequality on P , a sufficient condition for the condition h∞

R = 0
to hold is presented in Subsection 4.4.

Theorem 4.1 Let P satisfy Condition (Mν,ψ). If h
∞
R = 0, then the following assertions hold.

1. The P−harmonic functions are constant on X.

2. P is irreducible and recurrent.

3. The positive measure µR :=
∑+∞

k=0 νR
k (see (21)) satisfies µR(ψ) = 1, and is the unique

P−invariant positive measure η (up to a multiplicative constant) such that η(ψ) < ∞.
If µR(1X) < ∞, then πR := µR(1X)

−1µR (see (26)) is the unique P−invariant probability
measure on (X,X ).

Proof. It follows from (24) and h∞
R = 0 that

+∞∑
k=0

Rkψ = ν(1X)
−11X. (35)

Let g ∈ B be such that Pg = g. Recall that, for every n ≥ 0, we have ν(g)
∑n

k=0R
kψ =

g−Rn+1g from (22). Moreover we have limnR
ng = 0 since |Rng| ≤ Rn|g| ≤ ∥g∥1XRn1X and

h∞
R = 0. Thus g = ν(g)

∑+∞
k=0R

kψ. We have proved that g is proportional to 1X. This proves
Assertion 1.

For Assertion 2., apply the kernel identity (28) to ψ to get

+∞∑
n=0

Pnψ =
+∞∑
n=0

Rnψ + µR(ψ)
+∞∑
n=0

Pnψ.

We have µR(ψ) = 1 since h∞
R = 0 (see (25)). Then, we deduce from (35) and the previous

equality that
∑+∞

k=0 P
kψ = +∞. Thus the irreducibility property (29) holds, as well as the

recurrence property from Theorem 3.8.

The first part of Assertion 3. is a direct consequence of Assertion 1. of Theorem 3.8 using
that ν(h∞

R ) = 0 (i.e. µR(ψ) = 1) and that P is recurrent. The second part of Assertion 3. is
Corollary 3.13. The proof of Theorem 4.1 is complete. □

The notations concerning restriction to a set E ∈ X of functions, measures ans kernels are
provided in Section 2.

Lemma 4.2 Assume that P satisfies Condition (Mν,ψ) with µR(ψ) > 0, where R is the
residual kernel given in (13). Let E ∈ X be any µR−full P−absorbing set. Then the Markov
kernel PE on (E,XE) satisfies Condition (MνE ,ψE

). Moreover the associated residual kernel
PE − ψE ⊗ νE is the restriction RE to E of R, and the following equalities hold

∀x ∈ E, h∞RE
(x) := lim

n
Rn
E(x,E) = h∞

R (x) and ∀n ≥ 0, νE(R
n
EψE) = ν(Rnψ).
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Proof. Since µR(ψ) > 0 and E is µR−full, we have µR(1Eψ) = µR(ψ) > 0, thus ψE is
non-zero. Moreover we have ν(1E) = ν(1X) > 0 since µR(1Ec) = 0 implies that ν(1Ec) = 0
from the definition of µR. Then Condition (MνE ,ψE

) for the Markov kernel PE on (E,XE)
is deduced from the minorization condition (Mν,ψ) for P since for every A′ ∈ XE and any
A ∈ X such that A′ = A ∩ E we have

∀x ∈ E, PE(x,A
′) = P (x,A ∩ E) ≥ ν(A ∩ E)ψ(x) = νE(A

′)ψE(x).

That PE − ψE ⊗ νE is the restriction of R to the set E is obvious. It follows that

∀x ∈ E, ∀n ≥ 1, Rn
E(x,E) = Rn(x,E) = Rn(x,X)

since Rn(x,Ec) = 0 from 0 ≤ Rn(x,Ec) ≤ Pn(x,Ec) = 0. Consequently we have for every
x ∈ E: limnR

n
E(x,E) = h∞

R (x). Finally we have: ∀n ≥ 0,∀x ∈ E, (RnEψE)(x) = (Rnψ)(x).
Thus νE(R

n
EψE) = ν(Rnψ) since ν(1Ec) = 0. □

4.1 Harris-recurrence

Let us present a first application of Theorem 4.1 to the so-called Harris-recurrence property.
Let (Xn)n≥0 be a Markov chain with transition kernel P . If P satisfies Condition (Mν,ψ)
and if h∞

R = 0, we know that P is recurrent from Theorem 4.1, that is (see (27))

∀A ∈ X : µR(1A) > 0 =⇒ ∀x ∈ X, Ex
[ +∞∑
k=0

1{Xk∈A}

]
= +∞.

This recurrence property for P is proved below to be reinforced in

∀A ∈ X : µR(1A) > 0 =⇒ ∀x ∈ X, Px
{ +∞∑
n=1

1{Xn∈A} = +∞
}

= 1. (36)

Such a transition kernel P is said to be Harris-recurrent.

Theorem 4.3 Let P satisfy Conditions (Mν,ψ) and h∞
R = 0. Then the Markov chain

(Xn)n≥0 with transition kernel P is Harris-recurrent.

First prove the following lemma.

Lemma 4.4 Let P satisfy Conditions (Mν,ψ) and µR(ψ) = 1. If g ∈ B is such that Pg ≤ g,
then the non-negative function g − Pg is µR-integrable and we have µR(g − Pg) = 0.

Lemma 4.4, which is used below in the proof of Theorem 4.3, has its own interest. Indeed,
from the P−invariance of µR the conclusion of Lemma 4.4 is straightforward under the
assumption µR(1X) < ∞ since, for every g ∈ B, the functions g and Pg are µR-integrable
and µR(Pg) = µR(g). However, if µR is not finite, the conclusion of Lemma 4.4 is no longer
obvious.

Proof of Lemma 4.4. For every n ≥ 1, it follows from Pg = Rg + ν(g)ψ that

n∑
k=0

ν
(
Rk(g − Pg)

)
=

n∑
k=0

ν(Rkg)−
n∑
k=0

ν(Rk+1g)− ν(g)
n∑
k=0

ν(Rkψ)

= ν(g)

(
1−

n∑
k=0

ν(Rkψ)

)
− ν(Rn+1g) (37)

≤ 2∥g∥1Xν(1X) <∞
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using 0 ≤
∑n

k=0 ν(R
kψ) ≤ µR(ψ) = 1 and |g| ≤ ∥g∥1X1X. Thus the series

∑+∞
k=0 ν(R

k(g −
Pg)) of non-negative terms converges, that is g − Pg is µR-integrable. Since µR(ψ) = 1
(i.e. limn

∑n
k=0 ν(R

kψ) = 1 from the definition of µR), we know that ν(h∞
R ) = 0 from (25).

Moreover we have |ν(Rn+1g)| ≤ ∥g∥1Xν(Rn+11X) with limn ν(R
n+11X) = ν(h∞

R ) = 0 from the
definition of h∞

R and Lebesgue’s theorem. Thus the property µR(g − Pg) = 0 follows from
(37). The proof of Lemma 4.4 is complete. □

Proof of Theorem 4.3. Let A ∈ X be such that µR(1A) > 0. Recall that the function defined
by g∞

A (x) := Px
{∑+∞

n=1 1{Xn∈A} = +∞
}
for any x ∈ X is a P−harmonic function, see (10).

Thus, under Condition h∞
R = 0, we know that g∞

A is constant on X from Theorem 4.1. We
have to prove that g∞

A = 1X, namely that g∞
A (x) = 1 for at least one x ∈ X.

Let gA be defined by: ∀x ∈ X, gA(x) := Px{TA < ∞} where TA := inf{n ≥ 0 : Xn ∈ A}
is the hitting time of the set A. Recall that gA is superharmonic, i.e. PgA ≤ gA, and
that g∞

A = limn ↘ PngA, see (11)-(12). Let n ≥ 0. It follows from P (PngA) ≤ PngA
and Lemma 4.4 applies to PngA that the non-negative function PngA − Pn+1gA is such
that µR(P

ngA − Pn+1gA) = 0. Thus there exists En ∈ X such that µR(1Ec
n
) = 0 and

PngA = Pn+1gA on En. Now let E := ∩n≥0En. Then we have µR(1Ec) = 0 and

∀x ∈ E, ∀n ≥ 0, gA(x) = (Pn+1gA)(x).

Passing to the limit when n→+∞ we obtain that every x ∈ E satisfies g∞
A (x) = gA(x).

Finally we get from µR(1Ec) = 0 that µR(1A∩E) = µR(1A) > 0, and we know that gA = 1
on A from the definition of gA. Therefore there exists a x ∈ X such that g∞

A (x) = 1. Thus
g∞
A = 1X since g∞

A is constant on X. The proof of Theorem 4.3 is complete. □

Corollary 4.5 If P satisfies Condition (Mν,ψ), is irreducible and recurrent, then the re-
striction PH of P to the µR−full P−absorbing set H := {h∞

R = 0} is Harris-recurrent.

The proof of Corollary 4.5 is based on Lemma 4.2 and on the following lemma.

Lemma 4.6 Assume that P satisfies Condition (Mν,ψ) and is irreducible. If ν(h∞
R ) = 0,

then the set H := {h∞
R = 0} is P−absorbing and µR−full.

Proof. Since ν(h∞
R ) = 0 the set H is non-empty. Moreover it follows from ν(h∞

R ) = 0 and
Rh∞

R = h∞
R that Ph∞

R = h∞
R . Then we have

∀x ∈ H, 0 = h∞
R (x) = (Ph∞

R )(x) =

∫
X
h∞

R (y)P (x, dy)

hence P (x,Hc) = 0, i.e. P (x,H) = 1, for any x ∈ H. Thus H is P−absorbing. That H is
µR−full follows from Proposition 3.17. □

Proof of Corollary 4.5. We have ν(h∞
R ) = 0 and µR(ψ) = 1 from Corollary 3.9. It follows

from Lemma 4.6 that H := {h∞
R = 0} is P−absorbing and µR−full. From Lemma 4.2 applied

to the set H, we know that PH satisfies Condition (MνH ,ψH
) and that h∞RH

= 0 on H from
the definition of H. Consequently the last assertion of Corollary 4.5 follows from Theorem 4.3
applied to the Markov kernel PH on (H,XH). □
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4.2 Convergence of iterates: the aperiodic case

Set D := {z ∈ C : |z| ≤ 1}. If P satisfies Condition (Mν,ψ), then the following power series

ρ(z) :=
+∞∑
n=1

ν(Rn−1ψ) zn (38)

absolutely converges for every z ∈ D since µR(ψ) =
∑+∞

k=0 ν(R
kψ) <∞ from Proposition 3.4.

If moreover P is irreducible, then this power series ρ is non-zero since ρ(1) = µR(ψ) > 0 from
Assertion 1. of Lemma 3.10.

If P satisfies Condition (Mν,ψ) and is irreducible, then P is said to be aperiodic if ρ(z)
defined in (38) is not a power series in zq for any integer q ≥ 2. Using the notation g.c.d. for
greatest common divisor, this aperiodicity condition is then equivalent to

g.c.d.
{
n ≥ 1 : ν(Rn−1ψ) > 0

}
= 1. (39)

This condition obviously holds when P is strongly aperiodic, i.e. ν(ψ) > 0. In Subsection 4.3,
under Conditions (Mν,ψ) and h

∞
R = 0, various equivalent conditions for aperiodicity are pro-

vided by Theorem 4.14. Actually, Assertion (b) of Theorem 4.14 shows that the aperiodicity
condition does not depend on the choice of the couple (ν, ψ) in Condition (Mν,ψ). Assertion
(c) of Theorem 4.14 shows that aperiodicity condition is equivalent to the non-existence of
d-cycle sets for P with d ≥ 2.

When P satisfies Condition (Mν,ψ) with µR(1X) < ∞, is irreducible and aperiodic, the
convergence of probability distributions (δxP

n)n≥0 to πR in total variation norm is shown to
be equivalent to the property h∞

R = 0 in the following theorem. As a corollary, the convergence
of the probability distributions (δxP

n)n≥0 to πR holds for πR−almost every x ∈ X. Recall that
under these assumptions, πR is the unique P−invariant probability measure from Assertion
3. of Theorem 4.1.

Theorem 4.7 Let P satisfy Condition (Mν,ψ) with µR(1X) < ∞. If P is irreducible and
aperiodic, then the following equivalence holds:

h∞
R = 0 ⇐⇒ ∀x ∈ X, lim

n→+∞
∥δxPn − πR∥TV = 0.

Corollary 4.8 Let P satisfy Condition (Mν,ψ) with µR(1X) < ∞. If P is irreducible and
aperiodic, then

lim
n→+∞

∥δxPn − πR∥TV = 0 for πR−almost every x ∈ X.

Proof of Corollary 4.8. From Theorem 3.6 we have µR(ψ) = 1, so that ν(h∞
R ) = 0 from (25).

Then we know from Lemma 4.6 that the set H := {h∞
R = 0} is P−absorbing and µR−full.

From Lemma 4.2 applied to E := H, it follows that PH satisfies Condition (MνH ,ψH
) with

h∞RH
= 0 from the definition of H, and that g.c.d. {n ≥ 1 : νH(R

n−1
H ψH) > 0} = 1 since

νH(R
n−1
H ψH) = ν(Rn−1ψ). Thus PH is irreducible from Theorem 4.1 applied to PH , and

PH is aperiodic too. Finally note that the positive measure
∑+∞

k=0 νHR
k
H is the restriction

µR|H of µR to the set H, so that µR|H(ψH) = 1 since µR(ψ) = 1 and H is µR−full. Moreover
the restriction πR|H of πR to H is a PH−invariant probability measure on (H,XH). Hence
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Theorem 4.7 applied to PH shows that, for every x ∈ H, we have limn ∥δxPnH −πR|H∥TV = 0.
Finally, since we have for every x ∈ H and A ∈ X

Pn(x,A)− πR(1A) = Pn(x,A ∩H)− πR(1A∩H) = P n
H (x,A ∩H)− πR|H(1A∩H)

we obtain that: ∀x ∈ H, limn ∥δxPn − πR∥TV = 0. This provides the expected conclusion
since we have πR(1H) = 1 from µR(1Hc) = 0. □

Proof of Theorem 4.7. The proof follows from the two next lemmas. Indeed assume that
h∞

R = 0. Then limn P
nψ = πR(ψ)1X (point-wise convergence) from Lemma 4.9, thus the

desired convergence in total variation norm holds from Lemma 4.11. Conversely assume
that, for every x ∈ X, we have limn→+∞ ∥δxPn − πR∥TV = 0. Then it follows from the
definition of ∥ · ∥TV that limn→+∞(Pnψ)(x) = πR(ψ) since ψ is bounded. Thus h∞

R = 0 from
Lemma 4.9. □

Lemma 4.9 Let P satisfy Condition (Mν,ψ) with µR(1X) < ∞. If P is irreducible and
aperiodic, then

h∞
R = 0 ⇐⇒ lim

n→+∞
(Pnψ) = πR(ψ)1X (point-wise convergence).

Proof. Let D = {z ∈ C : |z| < 1}. The following power series

P(z) :=
+∞∑
n=0

znPnψ and R(z) :=
+∞∑
n=0

znRnψ

are well-defined on D since ψ is bounded. Note that P(z) and R(z) are function series. From
the kernel identity (17) applied to ψ it follows that

∀z ∈ D, P(z) =
+∞∑
n=0

znPnψ =
+∞∑
n=0

znRnψ +
+∞∑
n=1

zn
n∑
k=1

ν(Rk−1ψ)Pn−kψ

= R(z) + ρ(z)P(z).

where ρ(z) is the power series defined in (38). Using µR(ψ) =
∑+∞

k=1 ν(R
k−1ψ) = 1 from

Theorem 3.6, we have: ∀z ∈ D, |ρ(z)| < 1. Thus

∀z ∈ D, P(z) = R(z)U(z) with U(z) :=
1

1− ρ(z)
. (40)

Next, for any k ≥ 1, we have ν(Rk1X) = ν(Rk−11X)−ν(1X)ν(Rk−1ψ) fromR1X = 1X−ν(1X)ψ.
Thus,

∀k ≥ 1, ν(1X)ν(R
k−1ψ) = ν(Rk−11X)− ν(Rk1X)

and

∀n ≥ 1, ν(1X)

n∑
k=1

k ν(Rk−1ψ) =

n∑
k=1

k
[
ν(Rk−11X)− ν(Rk1X)

]
=

n∑
k=1

k ν(Rk−11X)−
n+1∑
k=2

(k − 1) ν(Rk−11X)

=

n∑
k=1

ν(Rk−11X)− n ν(Rn1X).
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Hence m :=
∑+∞

k=1 k ν(R
k−1ψ) ≤ µR(1X)ν(1X)

−1 < ∞. Now recall that
∑+∞

k=1 ν(R
k−1ψ) = 1

and that ρ(z) is not a power series in zq for any integer q ≥ 2 since P is assumed to
be aperiodic. Consequently the Erdös-Feller-Pollard renewal theorem [EFP49] provides the
following property for the power series U(z) =

∑+∞
k=0 ukz

k in (40):

lim
k→+∞

uk =
1

m
.

Let x ∈ X. Identifying the coefficients of the power series in Equation (40) (Cauchy product),
we obtain that for every n ≥ 0

(Pnψ)(x) =
n∑
k=0

un−k(R
kψ)(x) =

+∞∑
k=0

vn(k)(R
kψ)(x) with ∀k ≥ 0, vn(k) := un−k1[0,n](k).

For every k ≥ 1, we have limn vn(k) = 1/m, and |vn(k)| ≤ supj |uj | < ∞. Moreover recall

that
∑+∞

k=0(R
kψ)(x) < ∞ from Proposition 3.4. Then it follows from Lebesgue theorem

w.r.t. discrete measure that

∀x ∈ X, lim
n
(Pnψ)(x) =

1

m

+∞∑
k=0

(Rkψ)(x). (41)

Now we can prove Lemma 4.9. If h∞
R = 0, then we have

∑+∞
k=0(R

kψ)(x) = ν(1X)
−1 from (35).

Hence (41) provides: ∀x ∈ X, limn(P
nψ)(x) = (mν(1X))

−1. Actually the constant (mν(1X))
−1

equals to πR(ψ) from Lebesgue theorem w.r.t. the P−invariant probability measure πR. The
direct implication in Lemma 4.9 is proved. Conversely, assume that limn P

nψ = πR(ψ)1X
(point-wise convergence). Then we deduce from (41) that

∑+∞
k=0R

kψ = c 1X with c :=
mπR(ψ). Thus h

∞
R = d 1X with d = 1− cν(1X) from (24). Finally recall that µR(ψ) = 1, thus

ν(h∞
R ) = 0 from (25). Hence d ν(1X) = 0, from which we deduce that h∞

R = 0. □

Remark 4.10 From the proof of Lemma 4.9 we deduce the following facts. If P satisfies
Condition (Mν,ψ) with µR(1X) < ∞, then m :=

∑+∞
k=1 k ν(R

k−1ψ) < ∞. If moreover P is
irreducible and aperiodic and if h∞

R = 0, then m = (πR(ψ)ν(1X))
−1. Finally mention that, for

the direct implication in the equivalence of Lemma 4.9, the renewal theorem in [Fel67, Th 1,
p330] can be directly applied too.

Lemma 4.11 Assume that P satisfies Condition (Mν,ψ) and µR(1X) < ∞. If h∞
R = 0 and

limn P
nψ = πR(ψ)1X (point-wise convergence), then limn ∥δxPn−πR∥TV = 0 for every x ∈ X.

Proof. Using (17) and πR = πR(ψ)
∑+∞

k=1 νR
k−1 (see (26)), we have for every n ≥ 1 and g ∈ B

Png − πR(g)1X = Rng +
n∑
k=1

ν(Rk−1g)
(
Pn−kψ − πR(ψ)1X

)
− πR(ψ)

( +∞∑
k=n+1

ν(Rk−1g)

)
1X.

Thus

∥δxPn−πR∥TV ≤ (Rn1X)(x)+
n∑
k=1

ν(Rk−11X)
∣∣(Pn−kψ)(x)−πR(ψ)

∣∣+πR(ψ)
+∞∑

k=n+1

ν(Rk−11X).
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We have limn(R
n1X)(x) = 0 from h∞

R = 0. The term
∑+∞

k=n+1 ν(R
k−11X) also converges to

zero when n→+∞ since
∑+∞

k=0 ν(R
k1X) = µR(1X) <∞. Next note that

n∑
k=1

ν(Rk−11X)
∣∣(Pn−kψ)(x)− πR(ψ)

∣∣ = +∞∑
k=1

ν(Rk−11X)fn(k)

with fn(k) := |(Pn−kψ)(x) − πR(ψ)|1[1,n](k). Then, using
∑+∞

k=1 ν(R
k−11X) < ∞, the above

sum converges to zero when n→+∞ from Lebesgue’s theorem w.r.t. discrete measure since,
for every k ≥ 1, we have fn(k) ≤ 2∥ψ∥1X and limn fn(k) = 0 by hypothesis. Lemma 4.11 is
proved. □

4.3 Convergence of iterates: the periodic case

Assume that P satisfies Condition (Mν,ψ) and is irreducible. Recall that the power series
ρ(z) given in (38), namely

ρ(z) :=
+∞∑
n=1

ν(Rn−1ψ) zn

is defined on D = {z ∈ C : |z| ≤ 1} and is non-zero. Define

d := g.c.d. {n ≥ 1 : ν(Rn−1ψ) > 0} (42)

where g.c.d. stands for greatest common divisor computed on a non-empty set. If d = 1,
then P is aperiodic according to the definition of Subsection 4.2. If d ≥ 2, then P is said
to be periodic: In this case ρ(z) is a power series in zd. Under Conditions (Mν,ψ) and
h∞

R = 0, Integer d in (42) can be called the period of P without any ambiguity. Indeed under
these two conditions, various equivalent characterizations of Integer d in (42) are presented
in Theorem 4.14 below. Actually, from Assertion (b) of Theorem 4.14, the value of d does
not depend on the choice of the couple (ν, ψ) in the minorization condition (Mν,ψ).

From Theorem 4.1, Conditions (Mν,ψ) and h
∞
R = 0 imply that P is irreducible, and that

πR is the unique P−invariant probability measure when µR(1X) <∞. Under these conditions,
the convergence in total variation norm of the probability measures

∑d−1
r=0 δxP

nd+r to πR is
obtained in the next theorem. In fact the two next statements are the natural extensions to
the periodic case of Theorem 4.7 and Corollary 4.8.

Theorem 4.12 Let P satisfy Condition (Mν,ψ) with µR(1X) < ∞ and h∞
R = 0. If P is

periodic with period d ≥ 2 (see (42)), then the following convergence holds:

∀x ∈ X, lim
n→+∞

∥∥πR − 1

d

d−1∑
r=0

δxP
nd+r

∥∥
TV

= 0.

The proof of Theorem 4.12 is similar to that of the direct implication of Theorem 4.7 (where
d = 1). When d ≥ 2, the proof is just a little more technical, since we have to work with the
sums (1/d)

∑d−1
r=0 δxP

nd+r. This proof is postponed in Appendix B.

Corollary 4.13 Let P satisfy Condition (Mν,ψ) with µR(1X) < ∞. If P is irreducible and
periodic with d ≥ 2 in (42), then the following convergence holds :

lim
n→+∞

∥∥πR − 1

d

d−1∑
r=0

δxP
nd+r

∥∥
TV

= 0 for πR−almost every x ∈ X.
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Proof. Using the restriction PH of P to the µR−full P−absorbing set H := {h∞
R = 0} from

Lemma 4.6, Corollary 4.13 is deduced from Theorem 4.12 proceeding as for Corollary 4.8:
Use g.c.d. {n ≥ 1 : νH(R

n−1
H ψH) > 0} = d from νH(R

n−1
H ψH) = ν(Rn−1ψ), and apply

Theorem 4.12 to the sums (1/d)
∑d−1

r=0 δxP
nd+r
H to conclude. □

In the next statement the space B = B1X is extended to complex-valued functions, i.e.:

B(C) :=
{
g : X→C,measurable such that ∥g∥1X := sup

x∈X
|g(x)| <∞

}
where | · | stands here for the modulus in C. Recall that z ∈ C is said to be an eigenvalue of P
on B(C) if there exists a non-zero function g ∈ B(C) such that Pg = zg. Finally recall that
P is irreducible under Conditions (Mν,ψ) and h

∞
R = 0 from Theorem 4.1, so that the positive

integer d = g.c.d. {n ≥ 1 : ν(Rn−1ψ) > 0} in (42) is well-defined in the next statement.

Theorem 4.14 Assume that P satisfies Condition (Mν,ψ) and h∞
R = 0. Let ρ(z) be the

power series given in (38), and let d := g.c.d. {n ≥ 1 : ν(Rn−1ψ) > 0}. Then the following
assertions holds and are equivalent:

(a) The complex numbers z of modulus one satisfying ρ(z) = 1 are the d−th roots of unity.

(b) The eigenvalues of modulus one of P on B(C) are the d−th roots of unity.

(c) There exist a µR−full P−absorbing set E ∈ X and sets C0, . . . , Cd−1 in X such that

E =
d−1⊔
ℓ=0

Cℓ with ∀ℓ = 0, . . . , d− 1, ∀x ∈ Cℓ, P (x,Cℓ+1) = 1

using the convention Cd = C0.

Under Condition (Mν,ψ) and h∞
R = 0, that any of the three equivalent conditions (a)–(c)

characterizes the period of P , is obvious. Indeed, assume that P satisfies Assertion (a) for
some d ≥ 1, and set d′ := g.c.d. {n ≥ 1 : ν(Rn−1ψ) > 0}. Then the complex numbers z of
modulus one satisfying ρ(z) = 1 are the d′−th roots of unity from Theorem 4.14, thus d′ = d.

The proof of Theorem 4.14 is based on the following two lemmas.

Lemma 4.15 Let P satisfy Condition (Mν,ψ) and h∞
R = 0. Let z ∈ C be such that |z| = 1.

Then z is an eigenvalue of P on B(C) if, and only if, we have ρ(z) = 1. Moreover, if any of
these two conditions holds, then

Ez := {g ∈ B(C) : Pg = zg} = C · ψ̃z with ψ̃z :=
+∞∑
k=0

z−(k+1)Rkψ.

Proof. First note that, for any z ∈ C such that |z| = 1, the above function ψ̃z is well-defined
and belongs to B(C) from Proposition 3.4. Moreover observe that

ν(ψ̃z) =

+∞∑
k=0

z−(k+1)ν(Rkψ) = ρ(z−1), (43)
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the exchange between series and ν−integral being valid since
∑+∞

k=0 ν(R
kψ) <∞ from Propo-

sition 3.4. Now, let z ∈ C, |z| = 1, and let g ∈ B(C), g ̸= 0, be such that Pg = zg. Thus we
have ν(g)ψ = (zI −R)g from P = R+ ψ ⊗ ν. Then we have for every n ≥ 0

ν(g)

n∑
k=0

z−(k+1)Rkψ =

( n∑
k=0

z−(k+1)Rk
)
(zI −R)g =

n∑
k=0

z−kRkg −
n∑
k=0

z−(k+1)Rk+1g

= g − z−(n+1)Rn+1g. (44)

Moreover we have |Rng| ≤ ∥g∥1XRn1X, so limnR
ng = 0 (point-wise convergence) from Con-

dition h∞
R = 0. Hence g = ν(g)ψ̃z, with ν(g) ̸= 0 since g ̸= 0 by hypothesis. From (43)

it follows that ν(g) = ν(g)ρ(z−1), thus ρ(z−1) = 1, or equivalently ρ(z) = 1 from z−1 = z
(the conjugate of z) since |z| = 1 and the coefficients of the power series ρ(·) are real (even
non-negative).

Conversely let z ∈ C, |z| = 1, be such that ρ(z) = 1, thus ρ(z−1) = 1. From (43) we have
ν(ψ̃z) = 1. Using P = R + ψ ⊗ ν and Lebesgue’s theorem w.r.t. R(x, dy) for each x ∈ X we
obtain that

Pψ̃z = z
+∞∑
k=0

z−(k+2)Rk+1ψ + ν(ψ̃z)ψ = z
(
ψ̃z − z−1ψ

)
+ ψ = zψ̃z. (45)

Thus z is an eigenvalue of P on B(C) since ψ̃z ̸= 0 from ν(ψ̃z) = 1. The claimed equivalence
in Lemma 4.15 is proved. The last assertion follows from the first part of the proof, where
we obtained that any g ∈ B(C) such that Pg = zg with |z| = 1 satisfies g = ν(g)ψ̃z. □

Lemma 4.16 Let P satisfy Condition (Mν,ψ) and h∞
R = 0. Let z ∈ C be such that |z| = 1.

Then we have ρ(z) = 1 if, and only if, z is a d−th root of unity with d given in (42).

Proof. Recall that µR(ψ) =
∑+∞

n=1 ν(R
n−1ψ) = 1 from Theorem 4.1. Assume that ρ(z) = 1.

Then
+∞∑
n=1

ν(Rn−1ψ) zn = 1 =

+∞∑
n=1

ν(Rn−1ψ).

Writing z = eiθ with θ ∈ [0, 2π) we obtain that
∑+∞

n=1

(
1 − cos(nθ)

)
ν(Rn−1ψ) = 0. Define

the set N := {n ≥ 1 : ν(Rn−1ψ) > 0}. Then n ∈ N implies that cos(nθ) = 1. Thus
we have: ∀n ∈ N , zn = 1. Next from the definition of d, for p large enough there exists
{nj}pj=1 ∈ N p such that d =

∑p
j=1 kjnj for some {kj}pj=1 ∈ Zp (Bézout identity). Thus we

have zd =
∏p
j=1 z

kjnj = 1 since znj = 1. Hence z is a d−th root of unity.

Conversely, let z be a d−th root of unity, i.e. zd = 1. From the definition of d it then
follows that ρ(z) =

∑+∞
k=0 ν(R

kd−1ψ) zkd = µR(ψ) = 1. □

Now we prove Theorem 4.14.

Proof of Theorem 4.14. Assertion (a) is proved in Lemma 4.16, and the equivalence (a) ⇔ (b)
follows from Lemma 4.15. Now let us assume that P satisfies Assertion (b). Let zd = e2iπ/d,

ψ̃d :=
∑+∞

k=0 z
−(k+1)
d Rkψ, and let ψ̃d,0 (resp. ψ̃d,1) denote the real (resp. imaginary) part of

the function ψ̃d. Then it follows from (35) that

ψ̃d,0 ≤ |ψ̃d| ≤
+∞∑
k=0

Rkψ = ν(1X)
−11X.
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Since zd is an eigenvalue of P on B(C) we have ρ(z−1
d ) = 1 from Lemma 4.15, thus ν(ψ̃d) = 1

from (43). Then we have ν(ψ̃d,0) = 1 = ν(ν(1X)
−11X), so that the following equalities hold

ν−a.e. on X: ψ̃d,0 = ν(1X)
−11X and ψ̃d,1 = 0. Now define gd := ν(1X)ψ̃d. From the above

we know that |gd| ≤ 1X and that the set C0 := {gd = 1} is non-empty. Moreover we have
Pgd = zdgd from Lemma 4.15. Let x ∈ C0. Then

1 = gd(x) =
(Pgd)(x)

zd
=

∫
X

gd(y)

zd
P (x, dy)

with |gd(y)/zd| ≤ 1 for every y ∈ X since |zd| = 1. It follows that P (x,C1) = 1 where
C1 := {x ∈ X : gd(x) = zd}. Replacing the set C0 with C1, we can similarly prove that,
for every x ∈ C1, we have P (x,C2) = 1 where C2 := {x ∈ X : gd(x) = zd

2}. Repeating
this arguments provides the existence of sets C0, . . . , Cd−1 in X satisfying the desired cycle
property: ∀ℓ = 0, . . . , d − 1, ∀x ∈ Cℓ, P (x,Cℓ+1) = 1. These sets are obviously disjoint.
Finally define E :=

⊔d−1
ℓ=0 Cℓ. This set is P−absorbing since, for every x ∈ E, there exists

a (unique) ℓ ∈ {0, . . . , d − 1} such that x ∈ Cℓ, so that 1 = P (x,Cℓ+1) ≤ P (x,E) ≤ 1,
thus P (x,E) = 1. Since P is irreducible from Theorem 4.1, the set E is µR−full from
Proposition 3.17. We have proved that (b) implies (c).

It remains to prove that (c) implies (a). Assume that P satisfies Assertion (c) and let PE
be the restriction of P to the µR−full P−absorbing set E = ⊔d−1

ℓ=0Cℓ. Let z be any d−th root
of unity and define gE : E→C by

∀ℓ = 0, . . . , d− 1, ∀x ∈ Cℓ, gE(x) = zℓ.

Then we have for every ℓ = 0, . . . , d− 1 and x ∈ Cℓ

(PEgE)(x) =

∫
E
gE(y)P (x, dy) =

∫
Cℓ+1

gE(y)P (x, dy) = zℓ+1 = z gE(x)

since P (x,Cℓ+1) = 1 and gE(x) = zℓ, recalling moreover for the case ℓ = d− 1 that Cd = C0

by convention and that 1 = zd. Thus PEgE = zgE . Next recall that µR(ψ) = 1 from
Theorem 4.1. It then follows from Lemma 4.2 that PE satisfies Condition (MνE ,ψE

) on
(E,XE), that h

∞
RE

= 0 on E from the assumption h∞
R = 0, and finally that

∀z ∈ D, ρE(z) :=
+∞∑
n=1

νE(R
n−1
E ψE) z

n = ρ(z).

We can now conclude. Since z is an eigenvalue of PE , Lemma 4.15 applied to PE ensures that
ρE(z) = 1, so ρ(z) = 1. We have proved that, under Condition (c), any d−th root of unity
satisfies Equation ρ(z) = 1. Moreover we know from Lemma 4.16 that any z ∈ C satisfying
|z| = 1 and ρ(z) = 1 is a d−th root of unity. Thus (c) implies (a). □

4.4 Drift condition to obtain h∞
R = 0

Now, we introduce a drift condition to have the property h∞
R := limnR

n1X = 0, the relevance
of which has been highlighted in Theorems 4.1, 4.3, 4.7, 4.12 and 4.14. Actually, under a
drift inequality w.r.t. some measurable function W : X→[0,+∞), the property h∞

R = 0 is
characterized in Proposition 4.17 by a control of h∞

R or
∑+∞

k=0R
kψ on any level set Wr := {x ∈

X :W (x) ≤ r} of W . Finally, a condition ensuring this control is provided by Corollary 4.18.
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Proposition 4.17 Let P satisfy Condition (Mν,ψ) and the following drift condition for some
measurable function W : X→[0,+∞):

∃b > 0, PW ≤W + b ψ. (46)

For any r > 0 let Wr denote the level set of order r defined by: Wr := {x ∈ X : W (x) ≤ r}.
Then we have the following equivalences

h∞
R = 0 ⇐⇒ ∀r > 0, sup

x∈Wr

h∞
R (x) < 1 ⇐⇒ ∀r > 0, inf

x∈Wr

+∞∑
k=0

(Rkψ)(x) > 0. (47)

Proof. The second equivalence in (47) follows from (24). That h∞
R = 0 implies the sec-

ond condition in (47) is obvious. It remains to prove that the second condition in (47), or
equivalently the third one, implies that h∞

R = 0.

In the sequel, the third condition in (47) is assumed to hold. First prove that we have the
following point-wise convergence on X

∀ρ > 0, lim
n
Rn1Wρ = 0. (48)

Let ρ > 0 and define a ≡ aρ := infx∈Wρ

∑+∞
k=0(R

kψ)(x). By hypothesis we have a > 0 and

1Wρ ≤ a−1
∑+∞

k=0R
kψ, from which we deduce that

∀n ≥ 1, 0 ≤ Rn1Wρ ≤ a−1
+∞∑
k=n

Rkψ

from the monotone convergence theorem w.r.t. Rn(x, dy) for each x ∈ X. Property (48) then
holds since the series

∑+∞
k=0R

kψ converges point-wise from Proposition 3.4.

Next note that ν(W )ψ ≤ PW everywhere on X from (Mν,ψ), so that ν(W ) <∞ and RW
is well-defined. Let d := max(0 , (b− ν(W ))/ν(1X)) and prove that

RWd ≤Wd where Wd :=W + d1X. (49)

Note that ν(Wd) = ν(W ) + dν(1X) < ∞ and that PWd = PW + d1X. It then follows from
RWd = PWd − ν(Wd)ψ and from the drift inequality (46) that

RWd ≤W + bψ + d1X −
(
ν(W ) + d ν(1X)

)
ψ ≤Wd +

(
b− ν(W )− d ν(1X)

)
ψ

so that RWd ≤Wd from the definition of d.

Now let us deduce from (48) and (49) that h∞
R = 0. Let r > d with d given by (49). We

have

1X = 1{x∈X:Wd(x)>r} + 1{x∈X:Wd(x)≤r} ≤
Wd

r
+ 1Wr−d

.

Thus we get

∀n ≥ 1, Rn1X ≤ RnWd

r
+Rn1Wr−d

≤ Wd

r
+Rn1Wr−d

from the non-negativity of R and from RnWd ≤Wd using (49) and an immediate induction.
Let x ∈ X, ε > 0, and fix r > d large enough so that Wd(x)/r < ε/2. From (48) applied to
ρ = r − d, there exists N ≥ 1 such that, for every n ≥ N , we have 0 ≤ (Rn1Wr−d

)(x) < ε/2.
Thus: ∀n ≥ N, 0 ≤ (Rn1X)(x) < ε. This proves that h∞

R = 0.

□
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We conclude this section providing an alternative sufficient condition for h∞
R = 0. Let us

consider the Markov resolvent kernel Q defined in (31), i.e. Q :=
∑+∞

n=0 2
−(n+1)Pn.

Corollary 4.18 Let P satisfy Condition (Mν,ψ) and the drift condition (46) for some mea-
surable function W : X→[0,+∞). If the following condition holds

∀r > 0, inf
x∈Wr

(Qψ)(x) > 0, (50)

then h∞
R = 0.

Proof. Below we prove that the third condition in (47) is fulfilled. The claimed conclu-
sion then follows from Proposition 4.17. Recall that ψ ∈ B∗

+, so that Qψ and the series∑+∞
n=0 2

−(n+1)Rnψ are well-defined. Using (32) with ψ in place of 1A,we obtain that

Qψ =
+∞∑
n=0

2−(n+1)Rnψ + αQψ

where α :=
∑+∞

k=1 2
−kν(Rk−1ψ). Note that, either α = 0, or α < µR(ψ) ≤ 1 from Proposi-

tion 3.4, so that
+∞∑
n=0

2−(n+1)Rnψ = (1− α)Qψ with 1− α > 0.

Now let r > 0 and a ≡ ar := infx∈Wr(Qψ)(x). We have a > 0 from (50), and

∀x ∈ Wr,

+∞∑
k=0

(Rkψ)(x) ≥
+∞∑
k=0

2−(k+1)(Rkψ)(x) = (1− α) (Qψ)(x) ≥ (1− α)a > 0.

The third condition in (47) is proved. □

Condition (50) on Q is obviously satisfied under the following stronger condition

∀r > 0, ∃q ≡ q(r) ≥ 1, inf
x∈Wr

(P qψ)(x) > 0. (51)

Note that requiring Condition (51) means requiring that the irreducibility property for P (see
(29)) holds uniformly on each level set Wr. This condition is relevant only for unbounded
functionW . Indeed, otherwise, the set Wr is the whole space X for r large enough, and in this
case Condition (51) is restrictive since it requires that infx∈X(P

qψ)(x) > 0 for some q ≥ 1.
If X is discrete (say X = N) and W = (W (n))n∈N is an unbounded increasing sequence, then
the sets Wr are finite: In this case, Condition (51) holds if, and only if,

∀s ∈ N, ∃q ≡ q(s) ≥ 1, ∀i ∈ {0, . . . , s}, (P qψ)(i) > 0.

If X is a non-discrete topological space, then a natural assumption for Condition (51) to be
fulfilled is that, for every r > 0, the set Wr is compact. However this is not sufficient. An
additional natural assumption is that P is weakly Feller (i.e. if g ∈ B is continuous on X,
then so is Pg). Under these two assumptions, Condition (51) actually holds provided that
there exists a bounded and continuous function ψ0 such that 0 ≤ ψ0 ≤ ψ and

∀r > 0, ∃q ≡ q(r) ≥ 1, ∀x ∈ Wr, (P qψ0)(x) > 0.

Indeed the continuous function P qψ0 then reaches its lower bound on the compact set Wr,
and this lower bound is thus positive under the previous condition.
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4.5 Bibliographic comments

In the present bibliographic discussion we assume that P is irreducible. The uniqueness of 1X
(up to a multiplicative constant) as P−harmonic functions is classically studied in link with
the Harris-recurrence assumption. This is done in [Num84, Th. 3.8, p. 44], [MT09, Th. 17.1.5]
and [DMPS18, Th. 10.2.11], essentially using the fact that, for a Markov chain (Xn)n≥0 on
X and for every A ∈ X , the function g∞

A : x 7→ Px{Xk ∈ A i.o.} is a P−harmonic function,
where i.o. stands for infinitely often. Similarly, under the aperiodicity condition, the Harris-
recurrence assumption is classically used to prove the convergence in total variation of the
iterates of P to its (unique) invariant probability measure π (i.e. ∀x ∈ X, limn ∥δxPn−π∥TV =
0). This is proved in [MT09, Ths. 13.0.1, 13.3.5] and [DMPS18, Th. 11.3.1] via renewal theory
and splitting construction, also see [RR04, Th. 4] for a proof based on coupling method.

In this section, assuming that P satisfies the minorization condition (Mν,ψ), we choose a
different approach, first focusing on function h∞

R := limnR
n1X introduced in the previous sec-

tion. Indeed the condition h∞
R = 0 enables us to prove the above conclusion on P−harmonic

functions (Theorem 4.1), from which the Harris-recurrent property can be derived in Theo-
rem 4.3 using the fact that for every A ∈ X the function x 7→ Px{Xk ∈ A i.o.} is P−harmonic
(no surprise there). In the case when measure µR is finite and P is aperiodic, the condition
h∞

R = 0 is proved to be equivalent to the above mentioned iterate convergence in total vari-
ation (Theorem 4.7). So, to put it simply, the presentation in this section and the resulting
statements focus on the condition h∞

R = 0 depending on the residual kernel R, rather than
on the Harris-recurrence property. However note that the proof of Theorem 4.7 is original:
Actually Property (24) and the power series formula (40) simply derived from the key equal-
ity (17) allow us to directly apply the renewal theorem proved in the seminal paper [EFP49]
by Erdös, Feller and Pollard, to the power series ρ(z) in (38) used to define the aperiodicity
condition.

If P is recurrent, then the P−harmonic functions are still constant, but up to a negligible
set w.r.t. to some maximal irreducibility measure, e.g. see [Num84, Prop. 3.13, p. 44]. In
the same way, if P admits an invariant probability measure π, so that P is recurrent from a
classical result (e.g. see [DMPS18, Th. 10.1.6]), then the property limn ∥δxPn−πR∥TV = 0 is
known to hold for π−almost every x ∈ X, e.g. see [DMPS18, Th. 11.3.1] and [RR04, pp. 32-
33]. This is here highlighted using the explicit set H := {h∞

R = 0} which is P−absorbing and
µR−full under the recurrence condition (see Corollary 4.5 and the proof of Corollary 4.8).
Complements using splitting construction can be found in [Num84, Cor. 5.1, p. 71].

Under the irreducibility condition, the d-cycle property for P stated in Assertion (c) of
Theorem 4.14 is the standard definition of the period of P , see [MT09, p. 114] and [DMPS18,
Def. 9.3.5]. In our work, under the minorization Condition (Mν,ψ) and irreducibility con-
dition, Integer d is defined by d := g.c.d. {n ≥ 1 : ν(Rn−1ψ) > 0}. Then the alternative
characterizations of this integer d, in particular the d-cycle property for P , are proved under
the condition h∞

R = 0 in Theorem 4.14. The convergence in total variation norm stated in
Theorem 4.12 corresponds to the standard statements [MT09, Th. 13.3.4] and [DMPS18,
Cor. 11.3.2], except that the condition h∞

R = 0 is used here in Theorem 4.12 instead of the
Harris-recurrence condition in [MT09, DMPS18]. In the same way the πR−a.e. convergence in
total variation norm obtained in Corollary 4.13 corresponds to the standard results in [MT09,
Th. 13.3.4] and [DMPS18, Cor. 11.3.2]. Again the direct use of the µR−full P−absorbing set
H := {h∞

R = 0} provides a short proof of Corollary 4.13. The proofs in [MT09, Th. 13.3.4]
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and [DMPS18, Cor. 11.3.2] are based on the d−cycles property given in Assertion (c) of
Theorem 4.14. However, since the set E of Theorem 4.14 is not the whole set X a priori (E
is only µR−full), additional work is then required to obtain the conclusion of Theorem 4.14
(i.e. convergence for all x ∈ X). The proof given in Appendix B does not rely on the d−cycles
property: it adapts the arguments of the direct implication of Theorem 4.7 to the periodic
case, thus directly giving the conclusion of Theorem 4.14.

The sufficient condition provided in Proposition 4.17 for the condition h∞
R = 0 to hold

is the analogue of the standard statements ensuring that P is recurrent or Harris-recurrent
under drift condition, e.g. see [Num84, Prop. 5.10, p. 77], [MT09, Th. 8.4.3, Th. 9.1.8],
[DMPS18, Th. 10.2.13]. More precisely the drift inequality (46) in Proposition 4.17 is the
same as in the previously cited works. Moreover Condition (47) in Proposition 4.17 replaces
the classical assumption thatW is unbounded off petite set (i.e. each level setWr := {W ≤ r}
is a petite set). This last condition means that, for every r > 0, there exists a := (an)n ∈
[0, 1]N with

∑+∞
n=0 an = 1 and a positive measure νr,a such that Qa ≥ 1Wr ⊗ νr,a where

Qa :=
∑+∞

n=0 anP
n. Expressed with an = 2−(n+1), this assumption is clearly stronger than

Condition (50) in Corollary 4.18, which only focusses on the lower bound of the function Qψ
on Wr (no minorizing measure is involved in (50)).

Before diving into the details of the modulated drift condition used in the next sections, let
us present some comment on the probabilistic meaning of the simpler drift condition (46). Let
(Xn)n≥0 be a Markov chain with state space X and transition kernel P . Let W : X→[0,+∞)
be measurable. For any r > 0 the set Wr = {x ∈ X : W (x) ≤ r} must be thought of as the
level set of order r in X w.r.t. the function W . Since (PW )(x) = Ex

[
W (X1)

]
for any x ∈ X,

the Markov kernel P satisfies Condition (46) with ψ = 1Ws for some s > 0 if, and only if,

sup
x∈Ws

Ex
[
W (X1)

]
<∞ and ∀x ∈ X \Ws, Ex

[
W (X1)

]
≤W (x). (52)

The second condition in (52) means that, for any r > s, each point x ∈ X such thatW (x) = r
transits in mean in Wr. If X = Rd is equipped with some norm ∥ · ∥, then W may be of the
form W = v(∥ · ∥) with unbounded increasing function v : [0,+∞)→[0,+∞). In particular,
if W = ∥ · ∥, then the second condition in (52) means that, starting from x ∈ Rd far enough
from the origin, the state visited after a first transition of the Markov chain admits in mean
a norm less than ∥x∥, namely is closer to the origin. For a random walk on N, it means
that, for i large enough, the steps of the walker starting from i are in mean more to the left
than to the right, namely it tends to go back towards 0. In case X = Z and W (x) = |x|, a
typical illustration of the explicit computations needed for obtaining the drift inequality (46)
can be found in [MT09, Sect. 8.4.3 ] for random walks with bounded range and zero mean
increment. If (X, d) is a metric space and W (x) = d(x, x0), level sets are the balls centred at
x0. However the possibility of considering other level functions more suited to the transition
kernel (i.e. possibly considering level sets other than balls) offers flexibility for the validity of
Conditions (52) or of the modulated drift condition involved in the next sections.

5 Modulated drift condition and Poisson’s equation

Throughout this section, the Markov kernel P is assumed to satisfy the first-order minoriza-
tion condition (Mν,ψ). Then, the following V1−modulated drift condition is introduced:
PV0 ≤ V0 − V1 + bψ with some measurable function V0 : X→[1,+∞) and the so-called mod-
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ulated measurable function V1 : X→[1,+∞). The minorization condition is the first pillar in
this work, this modulated drift condition is the second one. Note that the modulated drift
condition is a re-enforcement of the drift inequality (46) of Proposition 4.17.

Under the minorization Condition (Mν,ψ) and the V1−modulated drift condition, the
convergence of the series

∑+∞
k=0R

kV1 is proved in Theorem 5.4 thanks to an auxiliary V1-
modulated residual drift inequality following the same lines as for (49). Then the series∑+∞

k=0R
k1X converges point-wise since 1X ≤ V1, so that the function h∞

R := limnR
n1X (see

(20)) is zero on X. Under the same assumptions it is also shown in Theorem 5.4 that the
positive measure µR given in (21) is finite, i.e. µR(1X) < ∞. Accordingly, when Condi-
tion (Mν,ψ) and the V1-modulated drift condition are assumed to hold, all the conclusions
of Theorems 4.1, 4.3, and Theorem 4.7 or 4.12 hold true, that is:

(i) The P−harmonic functions are constant on X.

(ii) P is irreducible (see (29)) and recurrent (see (27)).

(iii) The positive measure µR (see (21)) satisfies µR(ψ) = 1, and is the unique (up to a
positive multiplicative constant) P−invariant positive measure η such that η(ψ) <∞.

(iv) πR := µR(1X)
−1µR (see (26)) is the unique P−invariant probability measure on (X,X ),

we have πR(ψ) > 0, and P is Harris-recurrent (see (36)).

(v) The convergence in total variation of Theorem 4.7 or Theorem 4.12, depending on
whether P is aperiodic or periodic, holds.

Actually the convergence of the series
∑+∞

k=1R
kV1 gives more, in particular it naturally

provides solutions to the so-called Poisson’s equation (Theorem 5.6). This is the main moti-
vation of this section.

5.1 Modulated drift condition Dψ(V0, V1)

Let us introduce the following condition for any couple (V0, V1) of measurable functions from
X to [1,+∞):

∃ψ ∈ B∗
+, ∃b0 ≡ b0(V0, V1, ψ) > 0 : PV0 ≤ V0 − V1 + b0ψ. (Dψ(V0, V1))

This condition is said to be a V1−modulated drift condition for P , and V0 and V1 inDψ(V0, V1)
are called Lyapunov functions for P . The functions V0, V1, ψ are assumed to be everywhere
finite, so the function PV0 is too. It is worth noticing that the modulated function V1
must be larger than one for the results of this section to hold. In fact, it is only required
that V0 is non-negative and V1 is uniformly bounded from below by a positive constant.
Indeed, if PV ′

0 ≤ V ′
0 − V ′

1 + b′ψ for some positive constant b′ and some measurable functions
V ′
0 ≥ 0 and V ′

1 ≥ c1X with c > 0, then Condition Dψ(V0, V1) holds with V1 := V ′
1/c ≥ 1X,

V0 := 1X+V ′
0/c ≥ 1X and b0 := b′/c > 0. Moreover observe that if Conditions Dϕ(V0, V1) for

some ϕ ∈ B∗
+ is satisfied then Dψ(V0, V1) holds for any ψ ∈ B∗

+ such that ψ ≥ ϕ (using any
constant b0(V0, V1, ψ) larger than b0(V0, V1, ϕ)).

In the special case ψ := 1S for some S ∈ X ∗, the above condition writes as

∃S ∈ X ∗, ∃b0 ≡ b0(V0, V1, 1S) > 0 : PV0 ≤ V0 − V1 + b01S . (D1S (V0, V1))
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Note that Condition D1S (V0, V1) implies that V0 ≥ V1 on S
c. In fact Condition D1S (V0, V1) is

equivalent to : There exists S ∈ X ∗ such that supx∈Sc Γ(x) ≤ 0 and supx∈S Γ(x) <∞ with the
measurable finite function Γ(x) := (PV0)(x)− V0(x) + V1(x). Thus if Condition D1S (V0, V1)
holds, then any constant b0(V0, V1, 1S) ≥ supx∈S Γ(x) may be chosen. Finally recall that
Conditions (Mν,1S ) and D1S (V0, V1) are the most classical minorization/drift assumptions
in the literature.

Let us return to Markov kernel P satisfying the assumptions of Proposition 3.1. Then both
Conditions (Mν,1S ) and (Mν,ψS

) hold with ν ∈ M∗
+,b and ψS ≥ 1S given in (15). Moreover, if

P satisfies D1S (V0, V1), then Condition DψS
(V0, V1) holds since ψS ≥ 1S . The next statement

ensures that the constant b0(V0, V1, ψS) may be chosen smaller than b0(V0, V1, 1S).

Proposition 5.1 Let P satisfy the assumptions of Proposition 3.1 and Condition D1S (V0, V1)
for some couple (V0, V1) of Lyapunov functions on X. Then P satisfies Condition DψS

(V0, V1)
with ψS ≥ 1S given in (15), and we can choose

b0(V0, V1, ψS) ≤ b0(V0, V1, 1S). (53)

Proof. Since ψS defined in (15) is such that ψS ≥ 1S we already quoted that P also satisfies
Condition DψS

(V0, V1). Next, set

b0(V0, V1, ψS) := sup
x∈S

Γ(x)

ψS(x)
with Γ(x) := (PV0)(x)− V0(x) + V1(x).

Since ψS ≥ 1S , we have b0(V0, V1, ψS) ≤ supx∈S Γ(x) ≤ b0(V0, V1, 1S). □

Example 5.2 (Geometric drift condition) Let us introduce the following so-called V−geo-
metric drift condition (to be discussed in Section 6):

∃ψ ∈ B∗
+, ∃δ ∈ (0, 1), ∃b ∈ (0,+∞) : PV ≤ δV + b ψ (Gψ(δ, V ))

where V : X→[1,+∞) is a measurable function. Again recall that the most classical case is
when ψ := 1S for some S ∈ X ∗, that is

∃S ∈ X ∗, ∃δ ∈ (0, 1), ∃b ∈ (0,+∞) : PV ≤ δV + b 1S . (G1S (δ, V ))

Observe that Gψ(δ, V ) implies that PV ≤ V − (1 − δ)V + b ψ, so that P satisfies the
V1−modulated drift Condition Dψ(V0, V1) with V0 := V/(1− δ), V1 := V and b0 := b/(1− δ).

5.2 Residual-type modulated drift condition

Under Conditions (Mν,ψ) and for any couple (V,W ) of measurable functions from X to
[1,+∞) such that ν(V ) < ∞, let us introduce the following residual-type modulated drift
condition involving the residual kernel R ≡ Rν,ψ given in (13):

RV ≤ V −W. (Rν,ψ(V,W ))

Note that ConditionRν,ψ(V,W ) rewrites as PV ≤ V −W+ν(V )ψ, which is a specific instance
of Condition Dψ(V,W ) with b0 = ν(V ). The next simple lemma shows that Dψ(V0, V1)
generates a residual-type modulated drift condition up to slightly modify V0. Recall that
the kernel identity (17) used throughout Sections 3-4 and only based on the minorization
condition (Mν,ψ) is the first key point of this work. Lemma 5.3 based on the modulated drift
condition Dψ(V0, V1) is the second key point (already used in the proof of Proposition 4.17
under the weaker drift condition (46)).

39



Lemma 5.3 If P satisfies Conditions (Mν,ψ) and Dψ(V0, V1), then ν(V0) < ∞ and for
any constant c satisfying c ≥ (b0 − ν(V0))/ν(1X) the residual kernel R ≡ Rν,ψ given in (13)
satisfies Condition Rν,ψ(V0,d, V1) with V0,d := V0 + d1X ≥ V0 where d := max(0, c).

Proof. We already quoted that PV0 is everywhere finite under Condition Dψ(V0, V1), so that
0 ≤ ν(V0)ψ(x) ≤ (PV0)(x) for every x ∈ X from (Mν,ψ). Then it follows that the function
RV0 is well-defined and is everywhere finite. Note that ν(V0,d) = ν(V0) + dν(1X) < ∞ and
that PV0,d = PV0 + d1X. We get from the definitions of R and V0,d

RV0,d = PV0,d − ν(V0,d)ψ = PV0 + d1X −
(
ν(V0) + d ν(1X)

)
ψ

≤ V0 − V1 + b0ψ + d1X −
(
ν(V0) + d ν(1X)

)
ψ (from Assumption Dψ(V0, V1))

= V0,d − V1 +
(
b0 − ν(V0)− d ν(1X)

)
ψ

≤ V0,d − V1 (from the definitions of c and d).

Hence the proof is complete. □

Under Conditions (Mν,ψ)–Dψ(V0, V1) the following theorem provides relevant properties
on the non-negative kernel

∑+∞
k=0R

k involving the residual kernel R, from which further
statements on P and πR are obtained. Moreover the bounds (54a)-(54b) below are crucial
for the study of Poisson’s equation in the next subsection.

Theorem 5.4 Let P satisfy Conditions (Mν,ψ)–Dψ(V0, V1). Then

0 ≤
+∞∑
k=0

Rk1X ≤
+∞∑
k=0

RkV1 ≤ (1 + d0)V0 with d0 := max

(
0,
b0 − ν(V0)

ν(1X)

)
(54a)

0 ≤
+∞∑
k=0

ν
(
Rk1X

)
≤

+∞∑
k=0

ν
(
RkV1

)
≤ (1 + d0) ν(V0) <∞. (54b)

Moreover the conclusions (i)-(v) provided at the beginning of this section hold true, as well
as the following additional assertions:

(vi) The unique P−invariant probability measure πR is such that πR(V1) <∞.

(vii) If πR(V0) <∞, then πR(V1) ≤ b0 πR(ψ) ≤ b0 where b0 is the constant in Dψ(V0, V1).

(viii) if PV1/V1 is bounded on X, i.e. PBV1 ⊂ BV1, then the P−harmonic functions in BV1
(i.e. g ∈ BV1 such that Pg = g) are constant on X.

Inequalities (54a)-(54b), thus the constant d0, will play a crucial role for the bounds of
solutions to Poisson equation in Subsection 5.3 and for the polynomial rates of convergence.
Recall that the constant d0 depends on the minorizing measure ν in (Mν,ψ) and on the
constant b0(V0, V1, ψ) in Dψ(V0, V1). First prove the following.

Lemma 5.5 Assume that P satisfies Condition (Mν,ψ) and that the associated residual ker-
nel R ≡ Rν,ψ given in (13) satisfies Condition Rν,ψ(V,W ) for some couple of Lyapunov
functions (V,W ) such that ν(V ) <∞. Then we have

0 ≤
+∞∑
k=0

Rk1X ≤
+∞∑
k=0

RkW ≤ V (55a)

0 ≤
+∞∑
k=0

ν
(
Rk1X

)
≤

+∞∑
k=0

ν
(
RkW

)
≤ ν(V ) <∞. (55b)
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Proof. From Rν,ψ(V,W ), we derive that 0 ≤W ≤ V −RV , so that

∀n ≥ 1, 0 ≤
n∑
k=0

RkW ≤
n∑
k=0

RkV −
n+1∑
k=1

RkV ≤ V (56)

since Rn+1V ≥ 0. This proves (55a). Next (55b) is obtained using the monotone convergence
theorem. □

Proof of Theorem 5.4. Inequalities (54a)-(54b) directly follow from Lemma 5.3 and from
Lemma 5.5 applied to W = V1 and V := V0 + d01X with d0 = max(0, (b0 − ν(V0))/ν(1X))
observing that V ≤ (1 + d0)V0. Next, the point-wise convergence of the first series in (54a)
proves that h∞

R := limnR
n1X = 0 (see (20)), while the convergence of the first series in (54b)

reads as µR(1X) =
∑+∞

k=0 ν(R
k1X) <∞ (see (21)). Recall that the conclusions (i)-(v) provided

at the beginning of this section then follows from Theorems 4.1, 4.3, 4.7 and 4.12. Now prove
the additional assertions (vi)-(viii). That πR(V1) < ∞ follows from the definition of πR and
from the second inequality in (54b) which provides µR(V1) <∞. To prove (vii), note that

πR(PV0) = πR(V0) ≤ πR(V0)− πR(V1) + b0πR(ψ)

from the P−invariance of πR and Dψ(V0, V1). Finally the proof of (viii) follows the same
lines as for Assertion 1. of Theorem 4.1, replacing the function 1X with V1 and observing
that P (BV1) ⊂ BV1 , thus R(BV1) ⊂ BV1 , when PV1/V1 is bounded on X. Indeed, first

recall that ψ̃ :=
∑+∞

k=0R
kψ = ν(1X)

−11X from (35) since h∞
R = 0. Now let g ∈ BV1 be

such that Pg = g. Using R(BV1) ⊂ BV1 and proceeding as in Lemma 3.3, we obtained
that ν(g)

∑n
k=0R

kψ = g − Rn+1g for every n ≥ 1. Moreover we have limnR
ng = 0 since

|Rng| ≤ Rn|g| ≤ ∥g∥V1RnV1 and limnR
nV1 = 0 from (54a). Thus g = ν(g)ψ̃, from which it

follows that g is constant. □

5.3 Poisson’s equation

When P satisfies Conditions (Mν,ψ) andDψ(V0, V1), recall that πR given in (26) is the unique
P−invariant probability measure on (X,X ).

Theorem 5.6 Let P satisfy Conditions (Mν,ψ)–Dψ(V0, V1) and R ≡ Rν,ψ be the associated
residual kernel given in (13). Then the following assertions hold.

1. For any g ∈ BV1, the function series g̃ :=
∑+∞

k=0R
kg absolutely converges on X (point-wise

convergence). Moreover we have g̃ ∈ BV0 and

∥g̃∥V0 ≤ (1 + d0)∥g∥V1 with d0 := max

(
0 ,

b0 − ν(V0)

ν(1X)

)
(57)

where b0 is the positive constant given in Dψ(V0, V1).

2. For any g ∈ BV1 such that πR(g) = 0, the function g̃ satisfies Poisson’s equation

(I − P )g̃ = g. (58)
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Proof. Let g ∈ BV1 . Using |g| ≤ ∥g∥V1V1 and |Rkg| ≤ Rk|g| ≤ ∥g∥V1RkV1, Assertion
1. follows from (54a). Next, note that πR(|g|) < ∞ since πR(V1) < ∞ from Assertion (vi) of
Theorem 5.4. Now define

∀n ≥ 1, g̃n :=
n∑
k=0

Rkg.

Then, using P = R+ ψ ⊗ ν we have

g̃n − P g̃n = g̃n −Rg̃n − ν(g̃n)ψ = g −Rn+1g − ν(g̃n)ψ. (59)

We know that limnR
n+1g = 0 (pointwise convergence) from the convergence of the se-

ries
∑+∞

k=0R
kg. Moreover, using ν(g̃n) =

∑n
k=0 ν(R

kg) and µR(V1) < ∞, we obtain that
limn→+∞ ν(g̃n) = µR(g) from Lebesgue’s theorem w.r.t. the measure ν. Finally, for every
x ∈ X, we have limn(P g̃n)(x) = (P g̃)(x) from Lebesgue’s theorem applied to the sequence
(g̃n)n w.r.t. the probability measure P (x, dy) since limn g̃n = g̃, |g̃n| ≤ ∥g∥V1V0 (from As-
sertion 1.) and (PV0)(x) < ∞. Taking the limit when n goes to infinity in (59), we get
that

(I − P )g̃ = g − µR(g)ψ. (60)

Next, if we assume that πR(g) = 0, then Equality (60) rewrites as (I − P )g̃ = g since
µR(g) = πR(g)/πR(ψ) = 0 from (26). Theorem 5.6 is proved. □

For g ∈ BV1 such that πR(g) = 0, the solution g̃ :=
∑+∞

k=0R
kg in BV0 to Poisson’s equation

(I − P )g̃ = g in Theorem 5.6 is not πR−centred a priori, i.e. πR(g̃) ̸= 0. The natural way to
get a πR−centred solution is to define ĝ = g̃−πR(g̃)1X, but we then need to assume that g̃ is
πR−integrable. Accordingly, to obtain such a πR−centred solution to Poisson’s equation in
general terms, the assumption πR(V0) <∞ must be made.

Corollary 5.7 Let P satisfy Conditions (Mν,ψ)–Dψ(V0, V1) with πR(V0) < ∞. For any
g ∈ BV1 such that πR(g) = 0, set g̃ :=

∑+∞
k=0R

kg. Then the function ĝ = g̃ − πR(g̃)1X is a
πR−centered solution on BV0 to Poisson’s equation (I − P )ĝ = g. Moreover we have

∥ĝ∥V0 ≤ (1 + d0)
(
1 + πR(V0)

)
∥g∥V1 (61)

where the positive constant d0 is given in (57).

Proof. Let g ∈ BV1 be such that πR(g) = 0. Obviously we have ĝ ∈ BV0 and πR(ĝ) = 0.
Moreover we obtain that (I − P )ĝ = (I − P )g̃ = g from Theorem 5.6 and (I − P )1X = 0.
Finally we have

∥ĝ∥V0 ≤
(
1 + πR(V0) ∥1X∥V0

)
∥g̃∥V0 ≤ (1 + d0)

(
1 + πR(V0)

)
∥g∥V1 (62)

using the definition of ĝ, the triangular inequality and |g̃| ≤ ∥g̃∥V0V0 for the first inequality,
and the bound (57) applied to g̃ for the second one. □

Let g ∈ BV1 be such that πR(g) = 0. Under the assumptions of Corollary 5.7, when a
πR−centred solution g ∈ BV0 to Poisson’s equation (I − P )g = g is known, and when two
solutions to Poisson’s equation in BV0 differ from an additive constant, then we have g = ĝ, so
that the bound (61) applies to g. Of course such a solution g may be obtained independently
of the function g̃. For instance it can be given by g =

∑+∞
k=0 P

kg provided that this series
point-wise converges and defines a function of BV0 . Note that the choice of the minorizing
measure ν and of the function ψ used in Conditions (Mν,ψ) and Dψ(V0, V1) of Corollary 5.7
naturally has an impact on the constant d0 in (61).
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Remark 5.8 Recall that, under Conditions (Mν,ψ)–Dψ(V0, V1), the function h
∞
R := limnR

n1X
(see (20)) is zero from the convergence of the first series in (54a), so that ψ̃ :=

∑+∞
k=0R

kψ =
ν(1X)

−11X from (35). So the presence of the term ν(1X)
−1 in the general bound (57) is quite

natural (it is not due to the proof of Theorem 5.6). This does not mean that the bound of
the V0− norm of solutions to Poisson’s equation could not be improved. But in fact this last
question is not well formulated since solutions to Poisson’s equation are not unique, and the
solutions given in Theorem 5.6 are very specific: they are defined from the residual kernel R,
in particular they are not πR−centred (see Corollary 5.7).

Remark 5.9 Assume that P satisfies Conditions (Mν,1S )–D1S (V0, V1) with V0 ≥ V1 and
inf V0 = 1. Then we have d0 = 0 in the bound (57) of Theorem 5.6 if, and only if, S is an
atom, i.e. ∀a ∈ S, ν(dy) = P (a, dy). Indeed, if S is an atom, then P satisfies D1S (V0, V1)
with b0 = ν(V0) since V0 ≥ V1. Thus d0 = 0. To prove the converse implication, note that

ν(1X)
−1 = ν(1X)

−1∥1X∥V0 ≤ (1 + d0)∥1S∥V1 ≤ (1 + d0)

from (57) applied to g := 1S and (35) with here ψ := 1S. Hence, if d0 = 0, then ν(1X) ≥ 1.
Thus S is an atom since, for every a ∈ S, the non-negative measure ηa(dy) = P (a, dy)−ν(dy)
satisfies ηa(1X) ≤ 0, so that ηa = 0.

5.4 Further statements

Under Conditions (Mν,ψ)-Dψ(V0, V1) and the additional condition πR(V0) <∞, the sequence
(PnV0)n is shown to be bounded in (BV0 , ∥ · ∥V0) in the following lemma.

Lemma 5.10 Let P satisfy Conditions (Mν,ψ)–Dψ(V0, V1) with πR(V0) <∞. Then we have
for every n ≥ 1:

PnV0 ≤ V0+
∥ψ∥1X

(
πR(V0) + d0

)
πR(ψ)

1X with ∥ψ∥1X := sup
x∈X

ψ(x), d0 := max

(
0,
b0 − ν(V0))

ν(1X)

)
.

Proof. It follows from Lemma 5.3 that RV0,d0 ≤ V0,d0 with V0,d0 := V0+d01X and R ≡ Rν,ψ in
(13). Using the non-negativity of R and iterating this inequality gives: ∀n ≥ 1, RnV0,d ≤ V0,d.
From Formula (17) and 0 ≤ P kψ ≤ ∥ψ∥1X 1X, we obtain that

∀n ≥ 1, PnV0,d = RnV0,d +

n∑
k=1

ν(Rk−1V0,d)P
n−kψ ≤ V0,d + ∥ψ∥1X µR(V0,d)1X

with µR = πR/πR(ψ) given in (26). This provides the desired inequality using the definition
of V0,d, P1X = 1X and πR(V0) <∞. □

Now, given any measurable function V1 : X→[1,+∞), we present a necessary and sufficient
condition for P to satisfy a V1−modulated drift condition.

Proposition 5.11 Assume that P satisfies Condition (Mν,ψ). Let V1 : X→[1,+∞) be any
measurable function. Then there exists a measurable function V0 : X→[1,+∞) such that P
satisfies Dψ(V0, V1) if and only if

∀x ∈ X, Ṽ1(x) :=
+∞∑
k=0

(RkV1)(x) <∞ and ν(Ṽ1) <∞ (63)

where R ≡ Rν,ψ is the residual kernel in (13).
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Proof. If P satisfies Condition Dψ(V0, V1) for some Lyapunov function V0, then (63) holds

true from Theorem 5.4 (in fact we know that Ṽ1 ≤ c V0 for some positive constant c). Con-

versely, if V1 satisfies (63) with R ≡ Rν,ψ in (13), then we have (RṼ1)(x) = Ṽ1(x) − V1(x)
for every x ∈ X from the monotone convergence theorem w.r.t. the measure R(x, dy). Hence

Condition Rν,ψ(Ṽ1, V1) holds. Then Condition Dψ(Ṽ1, V1) holds with b0 := ν(Ṽ1). □

The next statement completes Theorem 3.6.

Proposition 5.12 Assume that P satisfies Condition (Mν,ψ) and is irreducible. Then the
two equivalent conditions 1. and 2. of Theorem 3.6 are also equivalent to the following one:
There exists a P−absorbing and µR−full set A ∈ X such that the restriction of P to A satisfies
the modulated drift condition DψA

(VA, 1A) for some measurable function VA : A→[1,+∞),
where ψA is the restriction of ψ to A.

If P satisfies the minorization condition (Mν,ψ), is irreducible and admits an invariant prob-
ability measure η, then we have η = πR from Proposition 3.14, and all the conclusions of
Theorem 5.4 then hold on some P−absorbing and πR−full set thanks to Proposition 5.12.

Proof. Under Condition Mν,ψ, let R ≡ Rν,R be the residual kernel defined in (13). Assume
that Condition 2. of Theorem 3.6 holds, i.e. µR(1X) < ∞. Define on X the function V :=∑+∞

k=0R
k1X taking its value in [0,+∞] a priori. Since ν(V ) = µR(1X) <∞, the set

A :=
{
x ∈ X : V (x) <∞

}
is non-empty. Moreover, if x ∈ A, then we have (RV )(x) < ∞ since (RV )(x) = V (x) − 1
from the monotone convergence theorem w.r.t. the measure R(x, dy). We then obtain that
(PV )(x) = (RV )(x) + ν(V )ψ(x) = V (x) − 1 + ν(V )ψ(x) < ∞. This proves that A is
P−absorbing. Since P is irreducible, A is µR−full from Proposition 3.17. Furthermore,
the previous equality proves that the restriction of P to A satisfies the modulated drift
condition DψA

(VA, 1A) where VA is the restriction of V to the set A.

Conversely assume that the condition provided in Proposition 5.12 holds. Using the fact
that A is P−absorbing and proceeding as in the proof of Corollary 4.5, it can be proved that
the restriction PA of P to A satisfies on A the minorization condition (MνA,ψA

) with small-
function ψA and minorizing measure νA defined as the restriction of ν to A. Then it follows
from Theorem 5.4 applied to the Markov kernel PA that there exists a unique PA-invariant
probability measure ηA on A and that ηA(ψA) > 0 (apply Assertion (iv) to PA). Next let
us define the following positive measure on (X,X ): ∀B ∈ X , η(1B) := ηA(1A∩B). Since A
is P−absorbing, η is a P -invariant probability measure, and we have η(ψ) = ηA(ψA) > 0.
Consequently Condition 1. of Theorem 3.6 holds for P and Proposition 5.12 is proved. □

Finally, under Conditions (Mν,ψ)–Dψ(V0, V1), the next statement provides a necessary
and sufficient condition for the (unique) P−invariant probability measure πR given in (26)
to satisfy πR(V0) <∞.

Proposition 5.13 Let P satisfy Conditions (Mν,ψ)–Dψ(V0, V1). Then the two following
conditions are equivalent:

1. πR(V0) <∞.

2. There exists a P−absorbing and πR−full set A ∈ X and a measurable function L ≥ V0 on A
such that the restriction PA of P to A satisfies the modulated drift condition DψA

(L, V0|A),
where V0|A (resp. ψA) is the restriction of V0 (resp. of ψ) to A.
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Proof. The proof follows the same limes as for Proposition 5.12. Let R ≡ Rν,R be the
residual kernel given in (13). Assume that πR(V0) <∞ and define on X the [0,+∞]−valued

function Ṽ0 :=
∑+∞

k=0R
kV0. Then Ṽ0 ≥ V0, and the following equality holds in [0,+∞]:

RṼ0 = Ṽ0−V0. Note that there exists x ∈ X such that Ṽ0(x) <∞ since ν(Ṽ0) = µR(V0) <∞
from πR(V0) < ∞, where µR :=

∑+∞
k=0 νR

k (see (26)). Now define the non-empty set A :=

{x ∈ X : Ṽ0(x) < ∞} ∈ X . Let x ∈ A. Then we have (RṼ0)(x) < ∞ from (RṼ0)(x) =

Ṽ0(x) − V0(x), so that (PṼ0)(x) = (RṼ0)(x) + ν(Ṽ0)ψ(x) < ∞. Thus P (x,A) = 1. This
proves that A is P−absorbing. Since P is irreducible from Theorem 5.4, A is πR−full from
Proposition 3.17. Moreover the restriction L := Ṽ0|A of Ṽ0 to A is a measurable function on
A satisfying RL = L− V0 on A, so that the restriction PA of P to A satisfies the modulated
drift condition DψA

(L, V0|A) as stated in Assertion 2. of Proposition 5.13.

Conversely assume that P satisfies Assertion 2. Then, proceeding as in the proof of
Corollary 4.5, we know that PA satisfies on A the minorization condition (MνA,ψA

) where
νA is the restriction of the minorizing measure ν to A. Thus it follows from Assertion (vi)
of Theorem 5.4 applied to PA under Condition (MνA,ψA

) and DψA
(L, V0|A) that the unique

PA−invariant probability measure, say πA, is such that πA(V0|A) <∞. Using the fact that πR

is the unique P− invariant probability measure, we then obtained that πA is the restriction
of πR to A and that πR(V0) = πA(V0|A) <∞ since A is P−absorbing and πR−full. □

5.5 Bibliographic comments

Condition Dψ(V0, V1) (or D1S (V0, V1)) is the so-called V1-modulated drift condition, e.g. see
Condition (V3) in [MT09, p. 343]. Although the functions V0, V1 inDψ(V0, V1) satisfy V0 ≥ V1
in general, this condition is not useful in this section. Such drift conditions was first introduced
for infinite stochastic matrices in [Fos53] to study the return times to a set, see [MT09, p. 198]
and [DMPS18, p. 96, 164, 337] for an historical background on this subject. Lemma 5.3 and
its direct use to obtain Theorem 5.4 (via Lemma 5.5) were presented in [HL24a]. Again note
that the non-negativity of the residual kernel R plays a crucial role in Theorem 5.4 since the
point-wise convergence of the series in (54a) is simply obtained bounding the partial sums
(see (56)).

Under the V1−modulated drift condition D1S (V0, V1) w.r.t. some petite set S ∈ X , the
existence of a solution ξ ∈ BV0 to Poisson’s equation (I − P )ξ = g was proved in [GM96,
Th. 2.3] for every πR−centred function g ∈ BV1 , together with the bound ∥ξ∥V0 ≤ c0 ∥g∥V1 for
some positive constant c0 (independent of g). When S is an atom, the solution ξ in [GM96,
Th. 2.3] can be expressed in terms of the first hitting time in S, and the non-atomic case is
solved via the splitting method. Under the irreducibility and aperiodicity conditions, Glynn-
Meyn’s theorem is related to point-wise convergence of the series

∑+∞
k=0 P

kg, see [MT09,
Th. 14.0.1]. With regard to the above two representations of solutions to Poisson’s equation,
the reader may consult the recent article [GI24]. We point out that the constant c0 in [GM96,
Th. 2.3] is unknown in general, excepted in atomic case: see [LL18, Prop. 1] for a discrete
state-space X. Thus, the novelty of Theorem 5.6 and Corollary 5.7 already proved in [HL24a]
is to provide a simple and explicit bound in Poisson’s equation in the non-atomic case.

Let us briefly discuss the Central Limit Theorem (C.L.T.), which is a standard topic where
Poisson’s equation is useful. If (Xn)n∈N is a Markov chain with state space X and invariant
distribution π, then a measurable π−centred real-valued function g on X is said to satisfy the
C.L.T. under Pη for some initial probability measure η (i.e. η is the probability distribution
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of X0) when the asymptotic distribution of n−1/2Sn(g) with Sn(g) =
∑n−1

k=0 g(Xk) is the
Gaussian distribution N (0, σ2g) for some positive constant σ2g , called the asymptotic variance
of g. We refer to [DMPS18, Chap. 21] for a nice and comprehensive account on the Markovian
C.L.T. and the classical approach via Poisson’s equation. Here, in link with Corollary 5.7,
we just recall the following classical C.L.T. proved in [GM96] for Markov chains satisfying a
modulated drift condition:

Glynn-Meyn’s C.L.T. [GM96]: If the transition kernel P of the Markov chain
(Xn)n∈N satisfies Conditions (Mν,ψ)–Dψ(V0, V1) with V1 ≤ V0, πR(V

2
0 ) < ∞, and

if η is any initial probability measure, then every πR−centred function g ∈ BV1 satisfies
the C.L.T. under Pη with asymptotic variance given by σ2g = 2πR(gĝ) − πR(g

2), where
ĝ ∈ BV0 is the solution to Poisson’s equation (I − P )ĝ = g provided by Corollary 5.7.

The condition πR(V
2
0 ) < ∞ is required for the function ĝ to be square πR−integrable in

order to apply the Markovian C.L.T. [DMPS18, Th. 21.2.5] under PπR , where πR is the
unique P−invariant probability measure from Theorem 5.4. The extension to any initial
probability measure follows from [DMPS18, Cor. 21.1.6] since P is Harris recurrent under
the assumptions of Corollary 5.7 from Theorem 5.4. Note that the asymptotic variance σ2g
can be upper bounded using the bound (61) (see [HL24a, Cor. 2.7]).

To conclude this section let us make a few additional comments on the modulated drift
condition, which is the main assumption of this work together with the minorization condition.
If (Xn)n≥0 is a Markov chain with state space X and transition kernel P , then the modulated
drift condition has the following form when the modulated function V1 is constant and ψ = 1Vs

for some s > 0 where Vs = {x ∈ X : V0(x) ≤ s} is the level set of order s w.r.t. the function V0:

sup
x∈Vs

Ex
[
V0(X1)

]
<∞ and ∃a > 0, ∀x ∈ X \ Vs, Ex

[
V0(X1)

]
≤ V0(x)− a. (64)

The second condition in (64) means that, for any r > s, each point x ∈ X such that V0(x) = r
transits in mean to a point of the level set Vr−a. For a random walk on N, it means that, for
i large enough, the steps of the walker starting from i are in mean strictly more to the left
than to the right, the gap being controlled by a fixed additive constant a > 0. Recall that
the weaker drift condition (52) was introduced in Proposition 4.17 to obtain limk R

k1X = 0.
The additive reduction by the positive constant a in (64) is the sole difference with (52),
but it is crucial for obtaining the convergence of the series

∑+∞
k=0R

k1X in Theorem 5.4. The
general modulated drift condition Dψ(V0, V1) corresponds to (64) with a positive term V1(x)
depending on x instead of the positive constant a.

Under the minorization condition (Mν,ψ), Propositions 3.14 and 5.12 show that, if P is
irreducible and admits an invariant probability measure π, then P satisfies a modulated drift
condition with V1(x) = 1 on some absorbing and π−full set. Hence modulated drift condi-
tion is a perfectly natural assumption. In the discrete state space, any irreducible discrete
Markov kernel P admitting an invariant probability measure π satisfies all the conclusions of
Theorems 5.4, 5.6 and Corollary 5.7. Indeed S = {x} for some state x may be chosen such
that π(1{x}) > 0, and S = {x} is obviously a first-order small-set. We have π = πR from
Proposition 3.14. Next, it follows from Proposition 5.12 that P satisfies all the conclusions
of Theorem 5.4 on a P−absorbing and π−full set A ∈ X . In fact we have A = X here:
Indeed, otherwise any x ∈ A would satisfy Pn(x,Ac) = 0 for every n ≥ 1 with Ac ̸= ∅, which
contradicts the irreducibility condition (i.e. the communication property between any two
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states, e.g. see [MT09, p. 78]). Various examples of discrete Markov models are presented
in [Nor97, Bré99, Gra14]. In fact, many of the above conclusions are milestones in Markov
theory. In particular, Forster’s criterion as a necessary and sufficient condition of existence of
a P−invariant probability measure (or for positive recurrence) for irreducible Markov kernels,
is nothing else that a 1−modulated drift condition. This explains why the minorization and
drift conditions are so popular for studying Markov models.

Note, however, that Proposition 5.12, as well as Proposition 5.11, are only of theoretical
interest. In practice the form of the Markov kernel P is directly taken into account to find
explicit functions V0 and V1 satisfying Condition Dψ(V0, V1). Finally, as shown for instance
for random walks on the half line in [JT03], recall that the condition πR(V0) < ∞ is not
automatically fulfilled under Condition Dψ(V0, V1). In fact, as proved in Proposition 5.13,
this additional condition πR(V0) < ∞ is closely related to an extra V0−modulated drift
condition.

6 V−geometric ergodicity

Let V : X→[1,+∞) be measurable. Recall that the V−geometric drift condition for P is

∃ψ ∈ B∗
+, ∃δ ∈ (0, 1), ∃b ∈ (0,+∞) : PV ≤ δV + b ψ (Gψ(δ, V ))

and that this condition provides the modulated drift Condition Dψ(V0, V1) with

V0 := V/(1− δ), V1 := V and b0 := b/(1− δ) (65)

(see Example 5.2). From now on, let us assume that P satisfies the first-order minorization
condition (Mν,ψ) and the geometric drift condition Gψ(δ, V ). It follows from Theorem 5.4
and Condition Dψ(V0, V1) with V0, V1 and b0 given in (65) that the residual kernel R ≡ Rν,ψ
given in (13) fulfils the following properties

0 ≤
+∞∑
k=0

Rk1X ≤
+∞∑
k=0

RkV ≤ 1 + d0
1− δ

V with d0 := max

(
0,

b− ν(V )

ν(1X)(1− δ)

)
(66a)

0 ≤
+∞∑
k=0

ν
(
Rk1X

)
≤

+∞∑
k=0

ν
(
RkV

)
≤ (1 + d0)ν(V )

1− δ
<∞, (66b)

so that h∞
R = 0 and πR := µR(1X)

−1µR (see (26)) is the unique P−invariant probability
measure on (X,X ). Moreover we have from Conclusions (iii) and (vi) of Theorem 5.4 that

µR(ψ) = 1 and πR(V ) = πR(V1) <∞. (67)

Below a direct application of Theorem 5.6 and Corollary 5.7 for Poisson’s equation pro-
vides Corollary 6.1. Then, assuming further the aperiodicity condition (39), the so-called
V−geometric ergodicity is obtained in Subsection 6.2 using elementary spectral theory.

6.1 Poisson’s equation under the geometric drift condition

Corollary 6.1 Let P satisfy Conditions (Mν,ψ)–Gψ(δ, V ) and R ≡ Rν,ψ be the associated
residual kernel given in (13). Then:
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1. For any g ∈ BV , the function series g̃ :=
∑+∞

k=0R
kg absolutely converges on X (point-wise

convergence). Moreover we have g̃ ∈ BV and

∥g̃∥V ≤ 1 + d0
1− δ

∥g∥V with d0 := max

(
0 ,

b− ν(V )

ν(1X)(1− δ)

)
(68)

where δ, b are the constants given in Gψ(δ, V ).

2. For every g ∈ BV such that πR(g) = 0, the function ĝ := g̃ − πR(g̃)1X is the unique
πR−centered function in BV solution to Poisson’s equation (I − P )ĝ = g, and we have

∥ĝ∥V ≤ (1 + d0) (1 + πR(V ))

1− δ
∥g∥V . (69)

For the sake of simplicity this statement is directly deduced below from Theorem 5.6 and
Corollary 5.7. A self-contained proof of Corollary 6.1 could be also developed starting from
(66a) and mimicking the proofs of Theorem 5.6 and Corollary 5.7.

Proof. Using the modulated drift condition Dψ(V0, V1) with V0, V1, b0 given in (65), it follows
from Assertion 1. of Theorem 5.6 that

∀g ∈ BV , ∥g̃∥V0 ≤ (1 + d0)∥g∥V with d0 := max

(
0,

b− ν(V )

ν(1X)(1− δ)

)
from which we deduce (68) since ∥ · ∥V0 = (1 − δ)∥ · ∥V . Now, apply Corollary 5.7 to prove
Assertion 2. First note that πR(V0) <∞ since V0 = V/(1−δ) and πR(V ) <∞ (see (67)). Next
we know from Corollary 5.7 that ĝ = g̃ − πR(g̃)1X is a πR−centered function in BV solution
to Poisson’s equation (I − P )ĝ = g. Moreover observe that πR(V0) ∥1X∥V0 = πR(V ) ∥1X∥V ≤
πR(V ). From the first inequality in (62) and again ∥ · ∥V0 = (1− δ)∥ · ∥V , we obtained that

∥ĝ∥V ≤
(
1 + πR(V )

)
∥g̃∥V

from which we deduce (69) using (68).

Finally it follows from Condition Gψ(δ, V ) that PV/V is bounded on X, i.e. PBV ⊂ BV ,
since the small-function ψ is bounded and 1X ≤ V . Then Assertion (viii) of Theorem 5.4
ensures that E1 := {g ∈ BV : Pg = g} = R · 1X. Hence two solutions to Poisson’s equation in
BV differ from an additive constant. Consequently ĝ is the unique πR−centered function in
BV solution to Poisson’s equation (I − P )ĝ = g. □

6.2 V−geometric ergodicity

Recall that, under Conditions (Mν,ψ)–Gψ(δ, V ), we have h∞
R = 0, so that the aperiodic-

ity condition (39) corresponds to the case d = 1 in Theorem 4.14. Now, under Condi-
tions (Mν,ψ)–Gψ(δ, V ) and (39), the so-called V−geometric ergodicity of P is proved. The
proof is based on Inequalities (66a)–(66b), Corollary 6.1 and elementary spectral theory. This
requires to extend the definition of BV to complex-valued functions, that is: For every mea-
surable function g : X→C, set ∥g∥V := supx∈X |g(x)|/V (x) ∈ [0,+∞] where | · | stands here
for the modulus in C, and let us define

BV (C) :=
{
g : X→C,measurable such that ∥g∥V < ∞

}
.
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Note that, under Condition Gψ(δ, V ), P defines a bounded linear operator on BV . Since
every function g in BV (C) writes as g = g1 + ig2 with g1, g2 ∈ BV , Pg is simply defined by
Pg = Pg1+ iPg2, so that P obviously defines a bounded linear operator on the Banach space
(BV (C), ∥ · ∥V ) too.

Theorem 6.2 Assume that P satisfies Conditions (Mν,ψ)–Gψ(δ, V ) and is aperiodic (see
(39)). Then P is V−geometrically ergodic, that is

∃ρ ∈ (0, 1), ∃cρ > 0, ∀g ∈ BV (C), ∀n ≥ 1, ∥Png − πR(g)1X∥V ≤ cρ ρ
n∥g∥V . (70)

Note that the geometric rate of convergence in the case of uniform ergodicity (see Exam-
ple 3.7) corresponds to the 1X−geometric ergodicity.

Let g ∈ BV be such that πR(g) = 0. It follows from Property (70) that

+∞∑
k=0

∥P kg∥V ≤ c(1− ρ)−1∥g∥V <∞.

Consequently the function series g :=
∑+∞

k=0 P
kg absolutely converges in (BV , ∥ · ∥V ) and

∥g∥V ≤ c(1− ρ)−1∥g∥V .

Note that g is πR−centred and satisfies Poisson’s equation (I − P )g = g, so that g equals to
the function ĝ of Corollary 6.1. Inequality (69) then provides the following alternative bound:

∥g∥V ≤ (1 + d0) (1 + πR(V ))

1− δ
∥g∥V .

Now, the needed prerequisites in spectral theory are listed. Let L be a bounded linear
operator on a Banach space (L, ∥ · ∥):

(S1) The spectrum σ(L) of L: σ(L) := {z ∈ C : zI − L is not invertible} where I denotes
the identity map on L. Recall that σ(L) is a compact subset of C.

(S2) The operator-norm of L, still denoted by ∥L∥: ∥L∥ := sup{∥Lf∥ : f ∈ L, ∥f∥ ≤ 1}.

(S3) The spectral radius r(L) of L: r(L) := max{|z| : z ∈ σ(L)},
and Gelfand’s formula: r(L) = limn ∥Ln∥1/n.

Under the assumptions of Theorem 6.2, Lemmas 6.3–6.4 below show that, for any z ∈ C
such that |z| = 1 and z ̸= 1, the bounded linear operator zI − P on BV (C) is invertible.

Lemma 6.3 If P satisfies Conditions (Mν,ψ)–Gψ(δ, V ) and is aperiodic, then for any z ∈ C
such that |z| = 1 and z ̸= 1 the bounded linear operator zI − P on BV (C) is one-to-one.

Proof. Let z ∈ C be such that |z| = 1 and assume that zI − P on BV (C) is not one-to-one,
that is: there exists g ∈ BV (C), g ̸= 0, such that (zI − P )g = 0. Below this is proved to be
only possible for z = 1, which provides the desired result. Let g ∈ BV (C), g ̸= 0, be such
that (zI −P )g = 0. Since P , thus R, defines a bounded linear operator on the Banach space
(BV (C), ∥ · ∥V ), Equality (44) of Lemma 4.15 can be proved similarly, that is we have:

∀n ≥ 0, ν(g)
n∑
k=0

z−(k+1)Rkψ = g − z−(n+1)Rn+1g.
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Moreover we know from Assertion 1. of Corollary 6.1 that the series g̃ :=
∑+∞

k=0R
kg point-wise

converges on X, thus: limk R
kg = 0 (point-wise convergence). Hence we have g = ν(g)ψ̃z,

with ψ̃z :=
∑+∞

k=0 z
−(k+1)Rkψ. Recall that ψ̃z is bounded on X from Proposition 3.4. Thus

g is bounded on X, so that z is an eigenvalue of P on B(C) and ρ(z) = 1 from Lemma 4.15,
where ρ(·) is defined (38). Since the aperiodicity condition corresponds to the case d = 1 in
Theorem 4.14, it follows that z = 1 from Assertion (a) of Theorem 4.14. □

Lemma 6.4 If P satisfies Conditions (Mν,ψ)-Gψ(δ, V ) and is aperiodic, then for every z ∈
C such that |z| = 1 and z ̸= 1 the bounded linear operator zI − P on BV (C) is surjective.

Proof. Let z ∈ C be such that |z| = 1 and g ∈ BV . Define

∀n ≥ 1, g̃n,z :=
n∑
k=0

z−(k+1)Rkg.

Using P = R+ ψ ⊗ ν we obtain that

zg̃n,z − P g̃n,z = z g̃n,z −Rg̃n,z − ν(g̃n,z)ψ = g − z−(n+1)Rn+1g − ν(g̃n,z)ψ. (71)

Moreover we have

lim
n→+∞

g̃n,z = g̃z :=
+∞∑
k=0

z−(k+1)Rkg (point-wise convergence)

with g̃z ∈ BV (C) since
+∞∑
k=0

|z−(k+1)Rkg| ≤ ∥g∥V
+∞∑
k=0

RkV ≤ c V with c = (1 + d0)(1− δ)−1

from the second inequality in (66a). Also note that, for any x ∈ X, we have (PV )(x) < ∞
from Condition Dψ(V0, V1), and that |g̃n,z| ≤ c V . It then follows from Lebesgue’s theorem
w.r.t. the probability measure P (x, dy) that limn(P g̃n,z)(x) = (P g̃z)(x). Finally we have

lim
n→+∞

ν(g̃n,z) = lim
n→+∞

n∑
k=0

z−(k+1)ν(Rkg) = µz(g) :=
+∞∑
k=0

z−(k+1)ν(Rkg)

since the last series converges from |z−(k+1)ν(Rkg)| ≤ ∥g∥V ν(RkV ) and (66b). Then, when n
growths to +∞ in Equality (71) (point-wise convergence on X), we obtain that (zI −P )g̃z =
g − µz(g)ψ. With g := ψ this provides (zI − P )ψ̃z =

(
1− µz(ψ)

)
ψ with

ψ̃z :=
+∞∑
k=0

z−(k+1)Rkψ ∈ BV (C) and µz(ψ) =
+∞∑
k=0

z−(k+1)ν(Rkψ) = ρ(z−1)

where ρ(·) is defined (38). Since z ̸= 1 and d = 1 (aperiodicity condition), we know from
Assertion (a) of Theorem 4.14 that ρ(z−1) ̸= 1. Thus

(zI − P )

(
g̃z +

µz(g)

1− µz(ψ)
ψ̃z

)
= g,

from which we deduce that zI − P is surjective. □
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Proof of Theorem 6.2. Recall that πR(V ) < ∞ under the assumptions of Theorem 6.2 (see
(67)). Thus πR defines a bounded linear form on BV (C), so that B0 := {g ∈ BV (C) : πR(g) =
0} is a closed subspace of BV (C). Note that B0 is P−stable (i.e. P (B0) ⊂ B0) from the
P−invariance of πR. Let P0 be the restriction of P to B0. Assertion 2. of Corollary 6.1 shows
that I − P0 is invertible on B0. Next let z ∈ C be such that |z| = 1, z ̸= 1. It follows
from Lemma 6.3 that zI − P0 is one-to-one. Now, let g ∈ B0. From Lemma 6.4 there exists
h ∈ BV (C) such that (zI − P )h = g. We have (z − 1)πR(h) = πR(g) = 0, thus πR(h) = 0
(i.e. h ∈ B0) since z ̸= 1. Hence zI − P0 is surjective.

We have proved that, for every z ∈ C such that |z| = 1, the bounded linear operator
zI − P0 is invertible on B0. Let r(P ) denote the spectral radius of P on BV (C). Recall
that r(P ) = limn(∥Pn∥V )1/n from Gelfand’s formula, where ∥ · ∥V denotes here the operator
norm on BV (C). We know that r(P ) ≤ 1 from Lemma 5.10 (in fact we have r(P ) = 1 since
P1X = 1X). Hence the spectral radius r0 = r(P0) of P0 on B0 is less than one too. In fact
we have r0 < 1 since the spectrum σ(P0) of P0 is a compact subset of C which, according to
the above, is contained in the unit disk of C and does not contain any complex number of
modulus one.

Let ρ ∈ (r0, 1). Since r0 = limn(∥Pn0 ∥0)1/n from Gelfand’s formula where ∥ · ∥0 denotes
the operator norm on B0, there exists a positive constant cρ such that: ∥Pn0 ∥0 ≤ cρ ρ

n. Thus

∀n ≥ 1, ∀g ∈ BV (C), ∥Png − πR(g)1X∥V = ∥Pn(g − πR(g)1X)∥V (from Pn1X = 1X)

= ∥Pn0 (g − πR(g)1X)∥V (since g − πR(g)1X ∈ B0)

≤ cρ ρ
n ∥g − πR(g)1X∥V

≤ cρ(1 + πR(V )) ρn ∥g∥V (72)

from triangular inequality and πR(|g|) ≤ πR(V )∥g∥V . This proves (70). □

6.3 Bibliographic comments

A detailed and comprehensive history of geometric ergodicity, from the pioneering papers
[Mar06, Doe37, Ken59] to modern works, can be found in [MT09, Sec. 15.6, 16.6], see also
[DMPS18, Sec. 15.5]. Theorem 6.2 corresponds to the statement [MT09, Th. 16.1.2] and
[DMPS18, Th. 15.2.4], except that it is stated here with a first-order small-function instead
of a petite set. The proof in [MT09, DMPS18] is based on renewal theory and Nummelin’s
splitting construction. Alternative proofs of V−geometric ergodicity can be found in [RR04]
based on coupling arguments, in [Bax05] based on renewal theory, in [HM11] based on an
elegant idea using Wasserstein distance, in the recent paper [CnM23] based on the dual version
of the geometric drift inequality, and finally in [Hen06, HL14a, Del17, HL20] based on spectral
theory (quasi-compactness) whose first founding ideas are already present in [DF37]. Note
that the use of Wasserstein distance in [HM11] requires the condition πR(1S) > 1/2 on the
set S in (Mν,1S ). We refer to the recent paper [GHLR24] where 27 conditions for geometric
ergodicity are discussed.

Since the pioneer work [MT94] much effort has been made to find explicit constant c
and rate of convergence ρ in Inequality (70). Under Assumptions (Mν,ψ)–Gψ(δ, V ) and
the strong aperiodicity condition, such an issue is fully addressed in [Bax05] via renewal
theory. Alternative computable upper bounds of the rate of convergence ρ can be found
in [LT96, RT99, RT00, Ros02] using splitting or coupling methods, and in [HL14b, HL24b]

51



using spectral theory. We refer to [Qin24] for a recent review on various methods for deriving
convergence bounds for MCMC. Recall that any methods based on Hairer and Mattinglsy’s
result [HM11] are faced to the condition πR(1S) > 1/2 for the small-set S. Surprisingly, extra
conditions on πR(1S) appear in others works related to geometric or polynomial rates of
convergence. For example the first part in the proof of [RR04, Th. 9] provides a quantitative
control on V−geometric rate of convergence under some additional condition on the data
in Assumptions (Mν,1S )–G1S (δ, V ): this condition actually requires that πR(1S) is bounded
from below by some explicit positive constant. Without this extra condition, the convergence
rate in [RR04, Th. 9] is no longer quantitative. Finally recall that converting bounds on
Wasserstein’s distance into (weighted) total variation bounds are generally based on [MS10,
Th. 12] which requires that the probability measures P (x, dy) have a density with respect to
some reference measure (see also [QH22]).

In Section 8 the geometric rate of convergence of the iterates of P is addressed. A theo-
retical result for P acting on a general Banach space B is provided, and then apply to the
cases B := BV and B := L2(πR) under Conditions (Mν,ψ)–Gψ(δ, V ). This result depends
on the spectral radius rB of R on B and on the possible solutions to Equation ρ(z−1) = 1
in the complex annulus {z ∈ C : rB < |z| < 1}, where ρ(·) is the power series introduced in
(38).

Poisson’s equation for V -geometrically ergodic Markov models is classically studied start-
ing from Inequality (70), which ensures that, for every g ∈ BV such that πR(g) = 0, the
function g :=

∑+∞
k=0 P

kg in BV is the unique πR−centred solution to Poisson’s equation
(I − P )g = g. A quite different development is proposed in this section: Indeed Pois-
son’s equation is first solved in Corollary 6.1 as a by-product of the modulated drift Condi-
tion Dψ(V0, V1) (see (65)). Next this study is used for proving the V−geometric ergodicity:
Indeed note that this prior study of Poisson’s equation plays a crucial role at the beginning
of the proof of Theorem 6.2 and that the convergent series in (66a)-(66b) are repeatedly used
in the proof of Lemmas 6.3-6.4. A standard use of Poisson’s equation is to prove a central
limit theorem (C.L.T.). Let P be a Markov kernel satisfying Conditions (Mν,ψ) and the
V−geometric drift condition Gψ(δ, V ). Then P satisfies Condition Dψ(V0, V1) with V0, V1, b0
given in (65). Consequently, if π(V 2) < ∞, then the conclusions of Glynn-Meyn’s C.L.T.,
recalled page 46, hold true (note that BV1 = BV here). Mention that the residual kernel
R and its iterates have been considered in [KM03] to investigate the eigenvectors belonging
to the dominated eigenvalue of the Laplace kernels associated with V−geometrically ergodic
Markov kernel P . This issue called ”multiplicative Poisson equation” in [KM03] is used to
prove limit theorems for the underlying Markov chain (also see [KM05]). This question is
not addressed in our work.

In this section, the key idea is to apply Theorem 5.4 under the modulated drift Condi-
tion Dψ(V0, V1) provided by the geometric drift condition Gψ(δ, V ). Recall that the main
argument for Theorem 5.4 is the residual-type drift inequality introduced in Subsection 5.2.
The alternative residual-type drift inequality RV α ≤ δα V α for some suitable α ∈ (0, 1] has
been introduced in [HL24b] under Conditions (Mν,1S )–G1S (δ, V ). This drift inequality can
be used to study the geometric ergodicity w.r.t. the Lyapunov function V α: This issue is
presented in [HL24b] and revisited in Section 8. Let us simply mention here that the drift
inequality RV α ≤ δα V α implies that the spectral radius of R on BV α(C) is less than δα, so
that a simple bound for the V α−weighted norm of solutions to Poisson’s equation can be
obtained using the function series g̃ of Corollary 6.1. This bound detailed in [HL24b] involves
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the constant (1−δα)−1, which is large when the drift inequality RV α ≤ δα V α is only satisfied
for α close to zero. In such a case, the bounds (68) and (69) for the V−weighted norm of
solutions to Poisson’s equation may be more relevant.

7 Perturbation results

The main objective of this section is the control of the deviation between the invariant
probability measure of a reference Markov kernel and the invariant probability measure of
some Markov kernel which is thought of as a perturbation of the reference one. Thus the
bounds on the gap on the invariant probability measures are expected to be expressed in
function of that on the Markov kernels. To be consistent, such a bound must converge to
0 when the perturbed kernel converges (in some sense) to the reference one. Throughout
this section, the reference Markov kernel is assumed to satisfy the first-order minorization
condition (Mν,ψ) and the V1−modulated drift condition Dψ(V0, V1). The control of the gap
on the invariant probability measures is in norm ∥ · ∥′V1 and ∥ · ∥TV (see (8)). The basic tools
are: First the fact that, for two Markov kernels P and K with respective invariant probability
measures π and κ, we have

∀g ∈ BV1 , κ(g)− π(g) = κ((K − P )ξ)

where the function ξ is any solution to Poisson’s equation (I − P )ξ = g − π(g)1X; Second
the control of the solution to Poisson’s equation provided by Theorem 5.6. Recall that any
Markov kernel satisfying both minorization and modulated drift conditions has a unique
invariant probability measure (see the introducing part of Section 5 for a list of properties
satisfied by such a Markov kernel).

7.1 Main results

First, let us present a statement based on Theorem 5.6 on Poisson’s equation. It gives an
estimate in norm ∥ · ∥′V1 and ∥ · ∥TV of the gap between the invariant probability of a Markov
kernel P satisfying Conditions (Mν,ψ)–Dψ(V0, V1) and the invariant probability measure κ
of any Markov kernel K on (X,X ) satisfying ∥KV0∥V0 <∞ and κ(V0) <∞.

Proposition 7.1 Assume that P satisfies Conditions (Mν,ψ)–Dψ(V0, V1), with P−invariant
probability measure denoted by π. Let K be a Markov kernel on (X,X ) with (any) invariant
probability measure κ such that ∥KV0∥V0 <∞ and κ(V0) <∞. Assume that the non-negative
function ∆V0 defined on X by

∀x ∈ X, ∆V0(x) := ∥P (x, ·)−K(x, ·)∥′V0

is X−measurable. Then

∥κ− π∥′V1 ≤ (1 + d0)(1 + π(V1)∥1X∥V1)κ(∆V0) (73)

where d0 := max(0, (b0 − ν(V0))/ν(1X)) and π(V1) <∞.

The function ∆V0 on X quantifying the gap between the two Markov kernels is assumed to
be X−measurable in Proposition 7.1. In the other statements of this subsection (Proposi-
tion 7.2, Theorem 7.3), such a measurability assumption on the corresponding “gap function”
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is also introduced. It turns out that, when X is countably generated, the “gap function” is
X−measurable. We refer to Subsection 7.4 for some details.

Proof. Recall that ∥PV0∥V0 < ∞ from Dψ(V0, V1), so that ∆V0 and κ(∆V0) are well-defined
under the assumptions of Proposition 7.1.

Let g ∈ BV1 be such that ∥g∥V1 ≤ 1. Since π(V1) <∞ from Assertion (vi) of Theorem 5.4,
π(g) is well-defined. Introduce g0 := g− π(g)1X and the residual kernel R := P −ψ⊗ ν. Let
g̃0 :=

∑+∞
k=0R

kg0 be the function in BV0 provided by Therorem 5.6. Then we have

κ
(
(K − P

)
g̃0) = κ(g̃0)− κ(g̃0 − g0) = κ(g0) = κ(g)− π(g) (74)

using the K−invariance of κ, the Poisson equation (I − P )g̃0 = g0 from Theorem 5.6, and
finally the definition of g0. It follows from the definition of the X−measurable function ∆V0

that

|κ(g)− π(g)| ≤
∫
X

∣∣(Kg̃0)(x)− (P g̃0)(x)
∣∣κ(dx) ≤ ∥g̃0∥V0

∫
X
∆V0(x)κ(dx) = ∥g̃0∥V0κ(∆V0).

Finally we know from Theorem 5.6 that ∥g̃∥V0 ≤ (1 + d0)∥g0∥V1 with d0 defined in (57), so
that

∥g̃0∥V0 ≤ (1 + d0) ∥g − π(g)1X∥V1 ≤ (1 + d0)
(
1 + π(V1)∥1X∥V1

)
from which we deduce (73). □

Now let {Pθ}θ∈Θ be a family of transition kernels on (X,X ), where Θ is an open subset of
some metric space. Let us fix some θ0 ∈ Θ. The family {Pθ, θ ∈ Θ \ {θ0}} must be thought
of as a family of transition kernels which are perturbations of Pθ0 and which converges (in
a certain sense) to Pθ0 when θ→ θ0. To that effect, when Pθ0 satisfies Conditions (Mν,ψ)–
Dψ(V0, V1) and ∥PθV0||V0 <∞ for any θ ∈ Θ \ {θ0}, we can define

∀θ ∈ Θ, ∀x ∈ X, ∆θ,V0(x) := ∥Pθ0(x, ·)− Pθ(x, ·)∥′V0 . (75)

As a direct consequence of Proposition 7.1, we obtain the following perturbation result.

Proposition 7.2 Assume that the Markov kernel Pθ0 satisfies Conditions (Mν,ψ)–Dψ(V0, V1),
and let πθ0 be the Pθ0−invariant probability measure. Suppose that, for every θ ∈ Θ \ {θ0},
we have ∥PθV0∥V0 < ∞ and that there exists a Pθ−invariant probability measure πθ such
that πθ(V0) < ∞. Finally assume that the non-negative function ∆θ,V0 defined in (75) is
X−measurable for any θ ∈ Θ. Then we have the two following bounds

∥πθ − πθ0∥′V1 ≤ (1 + d0) cθ0 πθ(∆θ,V0) (76a)

∥πθ − πθ0∥TV ≤ 2 (1 + d0) πθ(∆θ,V0) (76b)

with d0 := max
(
0, (b0 − ν(V0))/ν(1X)

)
and cθ0 := 1 + πθ0(V1)∥1X∥V1 < ∞. If πθ0(V0) < ∞

then cθ0 ≤ 1 + b0∥1X∥V1.

Proof. Under these assumptions, the bound in (76a) directly follows from Proposition 7.1
applied to (P,K) := (Pθ0 , Pθ) with θ ̸= θ0. If πθ0(V0) < ∞ then cθ0 ≤ 1 + b0∥1X∥V1 from
Assertion (vii) of Theorem 5.4.

When Condition Dψ(V0, V1) is satisfied, so is Condition Dψ(V0, 1X) since V1 ≥ 1X. Thus,
the bound (76a) also holds with V1 := 1X and then provides the control of the total variation
error since ∥πθ − πθ0∥TV = ∥πθ − πθ0∥′1X . Then, using πθ0(1X) = 1, ∥1X∥1X = 1, so that
cθ0 = 2, we obtain the estimate for ∥πθ − πθ0∥TV in (76b). □
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Note that the bounds in (76a)–(76b) are of interest only when the term πθ(∆θ,V0) is com-
putable and can be proved to converge to 0 when θ→ θ0. Now, the objective is to pro-
pose fair assumptions under which the convergence of the deviation between πθ and πθ0 to
zero can be derived from the following natural condition of closeness between Pθ and Pθ0 :
limθ→ θ0 ∆θ,V0(x) = 0 for any x ∈ X. A way is to reinforce the knowledge on the Markov
kernel Pθ for θ ̸= θ0. It turns out that, in many perturbation problems, not only does Pθ0
satisfies minorization and modulated drift conditions, but so all other transition kernels in the
family {Pθ}θ∈Θ. Such instances are provided by the standard perturbation schemes of Sub-
section 7.3. Thus, let us introduce the following minorization and modulated drift conditions
w.r.t. the family {Pθ}θ∈Θ: for every θ ∈ Θ

∃ψθ ∈ B∗
+, ∃νθ ∈ M∗

+,b, Pθ ≥ ψθ ⊗ νθ, (Mθ)

and there exists a couple (V0, V1) of Lyapunov functions such that, for every θ ∈ Θ

∃bθ > 0, PθV0 ≤ V0 − V1 + bθ ψθ. (Dθ(V0, V1))

Under Condition Dθ(V0, V1), we have PθV0 ≤ (1 + bθ)V0 so that the function ∆θ,V0 defined
in (75) is well-defined for any θ ∈ Θ. Finally, under the additional conditions supθ∈Θ bθ <∞
and infθ∈Θ νθ(1X) > 0, let us introduce the following positive constant

d := max

(
0, sup
θ∈Θ

bθ − νθ(V0)

νθ(1X)

)
. (77)

In Theorem 7.3 below, each Markov kernel Pθ is assumed to satisfy Conditions (Mθ)–
Dθ(V0, V1). Thus the Pθ−invariant probability measure denoted by πθ in these two state-
ments is given by (26) with ν := νθ and Rθ := Pθ − ψθ ⊗ νθ.

Theorem 7.3 Assume that, for every θ ∈ Θ, Pθ satisfies Conditions (Mθ)–Dθ(V0, V1) and
that b := supθ∈Θ bθ <∞ and infθ∈Θ νθ(1X) > 0. For any θ ∈ Θ, the Pθ−invariant probability
measure πθ is assumed to satisfy πθ(V0) < ∞. Finally, the non-negative function ∆θ,V0

defined in (75) is assumed to be X−measurable.

Then we have

∀θ ∈ Θ, ∥πθ0 − πθ∥′V1 ≤ (1 + d)min
{
cθ0 πθ(∆θ,V0) , cθ πθ0(∆θ,V0)

}
(78a)

∥πθ − πθ0∥TV ≤ 2 (1 + d) min
{
πθ(∆θ,V0) , πθ0(∆θ,V0)

}
(78b)

with d defined in (77) and with

cθ := 1 + πθ(V1)∥1X∥V1 ≤ 1 + b ∥1X∥V1 . (79)

Moreover, if the following convergence holds

∀x ∈ X, lim
θ→ θ0

∆θ,V0(x) = 0, (∆V0)

then we have
lim
θ→ θ0

∥πθ − πθ0∥′V1 = 0 and lim
θ→ θ0

∥πθ − πθ0∥TV = 0.
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Proof. Let θ ∈ Θ. Recall that ∥PθV0∥V0 <∞ fromDθ(V0, V1). It is assumed that πθ(V0) <∞
and that the function ∆θ,V0 is X−measurable. Thus Proposition 7.1 can be applied to
(P,K) := (Pθ0 , Pθ) and to (P,K) := (Pθ, Pθ0), which provides Inequality (78a). The bounds
in (78b) are derived from (78a) as in Proposition 7.2. The assumption πθ(V0) <∞ allows us to
obtain as in Proposition 7.2 that cθ ≤ 1+bθ∥1X∥V1 . Thus (79) holds with b := supθ∈Θ bθ <∞.

Next, we have

lim
θ→ θ0

πθ0(∆θ,V0) = lim
θ→ θ0

∫
X
∆θ,V0(x)πθ0(dx) = 0 (80)

from Lebesgue’s theorem using ∆θ,V0 ≤ 2(1 + b)V0, πθ0(V0) < ∞ and Assumption (∆V0).
Then we obtain that limθ→ θ0 ∥πθ − πθ0∥′V1 = 0 and limθ→ θ0 ∥πθ − πθ0∥TV = 0 from the
second bound in (78a)-(78b) and from the inequality (79). □

Let us stress that, in our perturbation context, πθ0 is (generally) unknown and πθ is
is expected to be known, so πθ(∆θ,V0) to be computable. Thus, the bounds of interest in
(78a)-(78b) are the following ones

∥πθ − πθ0∥′V1 ≤ (1 + d) cθ0 πθ(∆θ,V0) ≤ (1 + d)(1 + b0∥1X∥V1)πθ(∆θ,V0)

∥πθ − πθ0∥TV ≤ 2 (1 + d) πθ(∆θ,V0).

The convergence of πθ0(∆θ,V0) to 0 when θ→ θ0 in (80) is of theoretical interest here. It is
used to prove that limθ→ θ0 ∥πθ − πθ0∥′V1 = limθ→ θ0 ∥πθ − πθ0∥TV = 0 in Theorem 7.3.

7.2 Examples

Let us illustrate the results of Theorem 7.3 through the two following examples where the
set of parameters Θ is assumed to be some open metric space.

Example 7.4 (Geometric drift conditions) In the perturbation context, under Condi-
tion (Mθ) for any θ ∈ Θ, the standard geometric drift conditions for some Lyapunov function
V are the following ones (see Gψ(δ, V )):

∀θ ∈ Θ, ∃δθ ∈ (0, 1), ∃Cθ > 0, PθV ≤ δθ V + Cθ ψθ. (81)

Moreover suppose that C := supθ∈ΘCθ < ∞ and δ := supθ∈Θ δθ ∈ (0, 1). Since PθV ≤
δ V + C ψθ for any θ ∈ Θ, we know from Example 5.2 that

∀θ ∈ Θ, PθV0 ≤ V0 − V1 + b ψθ

with V0 := V/(1 − δ), V1 := V and b := C/(1 − δ), that is Condition Dθ(V0, V1) is satisfied
for any θ ∈ Θ. Thus, we know from Theorem 5.4 that the unique Pθ−invariant probability
πθ is such that πθ(V1) = πθ(V ) < ∞ for any θ ∈ Θ. Let θ0 ∈ Θ be fixed. Assume that the
non-negative function ∆θ,V0 is X−measurable for any θ ∈ Θ. Finally if infθ∈Θ νθ(1X) > 0
where νθ ∈ M∗

+,b is given in (Mθ), then the familly {Pθ}θ∈Θ satisfies the assumptions of
Theorem 7.3 which provides a control of ∥πθ − πθ0∥′V and ∥πθ − πθ0∥TV. Finally, we have
limθ→ θ0 ∥πθ − πθ0∥′V = 0 and limθ→ θ0 ∥πθ − πθ0∥TV = 0, provided that Condition (∆V ) is
satisfied.
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Example 7.5 (Random walk on the half line) For any θ ∈ Θ, let us consider the ran-

dom walk {X(θ)
n }n∈N on the half line X := [0,+∞) given by

X
(θ)
0 ∈ X and ∀n ≥ 1, X(θ)

n := max
(
0, X

(θ)
n−1 + ε(θ)n

)
(82)

where {ε(θ)n }n≥1 is a sequence of independent and identically distributed R-valued random

variables assumed to be independent of X
(θ)
0 and to have a parametric probability density

function pθ w.r.t. the Lebesgue measure on R. The transition kernel associated with {Xθ
n}n∈N

is given by

∀x ∈ X, ∀A ∈ X , Pθ(x,A) = 1A(0)

∫ −x

−∞
pθ(y) dy +

∫ +∞

−x
1A(x+ y) pθ(y) dy. (83)

Next define the following Lyapunov functions on X:

∀x ∈ X, W ′(x) = (1 + x)2, V ′
0(x) = 1 + x and V1(x) = 1.

Assume that

m2 := sup
θ∈Θ

E
[
|ε(θ)1 |2

]
<∞ and ∃x0 > 0, sup

θ∈Θ

∫ +∞

−x0
y pθ(y) dy < 0. (84)

Let θ0 ∈ Θ be fixed. Here the state space is X := [0,+∞) equipped with its Borel
σ−algebra X which is countably generated. Therefore for any Lyapunov function on X, say
V , for any θ ∈ Θ, the non-negative function on X, x 7→ ∆θ,V (x) := ∥Pθ(x, ·)−Pθ0(x, ·)∥′V , is
X−measurable. Next, we have for every x ∈ X

(PθV
′
0)(x)− V ′

0(x) =

∫ −x

−∞
pθ(y) dy +

∫ +∞

−x
(1 + x+ y) pθ(y) dy − (1 + x)

= −x
∫ −x

−∞
pθ(y) dy +

∫ +∞

−x
y pθ(y) dy

≤
∫ +∞

−x
y pθ(y) dy. (85)

Let us introduce from (84)

c′0 := − sup
θ∈Θ

∫ +∞

−x0
y pθ(y) dy > 0.

Then we obtain from (84) and (85)

∀x > x0, (PθV
′
0)(x)− V ′

0(x) ≤ −c′0V1(x)
and ∀x ∈ [0, x0], (PθV

′
0)(x)− V ′

0(x) + c′0V1(x) ≤
√
m2 + c′0V1(x) =

√
m2 + c′0,

that is
PθV

′
0 ≤ V ′

0 − c′0V1 + (c′0 +
√
m2) 1[0,x0]. (86)
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Next, we get in a similar way that, for any x ∈ X,

(PθW
′)(x)−W ′(x)

=

∫ −x

−∞
pθ(y) dy +

∫ +∞

−x
(1 + x+ y)2 pθ(y) dy − (1 + x)2

=
(
1− (1 + x)2

) ∫ −x

−∞
pθ(y) dy + 2(1 + x)

∫ +∞

−x
y pθ(y) dy +

∫ +∞

−x
y2 pθ(y) dy

≤ 2 (1 + x)

∫ +∞

−x
y pθ(y) dy +

∫ +∞

−x
y2 pθ(y) dy. (87)

Using the above constants m2, c
′
0 and x0, we obtain

∀x > x0, (PθW
′)(x)−W ′(x) ≤ −2 c′0 V

′
0(x) +m2.

Then it follows from this inequality and from (87) that there exists x1 > 0, which only depends
on m2, c

′
0 such that

∀x > s := max(x0, x1), (PθW
′)(x)−W ′(x) ≤ −c′0 V ′

0(x)

and ∀x ∈ [0, s], (PθW
′)(x)−W ′(x) + c′0 V

′
0(x) ≤ 2

√
m2 V

′
0(x) +m2 + c′0V

′
0(x)

≤ (2
√
m2 + c′0)(1 + s) +m2,

that is
PθW

′ ≤W ′ − c′0V
′
0 +

(
(1 + s)(c′0 + 2

√
m2) +m2

)
1[0,s]. (88a)

Since s ≥ x0, we can use in (86) the same compact set [0, s] so that

PθV
′
0 ≤ V ′

0 − c′0V1 + (c′0 +
√
m2) 1[0,s]. (88b)

It follows from (88b) that Pθ, for any θ ∈ Θ, satisfies Condition Dθ(V0, V1) with ψθ := 1[0,s],
with Lyapunov functions V1 := 1X and V0 := V ′

0/c
′ for c′ := min(1, c′0), and finally with

b0 := supθ∈Θ bθ ≤ (
√
m2 + c′0)/c

′. Set S := [0, s]. Next assume that the following non-
negative function

∀y ∈ R, pS(y) := inf
θ∈Θ

inf
x∈S

pθ(y − x)

is positive on some open interval of R. Then, for every θ ∈ Θ, Pθ satisfies Condition (Mθ)
with ψθ := 1S and νθ := ν, where ν is the positive measure on R defined by

∀A ∈ X , ν(1A) :=

∫
X
1A(y) pS(y) dy

(see Proposition 3.1 for details). Note that both ψθ and νθ do not depend on θ here. Thus,
for every θ ∈ Θ, Pθ satisfies Conditions (Mθ)–Dθ(V0, V1) w.r.t. the Lyapunov functions V0
and V1 defined above, with b0 := supθ∈Θ bθ < ∞ and infθ∈Θ νθ(1X) = ν(1X) > 0. Moreover
any Pθ has a unique invariant probability measure denoted by πθ (see Assertion (iv) at the
beginning of Section 5).

To apply Theorem 7.3, it remains to prove that πθ(V0) < ∞, for every θ ∈ Θ. We have
from (88a) that Pθ satisfies Conditions (Mθ)–Dθ(W,V

′
0) with Sθ := S and with Lyapunov

functions V ′
0(x) = 1 + x and W (x) =W ′(x)/c. It follows Assertion (vi) of Theorem 5.4 that

πθ(V
′
0) <∞ so that πθ(V0) <∞ from V0 = V ′

0/c.
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Thus, we have proved that Theorem 7.3 applies under Assumptions (84) on the noise

process {ε(θ)n }n≥1. However, for these statements to be relevant, we have to investigate the
function ∆θ,V0 and the quantity πθ(∆θ,V0). To that effect, recall that pθ denotes the probability
density function of the noise. Now fix some θ0 ∈ Θ and define

∀θ ∈ Θ, ∀y ∈ R, ρθ(y) := |pθ(y)− pθ0(y)|,

δθ :=

∫
R
ρθ(y) dy and m1,θ :=

∫
R
|y| ρθ(y) dy.

Note that δθ ≤ 2. Let g ∈ BV0 be such that |g| ≤ V0. Then we have

∀x ∈ X,
∣∣(Pθg)(x)− (Pθ0g)(x)

∣∣ ≤ V0(0)

∫ −x

−∞
ρθ(y) dy +

∫ +∞

−x
V0(x+ y) ρθ(y) dy

≤ δθ
c′

+
1

c′

∫
R

(
1 + x+ |y|

)
ρθ(y) dy

≤ δθ
c′

+ δθV0(x) +
m1,θ

c′
.

Thus

∀x ∈ X, ∆θ,V0(x) ≤
δθ(1 + c′ V0(x)) +m1,θ

c′
.

Therefore Condition (∆V0) in Theorem 7.3 holds provided that

lim
θ→ θ0

(
δθ +m1,θ

)
= 0.

This is a natural assumption on the noise in our perturbation context, that is: When θ→ θ0,
the distribution of the perturbed noise converges to that of the unperturbed one in total vari-
ation distance, as well as in weighted total variation norm.

Finally we have

∀θ ∈ Θ, πθ(∆θ,V0) ≤
δθ(1 + c′ πθ(V0)) +m1,θ

c′
.

Hence the following bound (see (78b))

∥πθ − πθ0∥TV ≤ 2 (1 + d) πθ(∆θ,V0) with d := max

(
0,
b0 − ν(V0)

ν(1X)

)
(89)

is of interest, provided that the quantities δθ, m1,θ and πθ(V0) are computable for θ ̸= θ0 and
that both δθ and m1,θ converge to 0 when θ→ θ0.

Note that, for this specific model, it follows from [JT03, Prop. 3.5] that

∀γ ∈ [2,+∞), E
[
(max(0, ε

(θ)
1 ))γ

]
<∞ ⇐⇒

∫
R
|x|γ−1 πθ(dx) <∞.

Therefore, under Conditions (84), the Lyapunov function V0 is expected to be the greatest
possible one providing Condition Dθ(V0, 1X) with πθ(V0) <∞ for any θ ∈ Θ.
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7.3 Application to standard perturbation schemes

In the two following perturbation schemes – the truncation of infinite stochastic matrices and
a state space discretization procedure of non-discrete models – the unperturbed Markov kernel
P := Pθ0 satisfies Conditions (Mν,1S )–D1S (V0, V1), that is the minorization and modulated
drift conditions for ψθ0 := 1S for some S ∈ X . Then it turns out that Pθ satisfies Condi-
tions (Mν,1S )–D1S (V0, V1) for any θ ∈ Θ. In this case the conditions b := supθ∈Θ bθ < ∞
and infθ∈Θ νθ(1X) > 0 of Theorem 7.3 are straightforward. Finally, note that the σ−algebra
X associated with the state spaces X involved in this subsection is countably generated. As
previously quoted, it follows that for any θ ∈ Θ, the function ∆θ,V0 quantifying the gap
between perturbed and unperturbed Markov kernels in Theorem 7.3, is X−measurable. We
will therefore no longer refer to this hypothesis here.

7.3.1 Application to truncation-augmentation of discrete Markov kernels

Let P := (P (x, y))(x,y)∈N2 be a Markov kernel on the discrete set X := N. Assume that P
satisfies Conditions (Mν,1S ) and D1S (V0, V1)

P ≥ 1S ⊗ ν and ∃b0 > 0, PV0 ≤ V0 − V1 + b01S

with S, ν and V0 such that:

� S is a finite subset of N and the support Supp(ν) of ν ∈ M∗
+,b is a finite subset of N,

� V0 := (V (x))x∈N is an unbounded and non-decreasing sequence with V (0) ≥ 1.

Thus P has a unique invariant probability measure denoted by π.

For any k ≥ 1, let Bk := {0, . . . , k} and Bk
c := N \ Bk. Recall that the k-th truncated

and arbitrary augmented matrix Pk of the (k + 1)× (k + 1) north-west corner truncation of
P is defined by

∀(x, y) ∈ Bk
2, Pk(x, y) := P (x, y) + P (x,Bk

c)κx,k({y}) (90)

where κx,k is some probability measure on Bk. A linear augmentation corresponds to the case
where κx,k ≡ κk only depends on k. The so-called first or last column linear augmentation
corresponds to the case when κk is the Dirac distribution at 0 and at k respectively. The
goal here is to prove that the P−invariant probability measure π can be approximated by
the Pk−invariant probability measure πk, with an explicit error control in function of the
integer k. Since P is an infinite matrix, first define the following extended Markov kernel P̂k
of Pk on N:

∀(x, y) ∈ N2, P̂k(x, y) := Pk(x, y)1Bk×Bc(x, y) + 1Bk
c×{0}(x, y).

Similarly, if πk is a Pk−invariant probability measure on Bk, then we define the extended
probability measure π̂k on N by

∀x ∈ N, π̂k(1{x}) := πk(1{x}) 1Bk
(x). (91)

The next lemma provides the expected results that π̂k is a P̂k−invariant probability measure,
which is the unique one provided that πk is the unique Pk−invariant probability measure.
The proof is postponed to Appendix C.
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Lemma 7.6 Let P be a Markov kernel on N, and, for any k ≥ 1, let Pk be the stochastic
matrix Pk given in (90). If πk is a Pk−invariant probability measure on Bk, then π̂k defined
in (91) is a P̂k−invariant probability measure on X. If Pk has a unique invariant probability
measure, then so is for P̂k.

Next, let k0 ∈ N be the smallest integer such that

S ⊂ Bk0 and Supp(ν) ⊂ Bk0 . (92)

Let us introduce the following family {Pθ}θ∈Θ of Markov kernels with θ0 := +∞

Θ := {k ∈ N : k ≥ k0} ∪ {+∞}, P+∞ := P, ∀θ ∈ {k ∈ N : k ≥ k0} : Pθ := P̂k. (93)

The next proposition provides assumptions under which the family {Pθ}θ∈Θ satisfies all the
assumptions of Theorem 7.3, so that all the conclusions of this theorem hold in the present
truncation context.

Proposition 7.7 Let P satisfy Conditions (Mν,1S )–D1S (V0, V1) with P−invariant probabil-
ity measure π such that π(V0) < ∞. Then, the family {Pθ}θ∈Θ defined in (93) satisfies all
the assumptions of Theorem 7.3 including (∆V0).

The proof of Proposition 7.7 is based on the following Lemmas 7.8-7.9.

Lemma 7.8 If P satisfies the conditions (Mν,1S )–D1S (V0, V1), then for every integer k ≥ k0,

the Markov kernel P̂k satisfies the same conditions (Mν,1S )–D1S (V0, V1). Thus, for any

k ≥ k0, P̂k and Pk have a unique invariant probability measure π̂k and πk.

Proof. Let k ≥ k0. For every x ∈ S and every A ⊂ N we have

P̂k(x,A) ≥
∑

y∈A∩Bk

P̂k(x, y) ≥
∑

y∈A∩Bk

P (x, y) = P (x,A ∩Bk) ≥ ν(1A∩Bk
) = ν(1A)

using successively x ∈ S ⊂ Bk0 ⊂ Bk and the definitions of P̂k and Pk, Assumption (Mν,1S ),

and finally Supp(ν) ⊂ Bk0 ⊂ Bk. This proves that P̂k satisfies Condition (Mν,1S ) with the
same S, ν as for P .

Now let us prove that P̂k satisfies Condition D1S (V0, V1) for any integer k ≥ 1. From

D1S (V0, V1) for P , it is sufficient to prove that P̂kV0 ≤ PV0. Recall that V0 := (V0(x))x∈N is

a non-decreasing sequence with V (0) ≥ 1. Let k ≥ 1. We have from the definition of P̂k

∀x ∈ Bk, (P̂kV0)(x) =
∑
y∈Bk

P (x, y)V0(y) + P (x,Bk
c)

∑
y∈Bk

κx,k(y)V0(y)

≤
∑
y∈Bk

P (x, y)V0(y) + P (x,Bk
c)

[
V0(k)

∑
y∈Bk

κx,k(y)

]
=

∑
y∈Bk

P (x, y)V0(y) +
∑
y∈Bk

c

P (x, y)V0(k)

≤
∑
y∈N

P (x, y)V0(y) = (PV0)(x) (94)
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since for any (y, z) ∈ Bk × Bk
c, V0(y) ≤ V0(k) ≤ V0(z) and since κx,k(·) is a probability

measure on Bk. Next, using the definition of P̂k, we have for any k ≥ 1

∀x ∈ Bk
c, (P̂kV0)(x) = V0(0).

Note that V0(0)1X ≤ V0 since V0 is non-decreasing. Then V0(0)P1X = V0(0)1X ≤ PV0 since
P is a non-negative kernel. Therefore, we have that (P̂kV0)(x) = V0(0) ≤ (PV0)(x) for any
x ∈ Bk

c. This proves that P̂k satisfies D1S (V0, V1). □

The next lemma states that Condition (∆V0) holds when P satisfies (Mν,1S )–D1S (V0, V1).

Lemma 7.9 If P satisfies Conditions (Mν,1S )–D1S (V0, V1), then Condition (∆V0) holds
true.

Proof. From the definition of P̂k and (90), we have for every x ∈ Bk

∆k,V0(x) =
∑
y∈N

∣∣P (x, y)− P̂k(x, y)
∣∣V0(y)

= P (x,Bk
c)

∑
y∈Bk

κx,k(y)V0(y) +
∑
y∈Bk

c

P (x, y)V0(y)

≤ P (x,Bk
c)V0(k) +

∑
y∈Bk

c

P (x, y)V0(y)

≤
∑
z∈Bk

c

P (x, z)V0(z) +
∑
y∈Bk

c

P (x, y)V0(y) ≤ 2
∑
y∈Bk

c

P (x, y)V0(y) (95)

since V0 is non-decreasing and κx,k(Bk) = 1. Now fix x ∈ N. Then it follows from (95)
applied to any k > x that limk∆k,V0(x) = 0 since

∑
y∈N P (x, y)V0(y) = (PV0)(x) < ∞ from

D1S (V0, V1). Thus Condition (∆V0) holds true. □

Finally, for the family {Pθ}θ∈Θ defined in (93), note that the Pθ−invariant probability
measure πθ for any θ ̸= θ0, is finitely supported so that πθ(V0) <∞. Since the Pθ0−invariant
probability measure πθ0 is assumed to satisfy πθ0(V0) < ∞ in Proposition 7.7, it follows
from Lemmas 7.8-7.9 that all the assumptions of Theorem 7.3 hold true. The proof of
Proposition 7.7 is complete.

7.3.2 Application to state space discretization

Assume that (X, d) is a separable metric space equipped with its Borel σ-algebra X , and that
P is a Markov kernel on (X,X ) of the form

∀x ∈ X, P (x, dy) = p(x, y)λ(dy), (96)

where p : X2→[0,+∞) is a measurable function and λ is a positive measure on X. Typically
X is Rd and λ is the Lebesgue measure on Rd. Let x0 ∈ X be fixed, and for every integer
k ≥ 1 consider any Xk ∈ X such that{

x ∈ X : d(x, x0) < k
}

⊆ Xk ⊆
{
x ∈ X : d(x, x0) ≤ k

}
.

Now let (δk)k≥1 ∈ (0,+∞)N be such that limk→+∞ δk = 0, and for any k ≥ 1 consider a finite
family {Xj,k}j∈Ik of disjoint measurable subsets of Xk such that

Xk =
⊔
j∈Ik

Xj,k with ∀j ∈ Ik, diam(Xj,k) ≤ δk (97)
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where diam(Xj,k) := sup
{
d(x, x′) : (x, x′) ∈ Xj,k

}
. The positive scalar δk must be thought

of as the mesh of the partition {Xj,k}j∈Ik of Xk. Define

∀k ≥ 1, ∀(x, y) ∈ X2, pk(x, y) := 1Xk
(y)

∑
i∈Ik

1Xi,k
(x) inf

t∈Xi,k

p(t, y).

Observe that pk ≤ p. Next define the following submarkovian kernel Q̂k on (X,X ):

∀x ∈ X, ∀A ∈ X , Q̂k(x,A) :=

∫
X
1A(y) pk(x, y)λ(dy)

=
∑
i∈Ik

(∫
Xk

1A(y) inf
t∈Xi,k

p(t, y)λ(dy)

)
1Xi,k

(x). (98)

Note that Q̂k(x, ·) = 0 if x ∈ Xkc := X \ Xk. Define φk := 1X − Q̂k1X. We have φk ≡ 1 on
Xkc, and 0 ≤ φk ≤ 1X since 0 ≤ Q̂k1X ≤ P1X = 1X. Then the kernel P̂k defined on (X,X ) by

∀x ∈ X, ∀A ∈ X , P̂k(x,A) := Q̂k(x,A) + 1A(x0)φk(x) (99)

is a Markov kernel. Let bk := 1Xk
c and let Fk be the finite-dimensional space spanned by

the system of functions Ck :=
{
1Xi,k

, i ∈ Ik
}
∪ {bk} which forms a basis of Fk. For every

measurable function f : X→R such that (P̂k|f |)(x) < ∞ for any x ∈ X, we have P̂kf ∈ Fk.
Define the linear map Pk : Fk→Fk as the restriction of P̂k to Fk. Let Nk := dimFk =
Card (Ik) + 1, and let Bk be the Nk × Nk−matrix defined as the matrix of Pk with respect
to the basis Ck of Fk. The next lemmas states that Bk is a stochastic matrix and that a
P̂k−invariant probability measure can be derived from any invariant probability measure of
the finite stochastic matrix Bk. Their proofs are postponed in Appendix C.

Lemma 7.10 For any k ≥ 1, the matrix Bk is a stochastic matrix.

Thus, for any k ≥ 1, there exists a stochastic row-vector πk ∈ [0,+∞)Nk such that

πk Bk = πk. (100)

Note that Pkbk = Pk1Xk
c = P̂k1Xk

c = Q̂k1Xk
c + 1Xk

c(x0)φk = 0 (see (99)) so that the last
component of πk is zero. The component of πk associated with the element 1Xi,k

of the basis
Ck is denoted by πi,k, so that πk ≡ ({πi,k}i∈Ik , 0). For every k ≥ 1, set

π̂k(f) := πk Fk (101)

where Fk ≡ Fk(f) is the coordinate vector of P̂kf in the basis Ck.

Lemma 7.11 For any k ≥ 1, let πk be a Bk−invariant probability measure. Then π̂k defined
in (101) is a P̂k−invariant probability measure and can be written as

π̂k(dy) = pk(y)λ(dy) +

(
1−

∫
X
pk(y)λ(dy)

)
δx0 , (102a)

where δx0 is the Dirac distribution at x0 and pk is the non-negative function defined by

∀y ∈ X, pk(y) := 1Xk
(y)

∑
i∈Ik

πi,k inf
t∈Xi,k

p(t, y). (102b)
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Next, assume that there exist a positive integer k0 and s ∈ (0,+∞) such that the function

y 7→ gk0,s(y) := inf
x∈S

pk0(x, y) with S := {x ∈ X, d(x, x0) ≤ s} (103a)

is positive on a subset D ∈ X such that λ(1D) > 0. Then, define ν ∈ M∗
+,b by

∀A ⊂ X , ν(1A) :=

∫
X
1A(y) gk0,s(y)λ(dy). (103b)

The Markov kernels P and {P̂k}k≥k0 satisfy Condition (Mν,1S ) w.r.t. the above set S and
positive measure ν

P (x,A) ≥ ν(1A) 1S(x) and ∀k ≥ k0, P̂k(x,A) ≥ ν(1A) 1S(x) (104)

since
∀k ≥ k0, ∀(x, y) ∈ S × X, p(x, y) ≥ pk(x, y) ≥ pk0(x, y) ≥ gk0,s(y).

Let us introduce the following family of Markov kernels {Pθ}θ∈Θ with θ0 := +∞ and

Θ := {k ∈ N : k ≥ k0} ∪ {+∞}, P+∞ := P, ∀θ ∈ {k ∈ N : k ≥ k0}, Pθ := P̂k. (105)

The next proposition provides assumptions under which this family {Pθ}θ∈Θ satisfies all the
assumptions of Theorem 7.3, so that all the conclusions of this theorem hold true in the
present context of state space discretization.

Proposition 7.12 Let P be the Markov kernel defined in (96) with a function p(·, ·) assumed
to be such that x 7→ p(x, y) is continuous on X for every y ∈ X. Assume that P satisfies
Condition D1S (V0, V1) with respect to S and ν given in (103a)–(103b) and to Lyapunov
functions Vi, i = 0, 1 on X of the form Vi(·) := vi

(
d(·, x0)

)
for some non-decreasing function

vi : [0,+∞)→[1,+∞). Moreover, assume that the P−invariant probability measure π is such
that π(V0) <∞.

Then the family {Pθ}θ∈Θ defined in (105) satisfies all the assumptions of Theorem 7.3 in-
cluding Condition (∆V0).

Recall that, from (104), the family {Pθ}θ∈Θ satisfies Condition (Mν,1S ) with S and ν given
in (103a)–(103b). The proof of Proposition 7.12 is complete using the two following lem-
mas. The first one shows that if the unperturbed Markov kernel Pθ0 := P satisfies Condi-
tionD1S (V0, V1), then for any θ ∈ Θ\{θ0}, Pθ satisfies the same condition. The second lemma
shows that, under the continuity assumption on p(·, ·) in Proposition 7.12, Condition (∆V0)
holds true.

Lemma 7.13 If P satisfies Condition D1S (V0, V1) then, for any integer k ≥ k0, the Markov

kernel P̂k satisfies the same Condition D1S (V0, V1).

Proof. Since P satisfies Condition D1S (V0, V1), it is sufficient to show that

P̂kV0 ≤ PV0 (106)
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to prove the first statement. If x ∈ Xkc, then (P̂kV0)(x) = V0(x0)φk(x) ≤ V0(x0) from (99),
Q̂k(x, ·) = 0 for x ∈ Xkc and φk ≤ 1X. Note that v0(0)1X = V0(x0)1X ≤ V0 since v0 is
non-decreasing, so that V0(x0)1X ≤ PV0 since P is a Markov kernel. Now, let x ∈ Xk. Then

(P̂kV0)(x) = (Q̂kV0)(x) + V0(x0)
(
1− (Q̂k1X)(x)

)
(from (99))

= V0(x0) +
(
Q̂k(V0 − V0(x0)1X)

)
(x)

= V0(x0) +
∑
i∈Ik

(∫
Xk

(
V0(y)− V0(x0)

)
inf
t∈Xi,k

p(t, y)λ(dy)

)
1Xi,k

(x) (from(98))

≤ V0(x0) +
∑
i∈Ik

(∫
X

(
V0(y)− V0(x0)

)
p(x, y)λ(dy)

)
1Xi,k

(x)

≤ V0(x0) + (PV0)(x)− V0(x0) (since
∑
i∈Ik

1Xi,k
(x) = 1Xk

(x) = 1).

This proves (106). □

Lemma 7.14 Let p(·, ·) in (96) be such that, for every y ∈ X, the function x 7→ p(x, y) is
continuous on X. Then the following assertion holds:

∀x ∈ X, lim
k

∥P (x, ·)− P̂k(x, ·)∥′V0 = 0.

Proof. Let x ∈ X be fixed. Observe that

∥P (x, ·)− Q̂k(x, ·)∥′V0 ≤
∫
X
V0(y)

∣∣p(x, y)− pk(x, y)
∣∣λ(dy).

From the continuity assumption on the function p(·, ·) we have limk pk(x, y) = p(x, y) for any
y ∈ X, and we know that |p(x, y)− pk(x, y)| ≤ 2p(x, y). From Lebesgue’s theorem it follows
that limk ∥P (x, ·)− Q̂k(x, ·)∥′V0 = 0 since (PV0)(x) <∞. Finally note that

∥P (x, ·)− P̂k(x, ·)∥′V0 ≤ ∥P (x, ·)− Q̂k(x, ·)∥′V0 + V0(x0)φk(x)

≤ ∥P (x, ·)− Q̂k(x, ·)∥′V0 + V0(x0) ∥P (x, ·)− Q̂k(x, ·)∥′V0

from (99), φk(x) := 1 − (Q̂k1X)(x) = (P1X)(x) − (Q̂k1X)(x), 1X ≤ V0 and the definition
of ∥ · ∥V0 . The proof of the convergence of P̂k(x, ·) to P (x, ·) in V0−norm is complete. □

Finally, for the family {Pθ}θ∈Θ defined in (105), note that the Pθ−invariant probability
measure πθ for any θ ̸= θ0, is finitely supported so that πθ(V0) < ∞. Thus, since the
Pθ0−invariant probability measure πθ0 is assumed to such that πθ0(V0) < ∞, Theorem 7.3
applies.

7.4 Bibliographic comments

A) Markovian perturbation issue. The perturbation theory for Markov chains has been widely
developed in the last decades, see e.g. [Sch68, Kar86, Sen93, GM96, SS00, AANQ04,
Mit05, MA10, FHL13, HL14a, RS18, Mou21, NR21, HL24a, and references therein]. The
perturbation material in Section 7 is based on [HL24a]. Moreover here, in Subsection 7.3,
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two standard issues are analysed as a perturbation problem: truncation and discretiza-
tion of the state space X. The central Formula (74) was first used in [Sch68] for finite
irreducible stochastic matrices, see also [Sen93]. This formula can be subsequently used
in any problem which can be thought of as a perturbation problem of Markov kernels
(e.g. see [GM96, LL18] and Section 17.7 in [MT09]). Note that neither the specific inves-
tigation of uniformly ergodic Markov chains as in [Mit05, MA10, AFEB16, JMMD15],
nor that of reversible transition kernels as in [MALR16, NR21], are addressed here.

B) On the condition π(V0) <∞. For a Markov kernel P with invariant probability measure π,
the condition π(V0) <∞ is in force in this section. When P satisfies Conditions (Mν,ψ)–
Dψ(V0, V1), we have π(V1) <∞ from Theorem 5.4, but recall that the condition π(V0) <
∞ does not hold automatically. It is in fact satisfied provided that P satisfies (Mν,ψ) and
any preliminary V0−modulated drift condition Dψ(L, V0) for some Lyapunov function L.
We refer to Proposition 5.13 for a general statement and to Example 7.5 for a specific
situation. Finally, recall that such a nested modulated drift conditions Dψ(L, V0) and
Dψ(V0, V1) occur in most of the analysis of polynomial or subgeometric convergence rate
of Markov models, e.g. see [JR02, FM03, DFMS04, AFV15, DMPS18].

C) On the measurability of the function ∆V . Let P and K be two Markov kernels on (X,X )
and V be a Lyapunov function such that ∥PV ∥V < ∞ and ∥KV ∥V < ∞. Assume
that the σ−algebra X is countably generated. Then the function on X, x 7→ ∆V (x) :=
∥P (x, ·) − K(x, ·)∥′V , is X−measurable. Indeed, for every x ∈ X we have ∥P (x, ·) −
P ′(x, ·)∥V = |ηx|(V ) where |ηx| is the total variation measure of the finite signed measure
ηx = P (x, ·) − K(x, ·). Moreover the map x 7→ |ηx|(V ) is X−measurable since so is
x 7→ ηx(V ), see [DF64].

D) On the Condition (∆V ). As introduced in [Twe98] for discrete set X, Condition (∆V )

∀x ∈ X, lim
θ→ θ0

∆θ,V (x) = lim
θ→ θ0

∥Pθ0(x, ·)− Pθ(x, ·)∥′V = 0,

is the expected continuity assumption in order to study the convergence to 0 of the
V−weighted total variation distance between πθ and πθ0 . Let us discuss Condition (∆V )
and alternative assumptions used in prior works.

� The standard operator-norm continuity assumption introduced in [Kar86] writes as
limθ→ θ0 ∥Pθ − Pθ0∥V = 0, namely

lim
θ→ θ0

sup
x∈X

∆θ,V (x)

V (x)
= 0.

This condition is clearly much more restrictive than Condition (∆V ). Such a con-
dition is suitable when Pθ = Pθ0 + θD where θ ∈ R and D is a real-valued kernel
satisfying D(x, 1X) = 0 for every x ∈ X, e.g. see [AANQ04, Mou21].

� The weak operator-norm continuity assumptions, based on Keller’s approach for
perturbed dynamical systems [Kel82], require that

lim
θ→ θ0

sup
x∈X

∆θ,1X(x)

V (x)
= lim

θ→ θ0
sup
x∈X

∥Pθ(x, ·)− Pθ0(x, ·)∥′TV
V (x)

= 0. (107)
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To understand the difference between Conditions (∆V ) and (107), consider the
following simple example derived from perturbed linear autoregressive models (see
[FHL13, Ex. 1] for some details on this model):

∀θ ∈ (0, 1), ∀x ∈ X := R, ∀A ∈ X , Pθ(x,A) :=

∫
R
1A(y) p(y − θx) dy,

where X is here the Borel σ−algebra on R and where p is some probability den-
sity function with respect to Lebesgue’s measure on R. Let θ0 ∈ (0, 1) be fixed.
Condition (∆V ) writes as follows

∀x ∈ R, lim
θ→ θ0

∫
X
V (y)

∣∣p(y − θx)− p(y − θ0x)
∣∣dy = 0, (108)

while Condition (107) is:

lim
θ→ θ0

sup
x∈R

∫
X
∣∣p(z − θx)− p(z − θ0x)

∣∣dz
V (x)

= 0. (109)

Actually Conditions (108) and (109) are quite different. In (108) the convergence is
simple in x ∈ R, but the presence of V (y) in the integral may be problematic. In
(109) the absence of the function V in the integral is of course an advantage, but the
convergence has to be uniform on R (actually it has to be uniform on every compact
of R thanks to the division by V (x)).

This weak continuity assumption (107) has been adapted to V -geometrically ergodic
Markov models, either using the Keller-Liverani perturbation theorem from [KL99]
(see [FHL13, HL14a, HL23c]), or using [HM11] based on Wasserstein distance as in
[SS00] or in [RS18, MARS20]. In the next item, the perturbation bound obtained
in [HL14a] and [RS18] under this condition (107) is compared with the bound of
Theorem 7.3.

E) Geometric ergodicity case. If {Pθ}θ∈Θ satisfies the assumptions of Example 7.4, then the
bound (78b) of Theorem 7.3 gives

∥πθ − πθ0∥TV ≤ 2 (1 + d̃)

1− δ
πθ(∆θ,V ) with d̃ =

1

1− δ
max

(
0,
C

m

)
(110)

where m := infθ∈Θ νθ(1X) > 0. The focus here is on the comparison of the error bound
(110) with that obtained in [HL14a, Prop. 2.1] and [RS18, Eq. (3.19)] (see also [HL23c]
for the iterated function systems), that is

∥πθ − πθ0∥TV ≤ c γθ
∣∣ ln γθ∣∣ with γθ := sup

x∈X

∆θ,1X(x)

V (x)
(111)

where the positive constant c depends on the above constants δ, C and on the V−geometric
rate of convergence of the iterates P n

θ to the invariant distribution πθ. The interest of the
bound (111) is that it uses ∆θ,1X(x) rather than ∆θ,V (x) in (110). The drawback of (111)
is that it involves a logarithm term, but above all that the constant c in (111) depends
on the V−geometric rate of convergence of P n

θ to πθ, which is unknown in general (or
badly estimated).

67



F) Approximation by truncation. The issue of approximating the main characteristics of a
Markov chain has a long story. Here we focus on the approximation by a truncation of
the state space X. Specifically we are interested in the so-called truncation-augmentation
technique and essentially in the study of convergence of the truncated invariant prob-
ability measure π̂n to π. We refer to [Wol80, Sen06, GS87a, GS87b, KR90, Hey91,
Sim95, Twe98, Liu10, Mas16, LL18, and references therein] for countable set X and
[IGL22, IG22, HL24a] for a continuous state space. Note that the stochastic monotonic-
ity property is widely used in the statements of most of these references. Various points
related to the results of Subsection 7.3.1 are discussed below, keeping in mind that trun-
cation scheme is considered as a perturbation issue.

� Convergence of {π̂k}n≥0 to π. The convergence in the V -weighted total variation
norm is proved to take place in [Twe98, Th 3.2] for the first-column linear augmen-
tation (see (90) with κx,k is a Dirac distribution at 0) of V -geometrically ergodic
discrete Markov chains. Using regeneration methods, such a convergence is ex-
tended to V -geometrically or polynomially ergodic Markov chains with continuous
state space in [IG22, Th 2] for a specific linear augmentation. Finally mention that
the weak convergence in the case of general augmentation of continuous state space
Markov chains has been recently addressed in [IGL22]. Note that in such context,
the weak convergence does not provide the convergence in the total variation norm.

� Rate of Convergence of {π̂k}n≥0 to π. The bound of Theorem 7.3 for a V−geo-
metrically ergodic Markov kernel P and ψ := 1S for some set S (see also Propo-
sition 7.7) then provides a generalization of the bound (10) in [LL18, Th. 2] to a
general state-space X without assuming the existence of an atom. Similarly the
bound of Theorem 7.3 extends the bound (16) in [LL18, Th. 3] (with m := 1) to a
general state-space X without assuming that the residual kernel is a contraction on
BV , i.e. RV ≤ βV for some β < 1 (see Condition 3 in [LL18, Th. 3]).

G) Approximation though numerical computations. The discretization procedure of the
general state-space X in Subsection 7.3.2 can be used to numerically approximate the
P−invariant probability measure. This has been proposed in [HL21] in the specific con-
text of a V−geometrically ergodic Markov chain. We refer to [HL21] for various illus-
trations, in particular for autoregressive models. Here, the procedure has been adapted
to a general context in Proposition 7.12, where the geometric drift condition is replaced
by any modulated drift condition. Fine discretizations of continuous state-space models
used on computers introduce round off errors, and therefore produce bias in the results of
computations. Thus, it is of interest to show that such a bias is negligible under fair condi-
tions. There, using perturbation techniques may be relevant (e.g. see [RRS98, BRR01]).
Such an issue was discussed in [HL23c] for a more general mechanism of round-off than
in [RRS98, BRR01] and for iterated function systems of Lipschitz maps. It should be
noted that the problem addressed in [SS00] fits naturally into the current discussion on
the use of perturbation techniques for analysing the effect of numerical approximation
on the calculation of stationary characteristics. We refer to [RSQ24, RSQ24, CDJT24,
and references therein] for such a study in MCMC computations with respect to weighted
total variation, Wasserstein and χ−metrics.
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8 Geometric rate of convergence of the iterates

In Subsection 8.1 the geometric rate of convergence of the iterates of P is studied on a general
Banach space B by introducing the spectral radius of the residual kernel R on B. This
general framework is then applied under the first-order minorization condition (Mν,ψ) and
the geometric drift condition Gψ(δ, V ) to obtain the rate of convergence, first for V−weighted
norm in Subsection 8.2 to complete Theorem 6.2, second for L2(πR)−norm in Subsection 8.3
with the specific reversible case in Subsection 8.4, and finally for V α−weighted norm in
Subsection 8.5 for α belonging to some set A ⊂ (0, 1]. Further statements on the reversible
and positive reversible cases are provided in Subsection 8.6. The spaces L1(πR) and L2(πR),
as well as the standard Lebesgue spaces (L1(πR), ∥ · ∥1), (L2(πR), ∥ · ∥2) and (L∞(πR), ∥ · ∥∞)
w.r.t. the probability measure πR, are defined in Section 2. Finally, when L is a bounded
linear operator on a Banach space B, we shortly write L ∈ L(B). The prerequisites in
spectral theory are those given by (S1)-(S3) in Subsection 6.2 (see page 49).

8.1 Geometric rate of convergence on a Banach space

Let P satisfy Condition (Mν,ψ) with h
∞
R = 0 and µR(1X) < ∞. Hence all the conclusions of

Theorem 4.1 hold true: The P−harmonic functions are constant on X; P is irreducible and
recurrent; The positive measure µR satisfies µR(ψ) = 1 and is the unique P−invariant positive
measure η (up to a multiplicative constant) such that η(ψ) < ∞; Finally πR := µR(1X)

−1µR

(see (26)) is the unique P−invariant probability measure on (X,X ). Let (B, ∥·∥) be a Banach
space satisfying the following assumptions:

Assumptions (B). Either the set B is composed of C-valued measurable functions on X and
B1X ⊂ B ⊂ L1(πR); or B is composed of classes modulo πR of C-valued measurable functions
on X and L∞(πR) ⊂ B ⊂ L1(πR). Moreover the norm ∥ · ∥ on B satisfies the following
condition:

∃c > 0, ∀g ∈ B, πR(|g|) ≤ c∥g∥. (112)

If P ∈ L(B), then P is said to be geometrically ergodic on (B, ∥ · ∥) if

∃ρ ∈ (0, 1), ∃cρ > 0, ∀g ∈ B, ∀n ≥ 1, ∥Png − πR(g)1X∥ ≤ cρ ρ
n∥g∥. (113)

In this case we define the following real number ϱB ∈ (0, 1)

ϱB ≡ ϱB(P ) := inf
{
ρ ∈ (0, 1) such that Property (113) holds

}
. (114)

The power series ρ(z) used below is that introduced to define the aperiodicity condition (see
(38)-(39)). Finally, when R ∈ L(B), we denote by rB the spectral radius of R on (B, ∥ · ∥).

Theorem 8.1 Assume that P satisfies (Mν,ψ) with h
∞
R = 0, µR(1X) <∞, and is aperiodic.

Let (B, ∥ · ∥) be a Banach space satisfying Assumptions (B) and assume that P ∈ L(B).
Then R ∈ L(B). Moreover, if rB < 1, then P is geometrically ergodic on (B, ∥ · ∥). More
precisely the radius of convergence of the power series ρ(z) :=

∑+∞
n=1 ν(R

n−1ψ) zn is larger
than 1/rB, and the following alternative holds:

(a) If Equation ρ(z−1) = 1 has no solution z ∈ C such that rB < |z| < 1, then ϱB ≤ rB.

(b) Otherwise, we have ϱB = max
{
|z| : z ∈ C, ρ(z−1) = 1, rB < |z| < 1

}
.
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Based on the definition of the spectral radius rB of R on B, the following simple lemma is
the first key point to prove Theorem 8.1.

Lemma 8.2 Let us assume that P satisfies Condition (Mν,ψ) with h
∞
R = 0 and µR(1X) <∞,

and that P ∈ L(B) where (B, ∥ · ∥) is a Banach space satisfying Assumptions (B). Then
R ∈ L(B), and the following assertions hold:

1. For every z ∈ C such that |z| > rB and for every g ∈ B, the series g̃z :=
∑+∞

k=0 z
−(k+1)Rkg

absolutely converges in B.

2. The radius of convergence of ρ(z) :=
∑+∞

n=1 ν(R
n−1ψ) zn is larger than 1/rB.

Proof. From (Mν,ψ) and the P−invariance of πR we know that πR ≥ πR(ψ)ν with πR(ψ) > 0
(see Theorem 3.6). Thus

∀g ∈ B, ν(|g|) ≤ πR(ψ)
−1πR(|g|) ≤ c πR(ψ)

−1∥g∥ (115)

due to (112). From the definition of R and (115), we obtain that, for every g ∈ B, the
function Rg (or its class modulo πR) belongs to B with

∥Rg∥ ≤ ∥Pg∥+ ν(|g|)∥ψ∥ ≤
(
∥P∥+ c πR(ψ)

−1∥ψ∥
)
∥g∥

where ∥P∥ denotes the operator-norm of P on (B, ∥ · ∥). Note that ∥ψ∥ is well-defined since
ψ is bounded, so that ψ (or its class) belongs to B. Thus R ∈ L(B). Now prove Assertion
1. From the definition of rB we know that

∀γ ∈ (rB,+∞), ∃cγ > 0, ∀g ∈ B, ∀n ≥ 1, ∥Rng∥ ≤ cγ γ
n ∥g∥. (116)

Let z ∈ C be such that |z| > rB and let γ ∈ (rB, |z|). Then for every g ∈ B we have

|z|−(k+1)∥Rkg∥ ≤ |z|−1cγ (γ/|z|)k ∥g∥,

from which we deduce that
∑+∞

k=0 |z|−(k+1)∥Rkg∥ < ∞. Now prove Assertion 2. Let γ > rB.
From (115) and (116) we obtain that

0 ≤ ν(Rkψ) ≤ c πR(ψ)
−1∥Rkψ∥ ≤ c πR(ψ)

−1 cγ γ
k ∥ψ∥

so that the series
∑+∞

n=1 ν(R
n−1ψ) zn converges for every z ∈ C such that |z| < 1/γ. Hence

the radius of convergence of the power series ρ(z) is larger than 1/γ, thus larger than 1/rB
since γ is any real number in (rB,+∞). □

Recall that, in case B := BV (C), the series involved in Lemma 8.2 are those used in
Section 6.2 to study the invertibility of the operator zI − P for z ∈ C of modulus one, see
Lemmas 6.3-6.4. From these lemmas and the compactness of the spectrum, the geometric
ergodicity on BV (C) was then easily deduced in Theorem 6.2, i.e. ϱB < 1, but without control
of the rate of convergence because of the restriction to the complex numbers of modulus one
in Lemmas 6.3-6.4. Using Lemma 8.2 and repeating on the general space B the arguments
of Section 6.2, the proof of Theorem 8.1 as a whole is therefore a refinement, often even a
simple copy, of that of Theorem 6.2. Indeed it can be similarly shown that, for any z ∈ C
such that |z| > rB, the operator zI − P is invertible on B if, and only if, ρ(z−1) ̸= 1. Then
the alternative (a)-(b) of Theorem 8.1 is obtained noticing that ϱB is nothing else but the
spectral radius of the restriction P0 of P to the subspace B0 := {g ∈ B : πR(g) = 0} of B.
For the reader’s convenience, the proof of Theorem 8.1 is postponed to Appendix D, where
the following additional statements are also obtained in Case (b) of Theorem 8.1.
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Proposition 8.3 Let P satisfy the assumptions of Theorem 8.1 with rB < 1. Then the
following properties hold in Case (b) of Theorem 8.1. For every r ∈ (rB, 1) the set

Sr := {z ∈ C, ρ(z−1) = 1, r ≤ |z| < 1}

is finite, and it is non-empty for r ∈ (rB, 1) sufficiently close to rB. Moreover every z ∈ Sr
is an eigenvalue of P on B with

Ez := {g ∈ B : Pg = zg} = C · ψ̃z

where ψ̃z ∈ B is non-zero and defined by ψ̃z :=
∑+∞

k=0 z
−(k+1)Rkψ.

8.2 Rate of convergence in V−geometric ergodicity

Under the assumptions of Theorem 6.2 define the following real number ϱV ∈ (0, 1)

ϱV ≡ ϱV (P ) := inf
{
ρ ∈ (0, 1) such that Property (70) holds

}
. (117)

In other words ϱV is nothing else but ϱB with B := BV (C). To apply Theorem 8.1 in the case
B := BV (C), we first prove the following statement, in which rV denotes the spectral radius
of the residual kernel R on BV (C) (i.e. rV ≡ rBV (C) with the notation of Theorem 8.1).

Proposition 8.4 Let P satisfy (Mν,ψ)–Gψ(δ, V ). Then

rV := lim
n

∥Rn∥1/nV = lim
n

∥RnV ∥1/nV < 1.

The proof of this proposition is a consequence of [HL23a, Prop. 2.1] on polynomial rate of
convergence using two nested modulated drift conditions derived from the geometric drift
condition Gψ(δ, V ) (use [HL23a, Sect. 3.2]). The details will be specified in the next version
of the document including the material on polynomial rate of convergence.

Under Conditions (Mν,ψ)–Gψ(δ, V ) we have h∞
R = 0, µR(1X) <∞ and πR(V ) <∞ (see the

beginning of Section 6). Moreover the Banach space (BV (C), ∥·∥V ) satisfies Assumptions (B)
since 1X ≤ V and

∀g ∈ BV (C), πR(|g|) ≤ πR(V ) ∥g∥V .

When P satisfies (Mν,ψ)–Gψ(δ, V ) and is aperiodic, we know from Theorem 6.2 that P is
V−geometrically ergodic, i.e. ϱV < 1. Corollary 8.5 below is thus a refinement of Theo-
rem 6.2 since it provides a bound (even the exact value in Case (b)) of the real number ϱV .
Corollary 8.5 is a direct consequence of Proposition 8.4 and Theorem 8.1.

Corollary 8.5 Assume that P satisfies (Mν,ψ)–Gψ(δ, V ) and is aperiodic. Then the radius
of convergence of the power series ρ(z) :=

∑+∞
n=1 ν(R

n−1ψ) zn is larger than 1/rV . Moreover
the alternative (a)-(b) of Theorem 8.1 and the additional statements of Proposition 8.3 hold
with B := BV (C), ϱB := ϱV and rB := rV .
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8.3 Geometric ergodicity on L2(πR)

Here P is assumed to satisfy (Mν,ψ)–Gψ(δ, V ), so that πR is the unique P−invariant proba-
bility measure. Recall that P ∈ L(L2(πR)), more precisely P is a contraction on L(L2(πR)),
i.e. ∀g ∈ L2(πR), ∥Pg∥2 ≤ ∥g∥2, since

∥Pg∥ 2
2 =

∫
X

∣∣∣∣ ∫
X
g(y)P (x, dy)

∣∣∣∣2πR(dx) ≤
∫
X

∫
X
|g(y)|2P (x, dy)πR(dx) =

∫
X
|g(x)|2 πR(dx)

from the Cauchy-Schwarz inequality w.r.t. the probability measure P (x, dy) and from the
P−invariance of πR. If P is geometrically ergodic on L2(πR), i.e. when (113) holds with
(B, ∥ ·∥) := (L2(πR), ∥ ·∥2), then the corresponding real number ϱL2(πR)(P ) in (114) is shortly
denoted by ϱ2. Recall that, if L ∈ L(L2(πR)), then its adjoint L∗ ∈ L(L2(πR)) is defined by:

∀(f, g) ∈ L2(πR)× L2(πR),

∫
X
(Lf)(x) g(x)πR(dx) =

∫
X
f(x) (L∗g)(x)πR(dx). (118)

The residual kernel R is also a bounded linear operator on (L2(πR), ∥ · ∥2): in fact it is a
contraction on L2(πR) since 0 ≤ R ≤ P . Let R∗ be the adjoint operator of R on L2(πR), and
define the following [0,+∞]−valued quantity

ϑV := lim sup
n→+∞

∥∥∥∥R∗nV

V

∥∥∥∥ 1/n

∞
, (119)

where ∥ · ∥∞ ≡ ∥ · ∥∞,πR is defined in (9). Recall that the spectral radius rV of R on BV (C)
satisfies rV < 1 from Proposition 8.4. We simply denote by r2 the spectral radius of R on
L2(πR) (i.e. r2 ≡ rL2(πR) with the notation of Theorem 8.1). Note that r2 ≤ 1 since R is a
contraction on L2(πR).

Theorem 8.6 Assume that P satisfies (Mν,ψ)–Gψ(δ, V ) with πR(V
2) <∞ and is aperiodic.

If ϑV < ∞, then r2 ≤ (rV ϑV )
1/2. Next, if ϑV < 1/rV , then r2 < 1 and P is geometrically

ergodic on L2(πR). More precisely the radius of convergence of the power series ρ(z) :=∑+∞
n=1 ν(R

n−1ψ) zn is larger than 1/r2. Moreover the alternative (a)-(b) of Theorem 8.1 and
the additional statements of Proposition 8.3 hold with B := L2(πR), ϱB := ϱ2 and rB := r2.

In the proof below we use the following well-known fact. Let L ∈ L(B) for some Banach
space (B, ∥ · ∥) and assume that there exists a dense subset D in B and a positive constant
d such that: ∀h ∈ D, ∥Lh∥ ≤ d∥h∥. Then the operator-norm ∥L∥ of L on (B, ∥ · ∥) is less
than d. Indeed, let g ∈ B and (hn)n ∈ Dn be such that limn ∥g − hn∥ = 0. Then

∥Lg∥ ≤ ∥L(g − hn)∥+ ∥Lhn∥ ≤ ∥L∥ ∥g − hn∥+ d ∥hn∥.

When n→+∞ this provides ∥Lg∥ ≤ d ∥g∥.
Proof of Theorem 8.6. Let g ∈ B1X(C). Let (ϑ, r) ∈ (ϑV ,+∞) × (rV ,+∞) with ϑV < ∞.
From the definition of ϑV and rV we know that

∃n0 ≥ 1, ∀n ≥ n0, R
∗nV ≤ ϑnV πR−a.s. and ∃d > 0, ∀n ≥ 1, RnV ≤ d rnV. (120)
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We have for every n ≥ n0

∥Rng∥ 2
2 =

∫
X

(∫
X

g(y)

V (y)1/2
V (y)1/2Rn(x, dy)

)2

πR(dx)

≤
∫
X

(∫
X

|g(y)|2

V (y)
Rn(x, dy)

)
(RnV )(x)πR(dx)

≤ d rn
∫
X
(Rn

|g|2

V
)(x)V (x)πR(dx)

= d rn
∫
X

|g(x)|2

V (x)
(R∗nV )(x)πR(dx)

≤ d (rϑ)n
∫
X
|g(x)|2 πR(dx)

using successively the Cauchy-Schwarz inequality w.r.t. the non-negative measure Rn(x, dy),
the second inequality in (120), the definition of the adjoint operator R∗n of Rn noticing that
|g|2/V and V belong to L2(πR) since g ∈ B1X(C), V ≥ 1 and πR(V

2) < ∞, and finally using
the first inequality in (120). We have proved that

∀g ∈ B1X(C), ∥Rng∥2 ≤ d1/2(rϑ)n/2.

From the density of B1X(C) in L2(πR) it follows that the operator-norm ∥Rn∥2 of Rn on
L2(πR) satisfies ∥Rn∥2 ≤ d1/2(rϑ)n/2, from which we deduce that r2 ≤ (rϑ)1/2 from Gelfand’s
formula. This provides r2 ≤ (rV ϑV )

1/2 since r and ϑ are arbitrarily close to rV and ϑV
respectively. Next, if ϑV < 1/rV , then r2 < 1 and the other assertions of Theorem 8.6 follows
from Theorem 8.1 applied with (B, ∥ · ∥) := (L2(πR), ∥ · ∥2), observing that this Banach space
obviously satisfies Assumptions (B). □

8.4 Geometric ergodicity on L2(πR) in the reversible case

Again P is assumed to satisfy (Mν,ψ)–Gψ(δ, V ). Recall that P is said to be reversible with
respect to its (unique) invariant probability measure πR if

πR(dx)P (x, dy) = πR(dy)P (y, dx).

This is equivalent to the condition P ∗ = P where P ∗ is the adjoint operator of P on L2(πR).
In other words P is reversible if, and only if, P is self-adjoint, that is:

∀(f, g) ∈ L2(πR)× L2(πR),

∫
X
(Pf)(x) g(x)πR(dx) =

∫
X
f(x) (Pg)(x)πR(dx). (121)

Geometric ergodicity on L2(πR) (case B := L2(πR)) in the reversible case is particularly
interesting since not only can the value ρ := ϱ2 ≡ ϱL2(πR)(P ) ∈ (0, 1) be considered in
Property (113), but also the corresponding constant cϱ2 is equal to one.

Lemma 8.7 Assume that P is reversible and is geometrically ergodic on L2(π) for some
P−invariant probability measure π. Then

∀g ∈ L2(π), ∀n ≥ 1, ∥Png − π(g)1X∥2 ≤ ϱn2 ∥g∥2 (122)

where ϱ2 ≡ ϱL2(π)(P ) ∈ (0, 1) is given in (114).
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Proof. To obtain Property (122) note that ϱ2 is the spectral radius of the operator P − Π
where Π := 1X ⊗ π: This follows from the definition of ϱ2 and Equality Pn − Π = (P − Π)n

due to the P−invariance of π. Moreover, since P −Π is self-adjoint from the reversibility of
P , we know that ϱ2 equals to the operator-norm ∥P −Π∥2. Thus

∀n ≥ 1, ∥Pn −Π∥2 = ∥(P −Π)n∥2 ≤ ∥P −Π∥ n
2 = ϱ2

n

from which we deduce (122). □

Recall that rV denotes the spectral radius of the residual kernel R on BV (C) and that ϱV
is defined in (117). Under the assumptions of the following theorem we know that rV < 1
and ϱV < 1 from Proposition 8.4 and Corollary 8.5 (or simply Theorem 6.2). Finally recall
that r2 denotes the spectral radius of R on L2(πR).

Theorem 8.8 Let P satisfy Conditions (Mν,ψ)–Gψ(δ, V ) with πR(V
2) < ∞. If P is re-

versible and aperiodic, then

r2 ≤
(
rV max(rV , ϱV )

)1/2
< 1 (123)

and P is geometrically ergodic on L2(πR). More precisely the radius of convergence of the
power series ρ(z) :=

∑+∞
n=1 ν(R

n−1ψ) zn is larger than 1/r2, and Property (122) holds with
ϱ2 satisfying the following alternative:

(a) If Equation ρ(x−1) = 1 has no solution in the interval (−1,−r2), then ϱ2 ≤ r2.

(b) Otherwise, we have ϱ2 = max
{
|x| : ρ(x−1) = 1, x ∈ (−1,−r2)

}
.

Moreover the additional statements of Proposition 8.3 hold with B := L2(πR), ϱB := ϱ2,
rB := r2, and with set Sr for r ∈ (r2, 1) given here by: Sr := {x ∈ (−1,−r2), ρ(x−1) = 1}.

The proof of Theorem 8.8 is based on the following proposition.

Proposition 8.9 If P satisfies Conditions (Mν,ψ)–Gψ(δ, V ) and is reversible, then we have
ϑV ≤ max(ϱV , rV ) where ϑV is defined in (119).

To prove Proposition 8.9 we use the two following lemmas. Recall that, for any non-negative
measurable function f , we denote by f · πR the non-negative measure defined on (X,X ) by
(f · πR)(1A) :=

∫
X 1A(x)f(x)πR(dx) for every A ∈ X .

Lemma 8.10 Let P satisfy Conditions (Mν,ψ)–Gψ(δ, V ). Then there exists ζ ∈ B∗
+ such

that ν = ζ · πR. Moreover T := ψ ⊗ ν defines a bounded linear operator on L2(πR), and its
adjoint operator T ∗ on L2(πR) is defined by:

T ∗ = ζ ⊗ (ψ · πR). (124)

Proof. From (Mν,ψ) and the P−invariance of πR we have πR ≥ πR(ψ)ν, so that ν is absolutely
continuous w.r.t. πR, i.e.: there exists a non-negative πR−integrable function ζ0 such that
ν = ζ0 · πR. Thus we have πR ≥ πR(ψ)(ζ0 · πR), so that

∀A ∈ X ,
∫
A

(
1X − πR(ψ)ζ0

)
dπR ≥ 0.

74



Therefore the set A0 = {x ∈ X : ζ0(x) > πR(ψ)
−1} is such that πR(A0) = 0. Then, defining

ζ(x) = 0 for x ∈ A0 and ζ(x) = ζ0(x) for x ∈ X\A0, we obtain that ν = ζ ·πR with ζ bounded
by πR(ψ)

−1 on X. This proves the first assertion. Next we have from T = ψ ⊗ (ζ · πR)

∀(f, g) ∈ L2(πR)
2,

∫
X
(Tf)(x) g(x)πR(dx) =

∫
X
(ζ · πR)(f)ψ(x) g(x)πR(dx)

=

∫
X

∫
X
f(y)ζ(y)πR(dy)ψ(x)g(x)πR(dx)

=

∫
X
f(y)

∫
X
ψ(x)g(x)πR(dx) ζ(y)πR(dy)

=

∫
X
f(y) (ψ · πR)(g)ζ(y)πR(dy)

from which we deduce that T = ζ ⊗ (ψ · πR). □

Lemma 8.11 Assume that P satisfies (Mν,ψ)–Gψ(δ, V ) and is reversible. Let ζ ∈ B∗
+ be

given in Lemma 8.10. Then the following equalities of linear operators on L2(πR) hold

∀n ≥ 1, Pn = R∗n +
n∑
k=1

Pn−kζ ⊗ (Rk−1ψ · πR). (125)

Note that Formula (125) is not the adjoint version of (17). However, starting from Equal-
ity P = R∗+T ∗ and using Formula (124), the proof by induction of (125) is identical to that
of (17), except that function equalities must be considered here in L2(πR). For completeness,
a proof of Lemma 8.11 is provided to Appendix E.

Proof of Proposition 8.9. Recall that
∑+∞

k=1R
k−1ψ = ν(1X)

−11X from (35). Thus

∀n ≥ 1,

n∑
k=1

(Rk−1ψ · πR)(V ) =

+∞∑
k=1

(Rk−1ψ · πR)(V )−
+∞∑
k=n

(Rkψ · πR)(V )

= ν(1X)
−1πR(V )− εn with εn :=

+∞∑
k=n

(Rkψ · πR)(V )

from monotone convergence theorem. Applying (125) with g := V , we can write that for
every n ≥ 1

R∗nV = PnV −
n∑
k=1

(Rk−1ψ · πR)(V )Pn−kζ

= PnV −
n∑
k=1

(Rk−1ψ · πR)(V )
(
Pn−kζ − ν(1X)1X

)
− ν(1X)

( n∑
k=1

(Rk−1ψ · πR)(V )
)
1X

= PnV −
n∑
k=1

(Rk−1ψ · πR)(V )
(
Pn−kζ − ν(1X)1X

)
− πR(V )1X + ν(1X) εn1X. (126)

Let γ > max(ϱV , rV ). Note that the series ψ̃γ :=
∑+∞

k=1 γ
−kRk−1ψ absolutely converges

in BV from γ > rV and the definition of rV . Moreover there exists dγ > 0 such that:
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∀k ≥ 1, Rkψ ≤ dγ∥ψ∥V γkV . Set aγ := dγ∥ψ∥V πR(V
2)/(1− γ). Then

∀n ≥ 1, εn ≤ aγγ
n and 0 ≤

n∑
k=1

γ−k(Rk−1ψ · πR)(V ) ≤ (ψ̃γ · πR)(V )

with (ψ̃γ ·πR)(V ) <∞ since πR(V
2) <∞ by hypothesis. Finally, from the definition of ϱV and

γ > ϱV , we know that there exists cγ > 0 such that: ∀n ≥ 1, ∀g ∈ BV (C), |Png−πR(g)1X| ≤
cγ∥g∥V γn V . Since V, ζ belong to BV (C) and ν(1X) = πR(ζ) from the definition of ζ in
Lemma 8.10, the previous inequality can be applied to both V and ζ in (126). We then
deduce from the triangular inequality in (126) and the above facts that

∀n ≥ 1,
R∗nV

V
≤ cγ γ

n∥V ∥V + cγ γ
n∥ζ∥V

n∑
k=1

γ−k(Rk−1ψ · πR)(V ) + ν(1X)aγγ
n 1X
V

≤
[
cγ + cγ ∥ζ∥V (ψ̃γ · πR)(V ) + ν(1X)aγ

]
γn

using 1X ≤ V . Thus we have ϑV ≤ γ, and finally ϑV ≤ max(ϱV , rV ) since γ is arbitrarily
close to max(ϱV , rV ). □

Proof of Theorem 8.8. From Theorem 8.6 we know that r2 ≤ (rV ϑV )
1/2, so that the bound

(123) is deduced from Proposition 8.9. The conclusions of Theorem 8.8 then follow from
Property (122) and Theorem 8.1 applied with B = L2(πR), ϱB = ϱ2, and rB = r2 since the
following equality holds here:

{z ∈ C : r2 ≤ |z| < 1, ρ(z−1) = 1} = {x ∈ (−1,−r2) : ρ(x−1) = 1}.

Indeed, let z ∈ C be such that ρ(z−1) = 1 and r2 < |z| < 1. Then z is an eigenvalue of
P on L2(πR) from Proposition 8.3, i.e. ∃h ∈ L2(πR), h ̸= 0, Ph = zh. From reversibility
we then obtain that z ∈ R (apply (121) with f = g = h). Moreover Equation ρ(x−1) =∑+∞

n=1 ν(R
n−1ψ)x−n = 1 has no solution x ∈ (r2, 1) since ρ(1) = µR(ψ) = 1. The claimed

equality is proved. □

8.5 From V−geometric ergodicity to V α−geometric ergodicity

Recall that the modulated drift condition Dψ(V0 : V2) derived from Gψ(δ, V ) plays a central
role in Proposition 8.4 to obtain rV < 1. Here we present an alternative approach using
Lyapunov function V α for α ∈ (0, 1]. More specifically we restrict this study to the case
when P satisfies Conditions (Mν,1S )–G1S (δ, V ) for some S ∈ X ∗, and we define the following
set associated with the residual kernel R := P − 1S ⊗ ν:

A :=
{
α ∈ (0, 1] : RV α ≤ δα V α

}
. (127)

Proposition 8.12 Let P satisfy Conditions (Mν,1S )-G1S (δ, V ) for some S ∈ X ∗ such that
K := supx∈S(PV )(x) <∞. Then the set A is non-empty and reduces to

A =
{
α ∈ (0, 1] : ∀x ∈ S, (RV α)(x) ≤ δα V (x)α

}
. (128)

Moreover we have A = (0, α̂0] with α̂0 := supA ∈ (0, 1], and

∀α ∈ A, rV α ≤ ∥R∥V α ≤ δα (129)

where ∥R∥V α (resp. rV α) denotes the operator norm (resp. the spectral radius) of R on
BV α(C). Finally, if S is an atom, then α̂0 = 1.
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Condition K < ∞ holds under Assumptions (Mν,1S )–G1S (δ, V ) when V is bounded on S.
This condition K <∞ is necessary to obtain (130) in the proof below.

Proof. Let α ∈ (0, 1]. If x ∈ X \ S, then we have (PV α)(x) ≤ δα V (x)α from G1S (δ, V ) and
Jensen’s inequality w.r.t. P (x, dy). Hence the definitions (127) and (128) of the set A are
equivalent. Next, if x ∈ S, then we have (PV α)(x) ≤ Kα from Jensen’s inequality, thus

∀α ∈ (0, 1], ∀x ∈ S, (PV α)(x)− δα V (x)α − ν(V α) ≤ Kα − δα − ν(1X)

using 1X ≤ V . Moreover we have

lim
α→ 0

(
Kα − δα − ν(1X)

)
= − ν(1X) (130)

with ν(1X) > 0. Thus the left hand side of the above inequality is negative for every x ∈ S
provided that α ∈ (0, 1] is small enough. We have proved that, for α ∈ (0, 1] small enough, we
have RV α ≤ δα V α. This shows that A ̸= ∅. Now prove that α̂0 := supA ∈ A. Let (αn)n ∈
AN be such that limn ↗ αn = α̂0. Let x ∈ X. We have limn V (x)αn = V (x)α̂0 . Moreover we
deduce from Lebesgue’s theorem w.r.t. P (x, dy) and ν(dy) that limn(PV

αn)(x) = (PV α̂0)(x)
and limn ν(V

αn) = ν(V α̂0) (use V αn ≤ V , (PV )(x) < ∞ and ν(V ) < ∞). Since αn ∈ A for
any n, this easily implies that α̂0 ∈ A. If S is an atom (i.e. ν(·) := P (a0, ·) for some a0 ∈ S),
then we have

∀α ∈ (0, 1], ∀x ∈ S, PV α(x)− δα V α(x)− ν(V α) = −δα V α(x) ≤ 0,

so that Inequality RV α ≤ δαV α holds on the set S. Thus, in atomic case, we have A =
(0, 1] from the definition (128) of A. Now assume that S is not an atom and prove that
(0, α̂0) ⊂ A. Let x ∈ S. Note that σx(·) := P (x, ·)−ν(·) is a positive measure on (X,X ) from
Condition (Mν,1S ): In fact σ := σx(1X) = 1 − ν(1X) does not depend on x and is positive
since S is not an atom. Thus the following probability measures are well-defined on (X,X ):

∀x ∈ S, σ̂x(dy) :=
1

σ
σx(dy) =

1

σ

(
P (x, dy)− ν(dy)

)
. (131)

Let α ∈ (0, α̂0). We deduce from Jensen’s inequality and from α̂0 ∈ A that for every x ∈ S

(PV α)(x)− ν(V α) = σσ̂x
(
(V α̂0)α/α̂0

)
≤ σ

(
σ̂x

(
V α̂0

))α/α̂0 = σ1−α/α̂0
(
(PV α̂0)(x)− ν(V α̂0)

)α/α̂0

≤ σ−α/α̂0 δα V (x)α.

This gives: ∀x ∈ S, (RV α)(x) ≤ σ1−α/α̂0 δα V (x)α ≤ δα V (x)α since σ ≤ 1 and α < α̂0.
Hence α ∈ A from (128). We have proved that (0, α̂0) ⊂ A. Thus A = (0, α̂0).

It remains to prove (129). Let α ∈ A. Inequality RV α ≤ δαV α implies that ∥R∥V α ≤ δα

since ∥R∥V α = ∥RV α∥V α from the non-negativity of R. This proves the second inequality in
(129). The first one is obvious from Gelfand’s formula. □

According to the notation (117), for every α ∈ (0, 1] the real number ϱV α ≡ ϱV α(P ) stands
for the lower bound of all the positive real number ρ such that ∥Pn − ΠR∥V α = O(ρn) with
ΠR := 1X ⊗ πR. Thus P is V α−geometrically ergodic if, and only if, ϱV α < 1.

Corollary 8.13 Let P satisfy Conditions (Mν,1S )–G1S (δ, V ) for some S ∈ X ∗ such that
K := supx∈S(PV )(x) <∞. If P is aperiodic, then the following assertions hold.
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1. For every α ∈ (0, 1], P is V α−geometrically ergodic (i.e. ϱV α < 1).

2. For every α ∈ A the following alternative holds:

(a) If Equation ρ(z−1) = 1 has no solution z ∈ C, δα < |z| < 1, then ϱV α ≤ δα.

(b) Otherwise, we have ϱV α = max
{
|z| : z ∈ C, ρ(z−1) = 1, δα < |z| < 1

}
.

In Case (b) Proposition 8.3 applies with B := BV α(C) and any r ∈ (δα, 1).

Proof. Let α ∈ (0, 1]. If x ∈ X \ S, then we have (PV α)(x) ≤ δα V (x)α from G1S (δ, V )
and Jensen’s inequality. Moreover, for every x ∈ S, we have (PV α)(x) ≤ Kα again from
Jensen’s inequality. Consequently P satisfies Conditions (Mν,1S ) and G1S (δ

α, V α), so that
P is V α−geometrically ergodic from Theorem 6.2 applied with the Lyapunov function V α.
Moreover the real number ϱV α satisfies the claimed alternative applying Corollary 8.5 with
the Lyapunov function V α and using the upper bound δα of rV α provided by (129). □

Let us now specify the alternative of Corollary 8.13 for α ∈ A = (0, α̂0] according to
whether Case 2.(a) or 2.(b) holds for the specific value α̂0.

Corollary 8.14 Let P satisfy the assumptions of Corollary 8.13. Then the following asser-
tions hold.

(i) If Case 2.(a) of Corollary 8.13 is fulfilled for α̂0, then we have: ∀α ∈ (0, α̂0], ϱV α ≤ δα.

(ii) If Case 2.(b) is fulfilled for α̂0, then there exists a unique α̂ ∈ (0, α̂0) such that δα̂ = ϱV α̂0 ,
and

∀α ∈ (α̂, α̂0], ϱV α = ϱV α̂0 , ∀α ∈ (0, α̂], ϱV α ≤ δα.

Proof. Case (i) means that there is no solution z ∈ C of Equation ρ(z−1) = 1 such that
δα̂0 < |z| < 1, so that the same holds when δα < |z| < 1 for α ∈ (0, α̂0], thus ϱV α ≤ δα from
Corollary 8.13. Case (ii) means that there exists a solution z0 ∈ C of Equation ρ(z−1) = 1
such that δα̂0 < |z0| = ϱV α̂0 < 1, and that this equation has no solution z ∈ C such that
ϱV α̂0 < |z| < 1. The existence and uniqueness of α̂ ∈ (0, α̂0) such that δα̂ = ϱV α̂0 hold since
α 7→ δα is bijective from (0, α̂0) into (δα̂0 , 1). From Corollary 8.13 we obtain that ϱV α = ϱV α̂0

for every α ∈ (α̂, α̂0] since z0 satisfies δα < |z0| < 1 from δα < δα̂ = ϱV α̂0 = |z0|. On the
other hand, again from Corollary 8.13 we have ϱV α ≤ δα for every α ∈ (0, α̂] since there is
no solution z ∈ C of Equation ρ(z−1) = 1 such that δα < |z| < 1 from ϱV α̂0 = δα̂ ≤ δα. □

Figure 1 helps to get a picture of the status of the value δα w.r.t. the convergence rate
ϱV α in the alternative of Corollary 8.14. Note that the upper bound of ϱV α degrades when
α→ 0, which is consistent with limα→ 0 V

α = 1X and the fact that P is not 1X-geometrically
ergodic in general (i.e. P is not uniformly ergodic in general, see Example 3.7).

Recall that A = (0, α̂0] with α̂0 ∈ (0, 1] from Proposition 8.12, and that A = (0, 1] when S
is an atom. In the non-atomic case a positive lower bound of α̂0 can be obtained using (130)
(i.e. consider α ∈ (0, 1] such that Kα − δα ≤ ν(1X)). The next statement provides a more
accurate estimate of α̂0.

Proposition 8.15 Let P satisfy Conditions (Mν,1S )–G1S (δ, V ) for some S ∈ X ∗ which
is not an atom. Assume that K := supx∈S(PV )(x) < ∞ and define M := K − ν(V ),
σ := 1 − ν(1X) ∈ (0, 1). Then there exists α0 ∈ (0, 1] such that Mα0σ1−α0 ≤ δα0, and such
an α0 belongs to A, i.e. (0, α0] ⊂ A.
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Case (i) of Corollary 8.14
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V α̂0

= δα̂

Case (ii) of Corollary 8.14

Figure 1: Status of the value δα w.r.t. ϱV α for α ∈ A = (0, α̂0] according to Cases (i) or (ii)
in Corollary 8.14: upper bound in dashed-line, exact value in full-line.

Proof. Recall that σ ∈ (0, 1) since S is not an atom. For any x ∈ S let σ̂x be the probability
measure defined in (131). It follows from Jensen’s inequality that

∀α ∈ (0, 1], ∀x ∈ S, (PV α)(x)−ν(V α) = σσ̂x(V
α) ≤ σ

(
σ̂x(V )

)α
= σ1−α

(
(PV )(x)−ν(V )

)α
,

from which we deduce that

∀α ∈ (0, 1], ∀x ∈ S, (PV α)(x)− ν(V α)− δαV (x)α ≤ σ1−αMα − δα

since V ≥ 1X. The claimed conclusion then follows from limα→ 0 σ
1−αMα − δα = σ − 1 < 0.

Hence there exists α0 ∈ (0, 1] such that Mα0σ1−α0 ≤ δα0 , and such an α0 belongs to A from
the definition (128) of A. □

8.6 Further results in the reversible and positive reversible cases

If R is self-adjoint, then the proof of Theorem 8.8 is simpler. More precisely:

Proposition 8.16 Assume that P satisfies Conditions (Mν,ψ)–Gψ(δ, V ) with πR(V
2) <∞,

and that P is reversible and aperiodic. Let ζ ∈ B∗
+ be given in Lemma 8.10. Then the

residual kernel R is self-adjoint on L2(πR) if, and only if, ζ = c ψ for some positive constant
c. Moreover, in this case, we have r2 = ∥R∥2 ≤ rV < 1, so that P is geometrically ergodic
on L2(πR) and the last assertion of Theorem 8.8 holds.

Proof. When P is reversible, R is self-adjoint on L2(πR) if and only if T := ψ⊗ν is self-adjoint
on L2(πR). Thus, the first assertion is obvious from Lemma 8.10. Next, assume that R is
self-adjoint on L2(πR). Then we know that r2 = ∥R∥2. Moreover recall that r2 ≤ (rV ϑV )

1/2

from Theorem 8.6. Thus we have r2 ≤ rV since ϑV ≤ rV from R∗ = R and the definitions of
ϑV and rV . That rV < 1 is proved in Proposition 8.4. Hence we have r2 < 1, and the others
assertions of Proposition 8.16 follow from Theorem 8.1 applied with B := L2(πR). □

The case when the residual kernel is self-adjoint is not unrealistic, as illustrated by the
following proposition .

Proposition 8.17 Let P satisfy Conditions (Mν,1S )–G1S (δ, V ) for some (ν, S) ∈ M∗
+,b ×

X ∗ such that ν(1Sc) = 0. If the function ζ ∈ B∗
+ in Lemma 8.10 is such that d :=

infx∈S ζ(x) > 0, then P also satisfies Conditions (Mν1,ψ1)-Gψ1(δ, V ) with ψ1 :=
√
c ζ and

ν1 :=
√
c ν where c = (supx∈S ζ(x))

−1. If moreover P is reversible, then the residual kernel
R1 := P − ψ1 ⊗ ν1 is self-adjoint on L2(πR).
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Proof. We have ν = ζ · πR from Lemma 8.10, with here ζ = 0 on Sc since ν(1Sc) = 0. Thus

P ≥ 1S ⊗ ν ≥ c ζ ⊗ ν.

Hence P ≥ ψ1 ⊗ ν1 with ψ1 :=
√
c ζ and ν1 :=

√
c ν = ψ1 · πR. Moreover we deduce from

G1S (δ, V ) that
PV ≤ δV + b 1S ≤ δV + d−1ζ = δV + d−1c−1/2ψ1,

thus P satisfies Gψ1(δ, V ). Finally, under Conditions (Mν1,ψ1)–Gψ1(δ, V ), Lemma 8.10
implies that T1 := ψ1 ⊗ ν1 = ψ1 ⊗ (ψ1 · πR) is self-adjoint on L2(πR). Consequently
R1 := P − ψ1 ⊗ ν1 is self-adjoint when P is reversible. □

Next the following proposition combining the results of both Theorem 8.8 and Corollary 8.5
is relevant when the spectral radius rV of R on BV (C) is easier to compute or to estimate
than the spectral radius r2 of R on L2(πR).

Proposition 8.18 Assume that P satisfies Conditions (Mν,ψ)–Gψ(δ, V ) with πR(V
2) <∞,

and that P is reversible and aperiodic. Set ΠR := 1X⊗πR. Let r ∈ [rV , 1). Then the following
alternative holds.

(a) If Equation ρ(x−1) = 1 has no solution x ∈ R such that r < |x| < 1, then we have ϱ2 ≤ r,
thus : ∀n ≥ 1, ∥Pn −ΠR∥2 ≤ rn.

(b) Otherwise, we have ϱ2 = ϱV , thus: ∀n ≥ 1, ∥Pn −ΠR∥2 ≤ ϱnV .

In particular, using Proposition 8.12 and Corollary 8.13, the alternative (a)-(b) of Proposi-
tion 8.18 holds with Lyapunov function V α for α ∈ A (in place of V ) and with the upper
bound r = δα of rV α .

Proof. Recall that Equation ρ(x−1) = 1 in the alternative (a)-(b) of Theorem 8.8 only
focusses on real numbers z such that r2 < |x| < 1 from reversibility. Similarly Equation
ρ(x−1) = 1 in the alternative (a)-(b) of Corollary 8.5 only focusses on real numbers x such
that rV < |x| < 1: Indeed this again follows from Proposition 8.3 applied to B := BV (C)
using BV (C) ⊂ L2(πR) and reversibility.

Assume that Equation ρ(x−1) = 1 has no solution x ∈ R such that r < |x| < 1. Then we
have ϱV ≤ r from Corollary 8.5. Thus r2 ≤ (rV max(rV , ϱV ))

1/2 ≤ r from Theorem 8.8 and
the assumption r ≥ rV . Then Inequality r2 ≤ r combined with Theorem 8.8 provides the
following alternative: If Equation ρ(x−1) = 1 has no solution x ∈ R such that r2 < |x| < 1,
then we have ϱ2 ≤ r2 ≤ r ; Otherwise the solutions x ∈ R of Equation ρ(x−1) = 1 such that
r2 < |x| < 1 necessarily satisfy r2 ≤ |x| ≤ r, thus we still have ϱ2 ≤ r from Theorem 8.8.
Case (a) of Proposition 8.18 is proved.

Now assume that Equation ρ(x−1) = 1 has solutions x ∈ R such that r < |x| < 1. Then
we obtain that ϱV = max

{
|x| : x ∈ R, ρ(x−1) = 1, r < |x| < 1

}
from Corollary 8.5, so

that r < ϱV . Thus r2 ≤ (rV max(rV , ϱV ))
1/2 < ϱV . It then follows from Theorem 8.8 that

ϱ2 = max
{
|x| : x ∈ R, ρ(x−1) = 1, r2 < |x| < 1

}
= ϱV . □

Finally recall that a reversible Markov kernel P is said to be positive if the following
condition holds

∀g ∈ L2(πR),

∫
X
(Pg)(x) g(x)πR(dx) ≥ 0. (132)

The relevant fact to apply Theorem 8.8 to the positive reversible case is that any eigenvalue
z ∈ C of P (i.e. ∃h ∈ L2(πR), h ̸= 0, Ph = zh) is in fact a non-negative real number. Indeed
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we know that z ∈ R from reversibility. Moreover Condition (132) applied to h implies that
z πR(h

2) = πR(Ph · h) ≥ 0 with πR(h
2) > 0 since h ̸= 0 in L2(πR). Thus z ≥ 0.

Proposition 8.3 and the previous fact then imply that Case (a) of Theorem 8.8 holds when
P is positive reversible.

Corollary 8.19 Let P satisfy Conditions (Mν,ψ)–Gψ(δ, V ) with πR(V
2) < ∞. If P is

aperiodic and positive reversible, then P is geometrically ergodic on L2(πR) with ϱ2 ≤ r2,
where r2 ∈ (0, 1) is the spectral radius of the residual kernel R on L2(πR).

If P is reversible, then P 2 is reversible too, and it is positive since

∀g ∈ L2(πR),

∫
X
(P 2g)(x) · g(x)πR(dx) =

∫
X
(Pg)(x) · Pg(x)πR(dx) ≥ 0.

Then the following statement can be deduced from Corollary 8.19.

Corollary 8.20 Assume that P satisfies Condition (Mν,ψ) with µR(1X) < ∞, and is irre-
ducible, aperiodic and reversible. Moreover assume that P 2 satisfies Conditions (Mν2,ψ2)-
Gψ2(δ2, V ) for some (ν2, ψ2) ∈ M∗

+,b × B∗
+, δ2 ∈ (0, 1) and Lyapunov function V such that

πR(V
2) <∞. Then P is geometrically ergodic on L2(πR) and we have ϱ2 ≤

√
r2(R2), where

r2(R
2) is the spectral radius of R2 := P 2 − ψ2 ⊗ ν2 on L2(πR).

Proof. Recall that πR is the unique P−invariant probability measure under the assumptions
on P (see Corollary 3.13). Next, we know from the assumptions on P 2 that P 2 admits a
unique invariant probability measure which is given by πR2

. Since πR is also P 2−invariant, it
follows that πR2

= πR. We deduce from Corollary 8.19 applied to P 2 that P 2 is geometrically
ergodic on L2(πR) with ϱ2(P

2) ≤ r2(R
2). Now, writing any integer n ≥ 1 as n = 2k+ r with

r ∈ {0, 1} and defining ΠR := 1X ⊗ πR, we obtain that

Pn −ΠR = (P −ΠR)
2k+r = (P −ΠR)

r
(
(P 2)k −ΠR

)
from which we easily deduce that ϱ2(P ) ≤

√
ϱ2(P 2) ≤

√
r2(R2). □

8.7 Bibliographic comments

A bibliographic discussion on the V−geometric rate of convergence was presented in Sub-
section 6.3. The general presentation in Theorem 8.1 based on the condition rB < 1 is new
to the best of our knowledge. Actually Theorem 8.1 is the extended version of [HL24b],
which focused solely on V−geometric ergodicity. Here the case B = BV (C) is obtained in
Subsection 8.2 under Conditions (Mν,ψ)–Gψ(δ, V ) as a by-product of Theorem 8.1. More
generally, all the arguments used in this section, including those in Appendix D, are based
solely on the spectral theory prerequisites (S1)-(S3) presented in Subsection 6.2 (page 49).

The rate of convergence in L2(πR) is classically studied for reversible Markov kernels. Here
the first application of Theorem 8.1 to the case B := L2(πR) is addressed in Theorem 8.6 for
general Markov kernels, introducing the quantity ϑV linked to the adjoint operator of R on
L2(πR), see (119). To our knowledge this result is new. The computation used for bounding
∥Rng∥ 2

2 in the proof of Theorem 8.6 is inspired by [TM22]. The second application in
Theorem 8.8 concerns the reversible case. It is in fact a weak version of the classical result in
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[RR97], stating that an aperiodic and reversible Markov kernel satisfying Conditions (Mν,1S )–
G1S (δ, V ) with πR(V

2) <∞ is geometrically ergodic on L2(πR) with ϱ2 ≤ ϱV , see also [RT01,
Bax05, KM12, DMPS18]. The proof in [RR97] is based on an argument involving spectral
measures. Explicit rates of convergence are obtained in [Bax05, TM22] under minorization
and geometric drift conditions. In Theorem 8.8 the geometric ergodicity on L2(πR) is proved,
but Inequality ϱ2 ≤ ϱV is only obtained when max(rV , r2) < ϱV , in which case we actually
have ϱ2 = ϱV according to the alternative stated in both Corollary 8.5 and Theorem 8.8.
Complements and examples for reversible Markov kernels, in particular in connection with
MCMC algorithms, can be found in [RR04] and [DMPS18, Chap. 2 and 22]. The positive
reversible assumption addressed in Corollaries 8.19-8.20 is detailed in [DMPS18, Def. 22.4.6
and examples therein]. Finally recall that the geometric ergodicity of P on L2(πR) implies
the geometric ergodicity on Lp(πR) for every p ∈ (1,+∞) from the Riesz-Thorin interpolation
theorem, e.g. see [DMPS18].

The drift inequality RV α ≤ δα V α for some suitable exponents α ∈ (0, 1] was intro-
duced in [HL24b] to study Poisson’s equation and the V α−geometric ergodicity under Condi-
tions (Mν,1S )–G1S (δ, V ). The fact that such exponents form an interval A ⊂ [0, 1) completes
this study (see Proposition 8.12). Recall that we have A = (0, 1] in atomic case. In fact this
equality A = (0, 1] may also occur for non-atomic small-set S, even in the case of a continuous
state space X, see [HL24b, Ex. 5.1].

Finally, we emphasize the following point which is important in practice and not addressed
in our work: What is called rate of convergence in this section only concerns the real number
ϱB in (114). The constant cρ in (113) is not investigated here (see the references given in
Subsection 6.3 on this topic). We simply recall that the most favourable case is reversibility,
since in this case ϱ2 can be considered in (113) (case B := L2(πR)) with associated constant
cϱ2 = 1 (see (122)).
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A Probabilistic terminology

The split chain (e.g. see [Num84, Num02]). Let (Xn)n≥0 be a Markov chain on the
space (X,X ) with kernel transition P satisfying condition (Mν,ψ) with ν ∈ M∗

+,b, ψ ∈ B∗
+,

that is
R := P − ψ ⊗ ν ≥ 0.

Let us introduce the bivariate Markov chain ((Xn, Yn))n≥0 with the state space X × {0, 1}
and the following transition kernel P̂ : for every bounded measurable function f on X×{0, 1}

E[f(Xn+1, Yn+1) | σ(Xk, Yk, k ≤ n)] = E[f(Xn+1, Yn+1) | σ(Xn)] = (P̂ f)(Xn)

with
∀A ∈ X , P̂ (x,A× {0}) = R(x,A) P̂ (x,A× {1}) = ψ(x) ν(1A).

((Xn, Yn))n≥0 is called the split chain associated with (Xn)n≥0. Note that, for any A ∈ X ,

P̂ (x,A × {0, 1}) = P̂ (x,A × {0}) + P̂ (x,A × {1}) = P (x,A) so that the marginal process
(Xn)n≥0 is indeed the original Markov with transition kernel P . Next, for any f ∈ B and
x ∈ X, E[f(Xn+1) | Xn = x, Yn+1 = 1] = ν(1X)

−1ν(f) for every n ≥ 1. It follows that the
set X × {1} is an atom for the split chain. Let σ{1} := inf{n ≥ 1, Yn = 1} be the return
time to the atom X× {1} of the split chain or the return time of (Yn)n≥0 to state 1. It is a
regeneration times of the split chain. Such a material leads to using the so-called regeneration
method to analyze the split chain and to deduce, when possible, the properties of the original
Markov chain.

Probabilistic counterparts of various quantities in this document.

Let us introduce the probability measure ν̂ = ν(1X)
−1ν on X. The probability P when X0

has probability distribution η, is denoted by Pη and Eη is the expectation under Pη.
∀A ∈ X and ∀x ∈ X :

� (Rn1A)(x) = Rn(x,A) = Px{Xn ∈ A, σ{1} > n};
(Rn1X)(x) = Rn(x,X) = Px{σ{1} > n};∑+∞

n=0(R
n1X)(x) = Ex[σ{1}];

� h∞
R (x) := limn(R

n1X)(x) = Px{σ{1} = +∞};

� (Rn−1ψ)(x) = Px{σ{1} = n}/ν(1X),
∑n

k=1(R
k−1ψ)(x) = Px{σ{1} ≤ n}/ν(1X);∑+∞

n=1(R
n−1ψ)(x) = Px{σ{1} <∞}/ν(1X);

� µR(1A) = ν(1X)
∑+∞

n=0 Pν̂{Xn ∈ A, σ{1} > n}, µR(1X) = ν(1X)Eν̂ [σ{1}]
µR(ψ) = Pν̂{σ{1} <∞}.

� Formula (17). For any n ≥ 1, let Ln := min{k = 0, . . . , n − 1 : Yn−k = 1}, be the
time elapsed since the last visit of (Yn)n≥0 to 1 before time n. Then {σ{1} ≤ n} =

⊔n−1
k=0{Ln = k} and Formula (17) has the following probabilistic meaning

Px{Xn ∈ A} = Px{Xn ∈ A, σ{1} > n}+
∑n−1

k=0 Px{Xn ∈ A,Ln = k} .
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B Proof of Theorem 4.12

From the definition of d in (42), there exists an integer ℓ0 ≥ 1 such that the power series
ρ(z) :=

∑+∞
n=1 ν(R

n−1ψ) zn writes as

∀z ∈ D, ρ(z) :=

+∞∑
k=ℓ0

ν(Rkd−1ψ) zkd. (133)

The proof of Theorem 4.12 is based on the two following lemmas.

Lemma B.1 Let P satisfy Condition (Mν,ψ) with µR(1X) <∞. Then

lim
n→+∞

P dnψ = ζψ :=
1

md

+∞∑
k=0

Rkdψ with md :=

+∞∑
k=ℓ0

k ν(Rkd−1ψ) <∞. (134)

Proof. Using the definition of the integer d, the arguments here are close to those used in the
proof of the direct implication in Lemma 4.9. Note that

∑+∞
k=0R

dkψ is a bounded function
on X from Proposition 3.4, and that md <∞ from Remark 4.10. Now define

∀z ∈ D, Pd(z) :=
+∞∑
n=0

znP dnψ, Rd(z) :=
+∞∑
n=0

znRdnψ, ρd(z) :=
+∞∑
k=ℓ0

ν(Rkd−1ψ) zk.

with D = {z ∈ C : |z| < 1}. Note that the power series ρ in (133) satisfies ρ(z) = ρd(z
d).

Thus ρd(z) is not a power series in zq for any integer q ≥ 2: Indeed, otherwise we would have
ρd(z) :=

∑+∞
ℓ=ℓ′0

ν(Rqℓd−1ψ) zqℓ for some integers ℓ′0 ≥ 1 and q ≥ 2, thus

ρ(z) =
+∞∑
ℓ=ℓ′0

ν(Rqℓd−1ψ) zqℓd,

which contradicts the definition (42) of d. Moreover observe that |ρd(z)| < 1 for every z ∈ D
since µR(ψ) =

∑+∞
k=ℓ0

ν(Rkd−1ψ) = 1 from Theorem 3.6. Now using (17) applied to ψ and

the definition of d (see (133)) it follows that P dnψ = Rdnψ for every n ∈ {0, . . . , ℓ0 − 1} and
that

∀n ≥ ℓ0, P dnψ = Rdnψ +
n∑

k=ℓ0

ν(Rdk−1ψ)P d(n−k)ψ.

Considering the associated power series and interchanging sums for the last term, we easily
obtain that

∀z ∈ D, Pd(z) = Rd(z)Ud(z) with Ud(z) :=
1

1− ρd(z)
. (135)

Next, we deduce from the Erdös-Feller-Pollard renewal theorem [EFP49] that the coefficients
ud,k of the power series Ud(z) =

∑+∞
k=0 ud,kz

k in (135) satisfy: limk ud,k = 1/md. Then,
identifying the coefficients in Equation (135) (Cauchy product), we obtain that P dnψ =∑n

k=0 ud,n−kR
dkψ for every n ≥ 0. Since

∑+∞
k=0R

dkψ < ∞ from Proposition 3.4, Prop-
erty (134) follows from Lebesgue theorem w.r.t. discrete measure. □
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Lemma B.2 Let P satisfy Condition (Mν,ψ) with µR(1X) < ∞ and h∞
R = 0. Then there

exists a sequence (εn)n ∈ BN such that limn εn = 0 (point-wise convergence) and

∀h ∈ B, ∥h∥1X ≤ 1, ∃ξh ∈ B, |P dnh− ξh| ≤ εn.

Proof. Here, using the definition of the integer d, the arguments are close to those used
in the proof of Lemma 4.11. For r = 0, . . . , d − 1 set ζr,ψ := P rζψ with ζψ given in (134).
Note that ζr,ψ ∈ B, and that limn P

dn+rψ = ζr,ψ (point-wise convergence) from Lebesgue’s
theorem w.r.t. P r(x, dy) for each x ∈ X. Now for every h ∈ B define ξh ∈ B by

ξh :=
d−1∑
r=0

( +∞∑
j=1

ν(Rdj−r−1h)

)
ζr,ψ. (136)

Then using again (17) and observing that every integer k = 1, . . . , dn writes as k = dj− r for
r = 0, . . . , d− 1 and j = 1, . . . , n, we obtain that for every n ≥ 1

P dnh− ξh = Rdnh+

d−1∑
r=0

n∑
j=1

ν(Rdj−r−1h)
(
P d(n−j)+rψ− ζr,ψ

)
−
d−1∑
r=0

( +∞∑
j=n+1

ν(Rdj−r−1h)

)
ζr,ψ.

Thus, if ∥h∥1X ≤ 1 (i.e. |h| ≤ 1X), then we have |P dnh− ξh| ≤ εn with εn ∈ B defined by

εn := Rdn1X +

d−1∑
r=0

n∑
j=1

ν(Rdj−r−11X)
∣∣P d(n−j)+rψ − ζr,ψ

∣∣+ d−1∑
r=0

∥ζr,ψ∥1X
+∞∑

j=n+1

ν(Rdj−r−11X).

We have limn εn = 0 (point-wise convergence). Indeed, the last term converges to zero when
n→+∞ since

∑+∞
k=0 ν(R

k1X) = µR(1X) <∞; The second sum above converges to zero when
n→+∞ from Lebesgue’s theorem w.r.t. discrete measure recalling that limn P

dn+rψ = ζr,ψ;
Finally limnR

dn1X = 0 from h∞
R = 0.

□

Proof of Theorem 4.12. Let g ∈ B be such that |g| ≤ 1X. Note that for r = 0, . . . , d − 1 we
have |P rg| ≤ P r|g| ≤ P r1X = 1X. Thus for r = 0, . . . , d − 1 we can consider ξr,g := ξP rg,

where ξP rg is the function of Lemma B.2 associated to h = P rg. Let γg =
1
d

∑d−1
r=0 ξr,g. Then∣∣∣∣γg − 1

d

d−1∑
r=0

Pnd+rg

∣∣∣∣ ≤ 1

d

d−1∑
r=0

∣∣ξr,g − Pnd(P rg)
∣∣ ≤ εn (137)

from Lemma B.2. Thus we have γg = limn
1
d

∑d−1
r=0 P

nd+rg (point-wise convergence). From
Lebesgue’s theorem w.r.t. P (x, dy) for each x ∈ X, we then obtain that

Pγg = lim
n→+∞

1

d

d∑
r=1

Pnd+rg = γg (138)

the last equality being obviously deduced from limn→+∞ Pnd+dg = limn→+∞ Pndg. Thus
γg is a P−harmonic function, so that γg = cg1X for some constant cg from Theorem 4.1.
Moreover, using the second equality of (138) and applying Lebesgue’s theorem w.r.t. the
P−invariant probability measure πR, we obtain that πR(g) = πR(γg), so γg = πR(g)1X.
Finally, applying the function inequality (137) to any fixed x ∈ X and taking the supremum
on all the functions g ∈ B such that |g| ≤ 1X, we obtain the desired total variation convergence
of Theorem 4.12 since limn εn(x) = 0 from Lemma B.2. □
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C Proof of Lemmas 7.6, 7.10 and 7.11

Proof of Lemma 7.6. We deduce from the definitions of P̂k and π̂k that

∀y ∈ Bk
c,

∑
x∈N

P̂k(x, y) π̂k({x}) = 0 = π̂k({y}).

Using successively the above equality, the definitions of π̂k and P̂k, the Pk−invariance of πk,
and again the definition of π̂k, we obtain

∀y ∈ Bk,
∑
x∈N

P̂k(x, y) π̂k({x}) =
∑
x∈Bk

P̂k(x, y) π̂k({x})

=
∑
x∈Bk

Pk(x, y)πk({x}) = πk({y}) = π̂k({y}).

Thus π̂k is a P̂k−invariant probability measure. To prove the uniqueness, consider any
P̂k−invariant probability measure η̂ = (η̂({x}))x∈N. Then

∀y ∈ Bk
c, η̂({y}) =

∑
x∈N

P̂k(x, y) η̂({x}) = 0

from the definition of P̂k. Thus

∀y ∈ Bk, η̂({y}) =
∑
x∈N

P̂k(x, y) η̂({x}) =
∑
x∈Bk

P̂k(x, y) η̂({x}) =
∑
x∈Bk

Pk(x, y) η̂({x})

from the definition of P̂k. Thus η := (η̂({x}))x∈Bk
is a Pk−invariant probability measure on

Bk. This proves that η̂ = π̂k. □

Proof of Lemma 7.10. Recall that bk := 1Xk
c and Fk is the finite-dimensional space with

basis Ck :=
{
1Xi,k

, i ∈ Ik
}
∪ {bk}. The Nk × Nk−matrix Bk is defined as the matrix of Pk

with respect to Ck with Nk := dimFk = Card (Ik) + 1. Note that

Pkbk = P̂kbk = Q̂kbk + bk(x0)ψk = 0. (139)

Since g ∈ Fk writes in the basis Ck as g =
∑

i∈Ik g(xi,k) + g(xk)bk where xi,k ∈ Xi,k and
xk ∈ X \ Xk, we can write for every j ∈ Ik

Pk1Xj,k

= P̂k1Xj,k
=

∑
i∈Ik

(P̂k1Xj,k
)(xi,k) 1Xi,k

+ (P̂k1Xj,k
)(xk) bk (since Pk1Xj,k

∈ Fk)

=
∑
i∈Ik

[
(Q̂k1Xj,k

)(xi,k) + 1Xj,k
(x0)ψk(xi,k)

]
1Xi,k

+
[
(Q̂k1Xj,k

)(xk) + 1Xj,k
(x0)ψk(xk)

]
bk

=
∑
i∈Ik

[
(Q̂k1Xj,k

)(xi,k) + 1Xj,k
(x0)ψk(xi,k)

]
1Xi,k

+ 1Xj,k
(x0) bk.

The previous equalities show that Bk is a non-negative matrix. Moreover Equality Pk1X = 1X
reads as matrix equality Bk · 1k = 1k where 1k is the coordinate vector of 1X in the basis Ck.
Thus Bk is a stochastic matrix. □
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Proof of Lemma 7.11. Recall that bk is defined by bk = 1X −
∑

i∈Ik 1Xi,k
. From ψk :=

1X − Q̂k1X it follows that ψk = bk +
∑

i∈Ik 1Xi,k
− Q̂k1X. Define

mi,k(f) :=

∫
Xk

f(y) inf
t∈Xi,k

p(t, y) dµ(y)

and observe that Q̂kf =
∑

i∈Ik mi,k(f) 1Xi,k
. Then we deduce from (98) and (99) that

P̂kf := (Q̂kf) + f(x0)ψk =
∑
i∈Ik

mi,k(f) 1Xi,k
+ f(x0)

(
bk +

∑
i∈Ik

1Xi,k
− Q̂k1X

)
=

∑
i∈Ik

[
mi,k(f) + f(x0)− f(x0)mi,k(1X)

]
1Xi,k

+ f(x0)bk,

so that (101) and
∑

i∈Ik πi,k = 1 give

π̂k(f) :=
∑
i∈Ik

πi,k [mi,k(f) + f(x0)− f(x0)mi,k(1X)
]

=
∑
i∈Ik

πi,kmi,k(f) + f(x0)

(
1−

∑
i∈Ik

πi,kmi,k(1X)

)
. (140)

This proves Formula (102a). Now we prove that π̂k defines a P̂k-invariant probability measure
on (X,X ). Note that

∀i ∈ Ik, mi,k(1X) ≤
∫
X
p(xi,k, y) dµ(y) = (P1X)(xi,k) = 1,

thus ∫
X
pk(y) dµ(y) =

∑
i∈Ik

πi,kmi,k(1X) ≤ 1.

It follows from this remark and from (140) that π̂k is a probability measure on X. Finally
Bk ·Fk is the coordinate vector of P̂ 2

k f in Ck since P̂kf ∈ Fk and Fk is the coordinate vector

of P̂kf in Ck. Consequently we deduce from (101) and (100) that

π̂k(P̂kf) := πk Bk Fk = πk Fk = π̂k(f).

Thus π̂k is P̂k-invariant.

□

D Proof of Theorem 8.1 and Proposition 8.3

Here we assume that P satisfy Condition (Mν,ψ) with h∞
R = 0 and µR(1X) < ∞, and that

P ∈ L(B) where (B, ∥ · ∥) is a Banach space satisfying Assumptions (B). The properties of
Lemma 8.2 are repeatedly used below, that is: R ∈ L(B), the radius of convergence of the
power series ρ(z) :=

∑+∞
n=1 ν(R

n−1ψ) zn is larger than 1/rB where rB denotes the spectral
radius of R on B, and finally the series g̃z :=

∑+∞
k=0 z

−(k+1)Rkg absolutely converges in B for
every z ∈ C such that |z| > rB and for every g ∈ B.
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Lemma D.1 If rB < 1, then the following assertions hold for every z ∈ C such that |z| > rB.
The operator zI − P is invertible on B if, and only if, we have ρ(z−1) ̸= 1. Moreover, if
ρ(z−1) = 1, then z is an eigenvalue of P on B, and Ez := {g ∈ B : Pg = zg} = C · ψ̃z with
ψ̃z :=

∑+∞
k=0 z

−(k+1)Rkψ being non zero in B and satisfying ν(ψ̃z) = 1.

Proof. Let z ∈ C be such that |z| > rB. Assume that zI − P is not one-to-one on B, that
is: ∃g ∈ B, g ̸= 0, Pg = zg. Note that limn |z|−n∥Rng∥ = 0 using the definition of rB and
|z| > rB (use (116) with γ ∈ (rB, |z|)). Since R ∈ L(B), Equality (44) of Lemma 4.15 can be
proved similarly, that is we have:

∀n ≥ 0, ν(g)
n∑
k=0

z−(k+1)Rkψ = g − z−(n+1)Rn+1g.

Then the following equality holds in B

g = ν(g)
+∞∑
k=0

z−(k+1)Rkψ

and ν(g) ̸= 0 since g is assumed to be non-zero. Note that g 7→ ν(g) is a continuous linear
map from B to C due to (115). Thus, integrating the previous equality w.r.t. ν, we obtain
that ν(g) = ν(g)ρ(z−1), thus ρ(z−1) = 1. We have proved by contrapositive that |z| > rB
and ρ(z−1) ̸= 1 imply that zI − P is one-to-one. Now prove that |z| > rB and ρ(z−1) ̸= 1
imply that zI − P is surjective on B. Let z ∈ C be such that |z| > rB, let g ∈ B and define

∀n ≥ 1, g̃n,z :=

n∑
k=0

z−(k+1)Rkg.

Using P = R+ ψ ⊗ ν we obtain that

zg̃n,z − P g̃n,z = z g̃n,z −Rg̃n,z − ν(g̃n,z)ψ = g − z−(n+1)Rn+1g − ν(g̃n,z)ψ. (141)

Next the following convergences hold, in B for the first two, in C for the last one

lim
n→+∞

g̃n,z = g̃z :=

+∞∑
k=0

z−(k+1)Rkg, lim
n
P g̃n,z = P g̃z, lim

n→+∞
ν(g̃n,z) = ν(g̃z) (142)

from Lemma 8.2 (use P ∈ L(B) for the second one). Then, passing to the limit when n→+∞
in (141) provides the following equality in B:

(zI − P )g̃z = g − ν(g̃z)ψ. (143)

In particular, with g = ψ, we obtain that

(zI − P )ψ̃z =
(
1− ρ(z−1)

)
ψ with ψ̃z :=

+∞∑
k=0

z−(k+1)Rkψ.

since ν(ψ̃z) = ρ(z−1). Consequently, if ρ(z−1) ̸= 1, then

(zI − P )

(
g̃z +

ν(g̃z)

1− ρ(z−1)
ψ̃z

)
= g,
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from which we deduce that zI − P is surjective since g̃z and ψ̃z belong to B.

We have proved that, if z ∈ C is such that |z| > rB, then ρ(z
−1) ̸= 1 implies that zI − P

is invertible on B. Conversely let z ∈ C be such that |z| > rB and ρ(z−1) = 1. Let us prove
that zI −P is not invertible on B. Recall that the series ψ̃z :=

∑+∞
k=0 z

−(k+1)Rkψ absolutely

converges in B and that ν(ψ̃z) = ρ(z−1) = 1 from Lemma 8.2. Moreover we have ψ̃z ̸= 0 in
B. This is obvious from ν(ψ̃z) ̸= 0 if B is a space composed of functions. This is also true if
B is a space composed of classes of functions modulo πR : Indeed ψ̃z = 0 in B would imply
that ψ̃z = 0 πR−a.s., which is impossible since ν(ψ̃z) ̸= 0 and ν is absolutely continuous
w.r.t. πR from the inequality ν ≤ πR(ψ)

−1πR derived from the minorization condition (Mν,ψ)
and the P−invariance of πR with πR(ψ) > 0. Next the equalities in (45) can be applied to
prove Equality Pψ̃z = zψ̃z in B. Thus zI − P is not one-to-one on B, thus is not invertible
on B. Finally, the fact that Ez = C · ψ̃z follows from the first part of the proof. □

Now let B0 := {g ∈ B : πR(g) = 0}. Note that B0 is a closed subspace of B since the
linear form g 7→ πR(g) is continuous from B to C from Condition (112). Thus (B0, ∥ · ∥) is
a Banach space. Moreover B0 is P−stable (i.e. P (B0) ⊂ B0) from the P−invariance of πR.
Let P0 denote the restriction of P to B0.

Lemma D.2 If rB < 1, then I − P0 is invertible on (B0, ∥ · ∥).

Proof. From (143) applied to z = 1, we obtain that

∀g ∈ B, (I − P )g̃1 = g − µR(1X)πR(g)ψ with g̃1 :=
+∞∑
k=0

Rkg ∈ B

since ν(g̃1) = µR(g) = µR(1X)πR(g) from (26). Hence, if πR(g) = 0, then g̃1 is solution to
Poisson equation (I − P )g̃1 = g. Moreover we know from Lemma D.1 that E1 := {g ∈ B :
Pg = g} has dimension one, i.e. E1 = C · 1X. Hence two solutions to Poisson’s equation in B
differ from an additive constant. Consequently ĝ1 := g̃1−πR(g̃1)1X is the unique πR−centered
solution in B to Poisson’s equation (I − P )ĝ = g. This proves the claimed statement. □

Proof of Theorem 8.1. Let z ∈ C be such that |z| > rB, z ̸= 1, and ρ(z−1) ̸= 1. Then zI −P
is invertible on B from Lemma D.1. Thus zI−P0 is also one-to-one on B0. Now, let g ∈ B0.
From Lemma D.1 there exists h ∈ B such that (zI−P )h = g, thus (z−1)πR(h) = πR(g) = 0
from the P−invariance of πR. Hence πR(h) = 0 (i.e. h ∈ B0) since z ̸= 1, and consequently
zI − P0 is surjective on B0. We have proved that, for any z ∈ C such that |z| > rB, z ̸= 1,
and ρ(z−1) ̸= 1, the operator zI − P0 is invertible on B0. Moreover we know that I − P0 is
invertible on B0 from Lemma D.2.

Now recall that ρ(z−1) ̸= 1 for every z ∈ C such that |z| = 1, z ̸= 1, from the aperiodicity
condition (39) (i.e. z = 1 is the only complex number of modulus one solution to ρ(z−1) = 1).
Moreover, if z ∈ C is such that |z| > 1, then ρ(z−1) ̸= 1 since

|ρ(z−1)| ≤
+∞∑
n=1

ν(Rn−1ψ) |z|−n <
+∞∑
n=1

ν(Rn−1ψ) = µR(ψ) = 1.

Let ϱ0 denote the spectral radius of P0 on B0, and recall that the prerequisites in spectral
theory are given by (S1)-(S3) in Subsection 6.2. From the above we then obtain that ϱ0 < 1
and that the following alternative holds:
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(a’) If Equation ρ(z−1) = 1 has no solution z ∈ C such that rB < |z| < 1, then zI − P0 is
invertible on B0 for every z ∈ C such that |z| > rB. Thus ϱ0 ≤ rB.

(b’) Otherwise, we have ϱ0 = max
{
|z| : z ∈ C, ρ(z−1) = 1, rB < |z| < 1

}
.

Moreover recall that ϱ0 = limn(∥Pn0 ∥0)1/n from Gelfand’s formula, where ∥ · ∥0 denotes the
operator norm on B0. Let ρ ∈ (ϱ0, 1). Then there exists a positive constant cρ such that:
∥Pn0 ∥0 ≤ cρρ

n. Thus

∀n ≥ 1, ∀g ∈ B, ∥Png − πR(g)1X∥ = ∥Pn(g − πR(g)1X)∥ (from Pn1X = 1X)

= ∥Pn0 (g − πR(g)1X)∥ (since g − πR(g)1X ∈ B0)

≤ cρρ
n∥g − πR(g)1X∥ (from ∥Pn0 ∥0 ≤ cρρ

n)

≤ cρ
(
1 + c∥1X∥

)
ρn∥g∥ (from (112)).

Using the definition (114) of ϱB, we then obtain that ϱB ≤ ϱ0 since ρ is any real number
in (ϱ0, 1). Hence Case (a) of Theorem 8.1 which corresponds to Case (a′) is proved. To
prove Case (b) of Theorem 8.1 which corresponds to the above case (b′), consider z ∈ C such
that rB < |z| < 1, ρ(z−1) = 1 and |z| = ϱ0. Then z is an eigenvalue of P from Lemma D.1,
i.e. ∃g ∈ B, g ̸= 0, Pg = zg. Moreover, from the P−invariance of πR, we have πR(g) = zπR(g),
thus πR(g) = 0 since z ̸= 1. Hence we have: ∀n ≥ 1, ∥Png − πR(g)1X∥ = ∥Png∥ = ϱn0 ∥g∥. It
then follows from the definition of ϱB that ϱB ≥ ϱ0. Thus ϱB = ϱ0 in Case (b). Theorem 8.1
is proved. □

Proof of Proposition 8.3. In case (b) we know that, for r ∈ (rB, 1) sufficiently close to rB,
the set Sr := {z ∈ C, ρ(z−1) = 1, r ≤ |z| < 1} is non-empty. Moreover Sr is finite from
the analyticity of the power series ρ(·). The last assertion of Proposition 8.3 is proved in
Lemma D.1. □

E Proof of Lemma 8.11

Using P = R + T it follows from Lemma 8.10 that P = P ∗ = R1 + U1 with R1 = R∗ and
U1 = T ∗ defined by: ∀g ∈ L2(πR), U1g = πR(ψg)ζ. Now for n ≥ 2 set Un := Pn −Rn

1 . Note
that Property (125) is equivalent to

∀n ≥ 1, ∀g ∈ L2(πR), Ung =

n∑
k=1

πR(g ·Rk−1ψ)Pn−kζ. (144)

Property (144) is obvious for n = 1 from the definition of U1 and R1. Next we have

∀n ≥ 2, Pn − Un = Rn
1 = Rn−1

1 R1 = (Pn−1 − Un−1)(P − U1),

so that
∀n ≥ 2, Un = Pn−1U1 + Un−1R1 = Pn−1U1 + Un−1R

∗. (145)

Now, if for some n ≥ 2 we have

∀g ∈ L2(πR), Un−1g =
n−1∑
k=1

πR(g ·Rk−1ψ)Pn−1−kζ,
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then we deduce from (145) that

∀g ∈ L2(πR), Ung = πR(ψg)P
n−1ζ +

n−1∑
k=1

πR(R
∗g ·Rk−1ψ)Pn−1−kζ

= πR(ψg)P
n−1ζ +

n−1∑
k=1

πR(g ·Rkψ)Pn−1−kζ

=
n∑
k=1

πR(g ·Rk−1ψ)Pn−kζ.

Property (144) is proved by induction.
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[BH22] M. Benäım and T. Hurth. Markov Chains on Metric Spaces—a Short Course.
Springer, Cham, 2022.
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52(4):1799–1822, 2016.

[DFMS04] R. Douc, G. Fort, E. Moulines, and P. Soulier. Practical drift conditions for
subgeometric rates of convergence. Ann. Appl. Probab., 14(3):1353–1377, 2004.

[DMPS18] R. Douc, E. Moulines, P. Priouret, and P. Soulier. Markov Chains. Springer,
2018.
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[HL20] L. Hervé and J. Ledoux. V-geometrical ergodicity of Markov kernels via finite-
rank approximations. Electron. Commun. Probab., 25(23):1–12, March 2020.
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Markov stochastiquement monotone. Stocha. Proc. Appl., 56(1):133–149, 1995.

96



[SS00] T. Shardlow and A. M. Stuart. A perturbation theory for ergodic Markov
chains and application to numerical approximations. SIAM J. Numer. Anal.,
37(4):1120–1137, 2000.

[TM22] A. Taghvaei and P. G. Mehta. On the Lyapunov Foster criterion and Poincar̈ı¿½
inequality for reversible Markov chains. IEEE Trans. Automatic Control,
67(5):2605–2609, 2022.

[TT94] P. Tuominen and R. L. Tweedie. Subgeometric rates of convergence of f -ergodic
Markov chains. Adv. in Appl. Probab., 26(3):775–798, 1994.

[Twe98] R. L. Tweedie. Truncation approximations of invariant measures for Markov
chains. J. Appl. Probab., 35(3):517–536, 1998.

[Wol80] D. Wolf. Approximation of the invariant probability measure of an infinite
stochastic matrix. Adv. in Appl. Probab., 12(3):710–726, 1980.

97


	Introduction
	Main notations and prerequisites
	Measures and kernels
	Markov chain

	Minorization condition, invariant measure and recurrence
	The minorization condition (bold0mu mumu MMMMMM,) and the residual kernel
	P-invariant measure
	Recurrence/Transience
	Further statements
	Bibliographic comments

	Harris recurrence and convergence of the iterates
	Harris-recurrence
	Convergence of iterates: the aperiodic case
	Convergence of iterates: the periodic case
	Drift condition to obtain hR=0
	Bibliographic comments

	Modulated drift condition and Poisson's equation
	Modulated drift condition bold0mu mumu DDDDDD(V0,V1)
	Residual-type modulated drift condition
	Poisson's equation
	Further statements
	Bibliographic comments

	V-geometric ergodicity
	Poisson's equation under the geometric drift condition
	V-geometric ergodicity
	Bibliographic comments

	Perturbation results
	Main results
	Examples
	Application to standard perturbation schemes
	Application to truncation-augmentation of discrete Markov kernels
	Application to state space discretization

	Bibliographic comments

	Geometric rate of convergence of the iterates
	Geometric rate of convergence on a Banach space
	Rate of convergence in V-geometric ergodicity
	Geometric ergodicity on L2(R)
	Geometric ergodicity on L2(R) in the reversible case
	From V-geometric ergodicity to V-geometric ergodicity
	Further results in the reversible and positive reversible cases
	Bibliographic comments

	Probabilistic terminology
	Proof of Theorem 4.12
	Proof of Lemmas 7.6, 7.10 and 7.11
	Proof of Theorem 8.1 and Proposition 8.3
	Proof of Lemma 8.11
	References

