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Abstract

This paper is devoted to the study of Markov kernels on general measurable space
under a first-order minorization condition and a modulated drift condition. The fol-
lowing issues can be addressed: Existence and uniqueness of invariant measures, recur-
rence/transience properties including Harris-recurrence property, convergence in total
variation of iterates, Poisson’s equation, perturbation schemes and rate of convergence
of iterates including the so-called geometric ergodicity. All theses issues are discussed in
the present document except the non-geometric rate of convergence of iterates, which will
be included soon to form our final text. All the results reported here focus on Markov
kernels using a residual kernel approach. This turns out to be a very simple and efficient
way to deal with all mentioned issues on Markov kernels. In particular, the document is
essentially self-contained.

AMS subject classification : 60J05, 47B34
Keywords : Small set/function; Minorization condition; Modulated drift condi-
tion; Invariant probability measure; Recurrence; Harris-recurrence;
Poisson’s equation; Rate of convergence; Perturbed Markov kernels

*Univ Rennes, INSA Rennes, CNRS, IRMAR-UMR 6625, F-35000, France. Loic.Herve@insa-rennes.fr,
James.Ledoux@insa-rennes.fr



Contents
1 Introduction

2 Main notations and prerequisites
2.1 Measures and kernels . . . . . . ...
2.2 Markov chain . . . . . . . e

3 Minorization condition, invariant measure and recurrence
3.1 The minorization condition (M, ) and the residual kernel . . . . . ... ..
3.2 P—invariant measure . . . . . . . . ... e e e e e e e
3.3 Recurrence/Transience . . . . . . . . . .. e
3.4 Further statements . . . . . . . . . ...

3.5 Bibliographic comments . . . . . . ... . L oo o

4 Harris recurrence and convergence of the iterates
4.1 Harris-reCurrence . . . . . . . . . o vt e vt e e e e e e
4.2 Convergence of iterates: the aperiodiccase. . . . . . ... ... ... .. ...
4.3 Convergence of iterates: the periodiccase . . . . ... .. ... ... .....
4.4 Drift condition to obtain Ay =0 . . . . .. ... L0
4.5 Bibliographic comments . . . . . . .. ... oL oo

5 Modulated drift condition and Poisson’s equation
5.1 Modulated drift condition Dy (Vo, Vi) . .. ... ...
5.2 Residual-type modulated drift condition . . . . . ... ... ... ... .. ..
5.3 Poisson’s equation . . . . .. ...
5.4 Further statements . . . . . . . . . .. . ...

5.5 Bibliographic comments . . . . . . . .. .. L o o

6 V —geometric ergodicity
6.1 Poisson’s equation under the geometric drift condition . . . . .. .. ... ..
6.2 V—geometric ergodicity . . . . . . ... Lo Lo o

6.3 Bibliographic comments . . . . . . . .. ...

7 Perturbation results
7.1 Mainresults . . . . . . . L e
7.2 Examples . . . . .
7.3 Application to standard perturbation schemes . . . . . . .. .. ... ... ..
7.3.1 Application to truncation-augmentation of discrete Markov kernels . .
7.3.2 Application to state space discretization . . . . . . .. ... ... ...

7.4 Bibliographic comments . . . . . .. ... oL

10
11
13
16
19
21

23
25
27
30
33
36

37
38
39
41
43
45

47
47
48
51



8 Geometric rate of convergence of the iterates
8.1 Geometric rate of convergence on a Banach space . . . . . .. ... ... ...
8.2 Rate of convergence in V —geometric ergodicity . . . . . . . ... ... ...
8.3 Geometric ergodicity on L2(mg) . . . . . .
8.4 Geometric ergodicity on L2(7z) in the reversible case . . . . . . . ... .. ..
8.5 From V —geometric ergodicity to V¢ —geometric ergodicity . . . . . . . .. ..
8.6 Further results in the reversible and positive reversible cases . . . . . . . . ..

8.7 Bibliographic comments . . . . . .. .. L L0 o Lo
A Probabilistic terminology
B Proof of Theorem 4.12
C Proof of Lemmas 7.6, 7.10 and 7.11
D Proof of Theorem 8.1 and Proposition 8.3
E Proof of Lemma 8.11

References

69
69
71
72
73
76
79
81

83

84

86

87

90

97



1 Introduction

The purpose of this work is to study Markov kernels on general measurable space under the
so-called Minorization and modulated Drift conditions, generically denoted here by M & D
conditions. The following issues are addressed: Existence and uniqueness of invariant mea-
sures, recurrence/transience properties including Harris-recurrence property, convergence in
total variation of iterates of the Markov kernel in the aperiodic and periodic cases, Poisson’s
equation, perturbation schemes, and finally rates of convergence in weighted total variation
norms of iterates including the so-called geometric ergodicity. All these issues are discussed
in the present document except the non-geometric rates of convergence of iterates, which will
be included soon to form our final text on Markov kernels under conditions M & D. This last
issue will be a revisited version of the material to be found in | ]. In this document, the
focus is on non-negative kernels, adopting in this sense the point of view in Seneta’s book
[ ] where discrete Markov chains are studied via non-negative matrices. It can also be
thought of as a tribute to Nummelin’s book [ | from which the idea of the treatment of
Markov kernels via a residual kernel approach is borrowed. However, we decide here to keep
a total focus on this kernel framework from the beginning to the end. This turns out to be
a very simple and efficient way to deal with all mentioned issues on Markov kernels.

The M & D conditions are nowadays well known, widely illustrated and used in the lit-
erature on Markov chains via the splitting technique for extending the materials on atomic
Markov chains to the non-atomic case, or via the coupling technique to derive convergence
rates. Both techniques are based on a minorization condition. The reference books on this
topic are | , | and more recently | |. Here we use neither the splitting
technique, nor the coupling construction. This also implies that no regeneration type-method
is used here. Actually, with the exception of Sections 6 and 8 which contain a few (fairly
elementary) spectral theory arguments for studying the geometric ergodicity, the only prereq-
uisite for this work is the handling of non-negative kernels. Indeed, the choice we have made
to consider Markov kernels satisfying a minorization condition allows us to work immediately
with the residual kernel, from which the issues on invariant measures, recurrence/transience
including Harris-recurrence and convergence of iterates, can be treated simply. Then addi-
tional modulated drift conditions enable us to investigate series of residual kernel iterates,
from which solutions to Poisson’s equation and the perturbation issue as a by-product are
easily deduced. Also mention that the recent book | | proposes a relevant and interesting
study under additional weak topological conditions, such as the weak Feller condition. This
point of view is not addressed in our work.

The theory in [ , , ] is developed under general minorization con-
ditions involving, either the so-called definition of small-set (or small-function), or the even
more general definition of petite sets. Both of these definitions are based on some n—th iterate
of the transition kernel. In our work we have chosen to focus on the first-order minorization
condition with small-function, which corresponds to the definition | , Def. 2.3] at first
order (n := 1). This choice provides a relatively simple, straightforward, homogeneous and
self-contained presentation, dealing first with the residual kernel, then with the Markov ker-
nel. Note that using small-functions instead of small-sets requires here no additional effort.
The choice of the order one for small-functions or small-sets is also motivated by the fact
that most of classical examples of Markov chains verifying a minorization condition satisfy
it at the first order. We therefore found it interesting to emphasise the order one, as long



as the results are complete and the first-order minorization condition does not need to be
strengthened by artificial assumptions.

All the results in this work apply to any discrete-time homogeneous Markov chain, pro-
vided that the M & D conditions are fulfilled. For such examples, readers can consult

the reference books | , , , |, as well as the following more spe-
cialized works: | , , , ] in the context of the Metropolis algorithm,
[ , | for autoregressive models, [ , ] for queueing systems, | | for
Markov chains associated with the mean of Dirichlet processes, | | for Markov models

in control. Classical instances of V —geometrically ergodic Markov chains can be found in e.g

[ ; ) I

Although our method differs substantially from the splitting or coupling based methods,
the conditions sometimes added to the M & D assumptions are related to the classic ones
(e.g. accessibility, irreducibility, period). Here these additional assumptions can be directly
introduced under their simplified form, i.e. expressed with the small-function. Other condi-
tions, such as reversibility, only concern the form of the Markov kernel and correspond to
standard assumptions. Finally, as previously quoted, the central point is that a non-negative
kernel approach is used for deriving all the proposed material. All the needed prerequisites
are recalled in Subsection 2.1. The few probabilistic material you need (see Subsection 2.2)
is applying well-known formulas inducing the marginal laws of the Markov chain and the
iterates of its transition kernel to deal with Harris-recurrence in Subsection 4.1. Of course,
most of statements expressed in terms of Markov kernels in this work can be translated into
a purely probabilistic form for discrete-time homogeneous Markov chains with general state
space. To facilitate a comparative reading with the statements in reference probabilistic works
as | , , |, the probabilistic interpretation of the main quantities used in
this paper is reported in Appendix A. Further discussions are included in bibliographical
comments at the end of each section.

2 DMain notations and prerequisites

The main notations and definitions used throughout this document are gathered in this
section. Most of them are concerned with non-negative kernel calculus. They are standard
and the material of this section can be omitted in a first reading.

Let (X, X) be a measurable space and X* := X'\ {} be the subset of non-trivial elements
of X. For any A € X*, we denote by 14 the indicator function of A defined by 14(z) := 1 if
x € A, and 14(z) :=0if z € A°, where A°:= X\ A.

2.1 Measures and kernels

e We denote by B the sets of bounded measurable real-valued functions on (X, X’). The
subset of non-zero and non-negative functions in B is denoted by B..

e Non-negative measures on (X,X). We denote by M (resp. M7 ;) the set of
non-negative (resp. finite positive) measures on (X, X). For any u € M, and any
p-integrable function g : X =R, u(g) denotes the integral [y g(x)u(dz). Let p be a
positive measure on (X, X). Then a set A € X is said to be pu—full if u(14c) = 0.



For 4 € M, and any non-negative measurable function f, we denote by f - u the
non-negative measure on (X, X) defined by: VA € X, (f-p)(1a) == [ 1a(z)f(x)p(dx).

Non-negative kernel on (X, X). A non-negative kernel K on (X, X’) is a map K :
X x X —[0, +00] satisfying the two following properties:

(i) For every A € X, the function x — K(z, A) from X into [0, +0o0] is a measurable
function on (X, X),

(ii) For every z € X, the set function A — K(z,A) from X into [0, +o0] is a non-
negative measure on (X, X'), denoted by K(z,dy) or K(z,-).

The set of non-negative kernels on (X, X) is denoted by K. An element K € K is
said to be bounded if the function x — K (z,X) is bounded on X.

Product of two non-negative kernels. If K; and K are in K4, then KoK is the
element of K4 defined by

VeeX, VAe X, (KKp)(z,A):= /XKl(y,A) Ky(x,dy). (1)

The above term (K2K1)(z,A) is well-defined in [0, 4+o00]: indeed y — Ki(y,A) is a
measurable function from X into [0, 40|, and its integral is then computed w.r.t. the
non-negative measure Ko(x,dy). If K1 and K3 are both bounded, then so is Ko K.

Product of a non-negative measure by a non-negative measurable function.
For any u € My and any measurable function f : X —[0, +00], we define the following
non-negative kernel, denoted by f ® u,

VeeX, VAe X, (f®@up)(z,A):=f(x)u(la). (2)

Product of a non-negative kernel by a non-negative measure. Any p € M,
may be obviously considered as a non-negative kernel (i.e. Vo € X, p(z, A) :== p(la)). If
w € My and K € K4, then the product uK is given as a special case of Definition (1),
that is

VeeX, VAe X, (uK)(z,A):= /XK(y, A) u(dy). (3)

Note that K € M since it does not depend on = € X. The measure y is said to be
K —invariant if uK = p.

Iterates of a non-negative kernel. Let K € K. For every n > 1 the n—th iterate
kernel of K, denoted by K", is the element of K defined by induction using the above
formula (1). By convention K° is defined by: Vo € X, VA € X, K%z, A) = 14(x)
(i.e. K%(z,-) is the Dirac measure at ).

Functional action of a non-negative kernel. Let K € K. We also denote by K
its functional action defined by

VeeX, (Kg)(z):= /X o(y) K (2, dy), (4)



where g : X — R is any measurable function assumed to be K (x,-)—integrable for every
x € X. For such a function g, we have

[Kg| < Klgl, ie VoeX, |(Kg)(x)| < (Klg])(z), (5)

where |g| denotes the absolute value of g (or its modulus if g is C—valued). Obviously
K is a linear action.

If Ki,Ke € Ky and if ¢ : X—R is a measurable function such that g; := Kjg is
well-defined as well as K5¢1, then

(K2K1)(9) = (K2 0 K1)(9)

where the first term (K2 K7)(g) denotes the functional action on g of the product kernel
K5 K given in (1), while K30 K denotes the usual composition of maps. In particular,
for every n > 1, the functional action of the n—th iterate kernel of K™ of K is the n—th
iterate for composition of the functional action of K. Finally note that the functional
action of the kernel K is the identity map I (i.e. (Kg)(x) = g(x) for any x € X),
which corresponds to the standard convention for linear operators.

Most questions involving a non-negative kernel can be addressed through its functional
action, and this is the choice that will generally be made in this document. In particular
Inequality (5) will be used repeatedly in this work.

Functional action of a non-negative measure. If y € M, (thus p € K;), then
its functional action (see (4)) is given by

VeeX, (ug)(z) :—/Xg(y)u(dy),

that is pg := p(g)lx, provided that g is p—integrable.

Order relation for non-negative kernels. If K; and Kj are in K4, the inequality
K7 < K9 means that

Vg : X —[0, +00) measurable, 0 < K19 < Kag

provided that Kjg and Kyg are well-defined (if not, this inequality still holds but in
[0,4+00]). In particular, this implies that

Ve eX, Ki(z,dy) < K(z,dy), ie VxeX VAeX, Ki(z,1a) < Ko(z,14).

In connection with this order relation, we shall often write K > 0 for recalling that
K € Ky. When K1, Ky are bounded non-negative kernels, the inequality K1 < Ko
holds true if, and only if, K := Ky — K; is a non-negative kernel, where K is defined
by K(z,A) = Ks(x,A) — Ki(x,A) for any z € X and A € X.

Recall that
K, Ky e /C+ — K1Ks € K+ and KoK € IC+

from the definition of the products of two elements of K1 (see (1)). From this, the follow-
ing expected rules for sum and product can be easily deduced for any K, K, K9, K1, K},



in Iy (i.e. each element in (6a)-(6¢) is a non-negative kernel):

K <Ky K € ’C+ — KK; < KKy and K1 K < KbK (6b)
K <Ky, — ¥n>0, K< K} (6¢)

Properties (6a)—(6¢) will be used repeatedly hereafter, mainly through the functional
action of the involved non-negative kernels.

Series of kernels. For any (K;);cr € K fr where [ is any countable set I, the element
K =3 ,.; K; is defined in K by

VeeX, VAe X, K(z,A) ZK (z,A).
el

The following formula holds for all sequences (Ky,)n>0 € KN + and (K})n>0 € K N.

400 —+o00 +oo
Y KK, =KK with K:=)» K, and K :=) Kj. (7)
k,n=0 n=0

Since this formula is repeatedly used in this work, let us give a proof. Let x € X and
A € X. Then (7) is obtained from the following equalities in [0, +0o0]:

—+00

S (KuKf)(r,A) = / KL(y, A) Ko(z, dy)

k,n=0 k,n=0

— (Z/ Ki(y, A) Kn(x dy))
_ 2/}{(%}(,@@,@)&(&@)
oo
— ;/XK’(y,A)Kn(x,dy):/XK/(?J,A)K(»’U?dy)-

Indeed the first equality is just the definition of K, K7, the second one is due to Fubini’s
theorem for double series of non-negative real numbers, the third one follows from the
monotone convergence theorem w.r.t. each non-negative measure K, (z, dy), and finally
the fourth and fifth ones are due to the definition of K'(y, A) and K (z, dy) respectively.

Markov and submarkov kernels. A non-negative kernel K is said to be Markov
(respectively submarkov) if K(z,X) = 1 (respectively K(z,X) < 1) for any z € X. In
both cases, K is obviously a bounded kernel.

If K is a Markov kernel, then an element A € X’ is said to be K —absorbing if K (x, A) =
1 for any x € A. An element A € X is said to be an atom for K if the following condition
holds: V(x1,z2) € Ax A, K(z1,dy) = K(z2,dy) (such a set is sometimes called a proper
atom too, e.g. see | , Def. 4.3]).

If K is a submarkov kernel, then K (B) C B. A function g € B is said to be K —harmonic
if Kg =g on X. When K is Markov, then the function 1x is always K —harmonic.



e Restriction of functions, measures ans kernels to a subset. For any £ € A we
denote by X'g the o—algebra induced by X on the set E, i.e. Xg:={ANE, Ae X}.
For any g € B, the restriction gg to E of g is the bounded X g—measurable function
defined on E by: Vz € E, gg(x) = g(x). If n € M, then the restriction ng to F of n is
the non-negative measure on (E, X' g) defined by: VA" € Xg, np(1a/) = n(1ang) where
A is any element in X’ such that A’ = ANE. If K € K, then the restriction Kg of K to
E is the non-negative kernel on (E, Xg) defined by: Vo € E, VA' € X, Kg(z,A’) =
K(z,AN E) where A is any element in X such that A’ = AN E. When the notation
of the function/measure/kernel on X involves an index, the restriction to E is denoted
by - to avoid confusion (for instance, if n; € M., the restriction of n; to E is denoted
by 77i|E)- Finally observe that, if K is Markov on (X, X) and E is K —absorbing, then
Kp is a Markov kernel on (E, Xg).

e V—weighted space and V—weighted total variation norm. Let V : X —(0, +00)
be any measurable function. For every measurable function g : X — R, we set

|g(2)]
= Ssu

and we define the V —weighted space

€ [0, 4o0],

By := {g : X— R, measurable such that ||g|ly < oo}.
Note that B1, = B. The following obvious fact will be repeatedly used hereafter:

Vg€ By, |9l <lglvV, e VeeX, [gx)]<lglvV(z).

If (p1,p2) € (Mi,b)2 is such that p;(V) < oo,i = 1,2, then the V-weighted total
variation norm ||y — pal|f, is defined by

lia = pzlly = sup [u1(g) — p2(g)|- (®)
lgllv<1
If V.= 1x, then || - ||}, = || - [l7v is the standard total variation norm.

e The Lebesgue space £P(n) and LP(n). Let n be a positive measure on (X, ).
For p € [1,+00) we denote by L£P(n) the space of all the measurable complex-valued
functions on X such that 7(|f|?) < oco. Moreover (LP(n), || - ||) denotes the standard
Banach space composed of the classes modulo 7 of the functions in £P(n) with norm
defined by

1fllp = 1 llpar = (a(1F17) 2.

As usual the space (IL>°(n), || ||s) is the Banach space composed of the classes modulo n
of complex-valued measurable functions f on X such that || f|lcc < co where

| flloo = ||f|loo,y = inf {c € [0,+00) : |f| < ¢ n-a.e. on X}. (9)



2.2 Markov chain

A Markov chain (X,,),>0 on the state space X with transition/Markov kernel P is a family
of random variables (r.v.) on a probability space (€2, F,P) such that

VieB, E[f(Xn1)|o(Xo,...,Xn)] = (Pf)(Xn)

where o(Xy,...,X,) is the sub-oc—algebra of F generated by the r.v’s Xy,..., X,. In par-
ticular, for any A € X,

E[LA(Xui1) | 0(Xor. ., Xn)] = (PLa)(X) = /A Pz, dy) = P(z, A).

Assertions a)-b) below are relevant to link iterated kernels and the Markov chain. The
classical statements c)-d) are prerequisites on occupation and hitting times of a set A, which
are only used in Subsection 4.1 to study the Harris-recurrence property.

a) We have for any k > 0, E[f(X,4x) | 0(Xo, ..., Xn)] = (P*f)(X,).

b) The probability P when P{Xy = x} = 1, is denoted by P,, and E, is the expectation
under P,.

c) Let A € X. Then the function defined by

+oo
VeeX, g%(x):= Px{ Z Lix,ea = —i—oo} (10)
n=1

is bounded on X and P—harmonic, e.g. see | , Prop. 4.2.4], | , Th. 3.4].

d) Let A € X and let g4 be the function on X defined by

Ve eX, ga(x)=P,{Ta < o0} (11)
where Ty := inf{n > 0 : X,, € A} is the hitting time of the set A. Then g4 is superhar-
monic, i.e. Pga < ga, and we have (e.g. see | , Th. 34], [ , Th. 4.1.3]):

oo : 13
gx = lm \ Pgs. (12)

3 Minorization condition, invariant measure and recurrence

In this section a standard first-order minorization condition on the Markov kernel P is in-
troduced: P > ¢ ® v where v € M7 , and ¢ € B%. This allows us to decompose P as the
sum of two submarkovian kernels R := P — ¢ ® v, called the residual kernel, and ¢ ® v. Two
quantities of interest are defined from the residual kernel and its iterates: first the positive
measure [ip := Z;:O?) vRF, second the R—harmonic function h% := lim, R"1x. Then the ex-
istence of a P—invariant positive measure and the classical recurrence/transience dichotomy
are studied according that pz(1)) = 1 or not (equivalently v(h3) = 0 or not).

10



3.1 The minorization condition (M,,) and the residual kernel

Recall that B is the set of non-negative and non-zero measurable bounded functions on X
and that MY , is the set of finite positive measures on (X, X). Let P be a Markov kernel
on (X,X). Let us introduce the minorization condition which is in force throughout this
document:

(v, ) € thb xBl: P>¢yev (ie. Ve eX, P(x,dy) > Y(x)v(dy)). (M, )

The function % is called a first-order small-function in the literature on the topic of Markov
chains. That the non-negative function v in (M, ;) is bounded is required since ¥ (z) v(1x) <
P(z,X) =1 for any z € X and v(1x) > 0. Moreover for any (v, ¢) € B x B} such that
> ¢, if (M, ) is satisfied then so is (M, 4).

Under (M, ), let us introduce the following submarkov kernel, called the residual kernel,
which is central in the analysis here of the Markov kernel P:

R=R,y =P—-y®v (ie VzeX, R(z,dy):= P(z,dy) —y(z)v(dy)). (13)

The most classical instance of minorization condition is when v := 1g for some S € X'*,
that is

I, S) e M, x X" P>1s@v (e VzeX, P(x,dy) > 15(z) v(dy)), (M)
in which case the residual kernel is:
RER,,JS =P —-1g® .

Such a set S is called a first-order small-set.

The following statement provides a general framework for Condition (M, ) to hold.
Moreover this proposition shows that, even if the minorizing measure v is defined from
(M, 1) with some set S, this condition (M, 1) is not the only one possible.

Proposition 3.1 Assume that
Ve eX, Pz,dy) = q(z,y) Ady) (14)

where q(-,-) is a non-negative measurable function on X? and X is a positive measure on X.
Let S € X* be such that the measurable non-negative function qs defined by

VyeX, gs(y) = ;relg q(z,y)

is not A—null, that is: A(1a) > 0 where A := {y € X : qs(y) > 0}. Let v € M, and
g > 1g be defined by

v(dy) == qs(y)A(dy) and Vz e X, g(x) = 1g(z) inf q(z,y)

veA qs(y) (15)

Then P satisfies Condition (M, ) and so (M, 15).

11



Proof. For any fixed x € S, we have v(lx) < [yq(z,y)A\(dy) < P(x,X) = 1 from the
definition of v, g5 and from (14). Thus v is finite and v(14) > 0, so that v € M’ ;. Next, from
the definition of ¢g we obtain the following property: V(z,y) € S x A, q(z,y) > qs(y) ¥s(z).
In fact this inequality holds for every (z,y) € X2 since ¢(x,y) > 0. Finally it follows from
(14) that, for every x € X, we have P(x,dy) > v¥s(x)qs(y)A(dy), i.e. P satisfies (M, ).
Note that g > 1g from the definition of the function g¢g, so that (M, 1) is satisfied. O

The next kernel identity (17) is the first key formula of this work. Recall that the residual
kernel R := P —1 ®v is a submarkov kernel, so that the n—th iterate kernel R™ of R defined
by induction using Formula (1) is a submarkov kernel too. Also recall that by convention
RO(x,-) is the Dirac measure at z. Finally note that, for every k > 1, we have v RF € My

(see (3)).

Lemma 3.2 Let P satisfy Condition (M, ). Then we have

Vn>1, 0<R"<P" (16)
P"=R"+» P"rypevR, (17)
k=1

and

= = Foo +o0
§P"=;R"+(zpw)®(kg%mk>. )

n=0
Proof. We have 0 < R < P, thus 0 < R™ < P" using (6¢). Set T := 0 and T, := P" — R"
for n > 1. Note that Property (17) is equivalent to

Vn>1, T,= ZP"—% @ vRF L. (19)
k=1

Equality (19) is clear for n = 1 since 71 = P — R = 1) ® v. Next we have for any n > 2
P"—T,=R'"=R"'R=(P" ' ~T,.1)(P-T),

so that T, = P" 1Ty +T,,_1R. Then (19) holds for n > 2 by an easy induction based on the
previous equality for T;,: For instance use the functional action of kernels to check that, for
every g € B, if T,,_1g = S0=1 v(R*1g)P"~1=F4, then T,g = 37, v(RF1g) P F.

From (17) and the convention for P° = R? we obtain that (see (7))

+oo +oo n +00 +o00
jg:ljn _ jg:}%n+_§£:j£:}3n kﬂ”@lﬁRk 1 jz:}%n%_zzzjgjljn kd)@)yﬁﬁ 1
n=0 n=1k=1 k=1n=k
+o00
= ZR” + (Z P%) ® (ZuRk)
n=0 n=0 k=0
Thus (18) holds and the proof of Lemma 3.2 is complete. O

Under Condition (M, ), we have 0 < Rlx < 1x. Since R is a non-negative kernel, we
get 0 < R" 1y < R™1x for any n > 0. Thus the sequence (R"1x),>0 is non-increasing so
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that it converges point-wise. Consequently we can define the following measurable function
hsy : X—10,1]:

hsy = 1111111 N R"1x. (20)
Note that h%® is R—harmonic: indeed, for every z € X, we have (R""'h%)(x) = (RR"hS) (),
so that h$y(z) = (RhSY)(z) from Lebesgue’s theorem applied to the finite non-negative mea-
sure R(x,dy) observing that R"hyy < R"1x < 1x.

Under Condition (M, ) let pr denote the positive measure on (X, X’) (not necessarily
finite) defined by

+oo
g = ZuRk. (21)
k=0

Note that the measure uy is positive from pz(1x) > v(1x) > 0. The measure py as well as
the function hj are used throughout this section.

3.2 P—invariant measure

First prove the following simple lemma.

Lemma 3.3 Assume that P satisfies Conditions (M, ). Let g be a P—harmonic function.
Then we have

Vn >0, v(g) Z Rk = g — Ry, (22)
k=0
In particular we have
Vn >0, 0<v(lx)) Rfp=1x - R"'ix < 1x. (23)
k=0

Proof. Let g € B be such that Pg = g. We have v(g)y = (I — R)g from the definition (13)
of R. Then Property (22) follows from

n n n n+1
Vn >0, v(g)) Ry= <ZR’“>(I— Rjg=> Rfg-> Rfg=g-R""g.
k=0 k=0 k=0 k=1
Since Plx = 1x, Property (22) with ¢ := 1x is nothing else than (23). O

Recall that the positive measure v in (M, ;) is finite (i.e. v(1x) < 00).

Proposition 3.4 Let P satisfy Condition (M,). Then the function series Zzzog RFq)
point-wise converges and is bounded on X. More precisely we have

+oo
0< v(lx) Y RF=1x — hy < 1x. (24)
k=0
Moreover we have pug(y) = ,J;)E v(RF) € [0,1], and the following equivalences hold
pr(¥) =1 <= v(hy) =0 <= px(hy) =0. (25)
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Note that the property ug(¢)) < 1 implies that there exists A € X* such that pz(14) < oc.

Proof. Tt follows from (23) that the series of non-negative functions >} °0 RFt) point-wise
converges. When n growths to 400 in (23), we get the equality in (24) from the definition (20)
of hy.

Next integrate w.r.t. the measure v in (24) and apply the monotone convergence theorem to
get 0 < v(lx)pr(¥) = v(lx) —v(hy) < v(lx). Since v(1x) > 0, it follows that pg(¢) € [0, 1]
and the first equivalence in (25) holds. Since Rh$ = h$, we have from (21) that v(h3y) =0
implies that pz(hy) = 0. Finally, we have puz(hy) > v(hy) > 0 from the definition (21) of
tr so that pg(hsy) = 0 implies that v(h$y) = 0. The proof of the second equivalence in (25)
is complete. O

Theorem 3.5 (P—invariant positive measure) Assume that P satisfies Condition (M, y).
Then the following assertions hold.

1. If ur(v) =1 (or equivalently v(h3y) = 0), then pg is a P—invariant positive measure.

2. If there exists ( € BY such that v(¢) > 0 and pr(P¢) = pr(¢) < oo, then we have
tr(¥) = 1.
In particular, if v(¢) > 0, then

pr is P—invariant <= pup(yp) = 1 <= v(hyy) = 0 <= ur(hyy) = 0.

Recall that the condition v(¢) > 0 is the so-called strong aperiodicity property.
Proof. From the definitions (13) of R and (21) of u, the following equalities hold in [0, +o0]:

VAe X, pr(Pla)= pr(R1a)+v(1a)ur(y) = pa(la) + V(lA)(NR(¢) - 1)

since we have pgr(R14) = pr(la) —v(1a) in [0, +oc]. Consequently, if pg(1)) = 1, then ug
is a P—invariant positive measure and Assertion 1. is proved. Next, if ( € B’ satisfies the
assumptions in Assertion 2., then we deduce from pz(¢) = pr(P¢) = pr(¢)+v(¢) (pr() —1)
that pr(10) = 1. In the last assertion, that uz(¢)) = 1 implies the P—invariance of up is just
Assertion 1. Next, if v(¢) > 0 and uy is P—invariant, then Assertion 2. can be applied to
¢ := 1) since we know that pz(¢)) < 0o from Proposition 3.4, so that we have uz(¢)) = 1. The
two last equivalences are (25). O

Theorem 3.6 (P—invariant probability measure) If P satisfies Condition (M, ), then
the following assertions are equivalent.

1. There exists a P—invariant probability measure n on (X, X) such that n(y) > 0.
2. pr(lx) = S 2 v(RF1x) < oo.
Under any of these two conditions, the following probability measure on (X, X)

“+oo
Tp 1= /,(,R(lx)il MR with Hr ‘= Z VRk S M*Jr’b (26)
k=0

is P—invariant with pug(y) =1 and 7)) = pr(1x)™" > 0.

14



Proof. Assume that Assertion 1. holds. Then apply Formula (17) to 1x and compose on the
left by 7 to get 1 = n(R"1x) + n(¥) > r_, v(R¥11x). It follows that

n

0<n(R"x) =1-n() ) v(R'x)

k=1

from which we deduce that pp(lx) = 7% v(RF11x) < n()" < oo since n(y) > 0 by
hypothesis. This proves that Assertion 1. implies Assertion 2.

Conversely, if Assertion 2. holds, then Assertion 2. of Theorem 3.5 can be applied with
¢ := 1x. Indeed, v(1x) > 0 and pr(Plx) = pr(lx) < oo since P is Markov. Hence
we have pgr(1)) = 1, so that pgr is P—invariant from Assertion 1. of Theorem 3.5. Thus
TR = ,uR(lx)f1 lr is a P—invariant probability measure such that mz(¢) = uR(lx)fl > 0.

]

The following standard example of uniform ergodicity illustrates Theorem 3.6. Moreover,

the well-known rate of convergence of || P"(z,-) — mz(-)||7v is obtained from Formula (17).

Example 3.7 (Uniform ergodicity) Let P satisfy Condition (M, 1), that is there exists
v e Mj—,b such that P > 1x ® v. In other words the whole state space X is a first-order
small-set for P. Then Condition 2. of Theorem 3.6 holds and we have

Vn > 17 V€ X? ||Pn(x7 ) - 7TR(‘)HTV < 2(1 - V(1X))n

where wy is the P—invariant probability measure given by (26). Indeed the residual kernel
R=R,1, is here R =P — 1x @ v so that we have Rlx = (1 — v(1x))1x. Consequently we
obtain that

Vn>1, R"'lx=(1-r(1x))"1x.

Thus pr(lx) = ﬁ;’% v(RF1x) = 1, and it follows from Theorem 3.6 that the probability
measure T given in (26) is P—invariant (mp = g here). Moreover Formula (17) gives

n
Yn>1, P'=R"+1xQu, with ,un::ZVkal.

k=1
Consequently we have
+o0
Vn>1, P'—lx®@m,=R"—1x® Y vR"
k=n-+1
from which we derive that
Vns L Ve eX, [P —malry < IR 4] S vR
k=n+1 vV
+00
=R'"(z,1x)+ Y v(R* 1)
k=n+1

= 2(1 - v(1x))".
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3.3 Recurrence/Transience

If P satisfies Condition (M, ), then P is said to be recurrent if the following condition
holds:

+00 oo
VA€ X : pip(la) >0=> P'ly=+ocoonX (ie. Vz X, Y PF(x,A)=+00), (27)
k=0 k=0
where pp is the positive measure on (X, X') defined in (21). Note that if A € X is such that
v(14) > 0 then pg(1a) > 0. Observe that Equality (18) reads as

+oo +oo +oo

ZP":ZR”Jr(Z P"w)@mR (28)
n=0 n=0 n=0

and this equality is relevant in this section. To get a complete picture of recurrence/transience

property for P satisfying Condition (M, ) in the next statement, let us introduce the fol-
lowing definition. The Markov kernel P is said to be irreducible if

+o0
Y Pp>00nX, ieVoeX, Jg=gq(z) > 1, (PW)(x) > 0. (29)

n=1

Recall that under (M, ), we have ugz(¢) € [0,1] from Proposition 3.4, and that uz is a
P—invariant positive measure when uy(¢) = 1, or equivalently v(h3?) = 0 (see (25)), from
Theorem 3.5. Finally, recall that || - |1, denotes the supremum norm on B (i.e. |g|i, =

supex |9(2)])-

Theorem 3.8 Let P satisfy Condition (M ;). Then the following assertions hold.

1. Case pp(yp) = 1 (or equivalently v(hyy) = 0). The Markov kernel P is recurrent if and
only if P is irreducible (see (29)). When P is recurrent, ugp is the unique P—invariant
positive measure n (up to a multiplicative positive constant) such that n(1)) < oo, and pg
18 o— finite.

2. Case prp(v) < 1 (or equivalently v(h) > 0). The function series > ;20 PFip is bounded
on X. If P is irreducible, then P is not recurrent, more precisely P is transient in the
following sense: Defining for every k > 1 the set Ay = {z € X : Z?ZO(ij)(:L‘) > 1/k}
we have

+oo
X=U{NA; and VEk>1, ¢ :=| ZPnlAk”lx < 0.
n=0

Actually we have: Yk > 1, ¢ < k(k+1)(v(1x) ™' + M) with M := || 32125 PRy,
When P is irreducible, we have the following characterization of recurrence.
Corollary 3.9 Assume that P satisfies Conditions (M, ) and is irreducible. Then

P is recurrent <= pugr(¢) =1 <= v(hy) =0 < ugr(hy)=0.

Proof. Assume that ug(¢)) € [0,1). Then P is not recurrent from the second assertion of
Theorem 3.8. This proves the first direct implication. The converse one follows from the first
assertion of Theorem 3.8. The two last equivalences are (25). O
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The proof of Theorem 3.8 is based on the the two following lemmas.

Lemma 3.10 Let P satisfy Condition (M, ). If P is irreducible then the following state-
ments hold:

1. PO Ry >0 on X and pup(¥) > 0.
2. If pr(¥) = 1 (or equivalently v(h3) = 0) then 320 P™p = +00 on X.

Proof. We prove Assertion 1. by contradiction. Assume that there exists ¢ € X such that
0 (R™Mp)(x) = 0. Then we have h(x) = 1 from (24). From the definition of A% (x) and
R"1x < 1, it then follows that: Vn > 1, (R"1x)(z) = 1. Hence we deduce from Formula (17)
and (P"1x)(z) =1 that
n

Vn>1, Y (P F)(z)v(RM k) = 0.
k=1

In particular the first term of this sum of non-negative real numbers is zero, that is we
have: ¥n > 1, (P" '49)(z)v(1x) = 0. Since P is irreducible (see (29)), we know that there
exists ¢ = g(x) > 1 such that (P%))(x) > 0. Then the previous equality with n = g + 1
implies that v(1x) = 0: Contradiction. This proves the first part of Assertion 1. Next,

since pp(1) = 20 v(R™)) = v(3,20 R™) from monotone convergence theorem, we have
wr(¥) > 0. Assertion 1. is proved. Next, if uz(¢)) = 1, then Equality (28) applied to 1 and
Assertion 1. imply that 3720 P™p = +00 on X. O

Lemma 3.11 Let P satisfy Condition (M) with pr(yp) > 0. If P is recurrent, then
S 20 PRep = +00 on X.

Proof. Since pg(1p) > 0, there exists ¢ > 0 such that the set F, := {z € X : ¢(2)
satisfies r(1p. ) > 0 (otherwise we would have pz({x € X : ¢(x) > 0}) = 0, thus px(¢))
From recurrence and 1z, < t/e, we obtain that Y9 P") = 400 on X.

Now, let us provide a proof of Theorem 3.8.

Proof of Theorem 3.8. Assume that pug(¢)) = 1. If P is irreducible, then Z;ﬁ‘a PFyp = 400 on
X from Assertion 2. of Lemma 3.10. Tt follows from (28) applied to 14 that >, 25 P*14 = +o0
for every A € X such that ugr(14) > 0, i.e. P is recurrent. Conversely, if P is recurrent, then
it follows from p15(¢)) = 1 and Lemma 3.11 that >°/°0 P™) = +o0 on X. Thus P satisfies
(29), i.e. P is irreducible. Now assume that P is recurrent, thus irreducible. Let 7 be a
P—invariant positive measure on (X, X') such that 1(¢) < co. Then 7 is o—finite due to the
following well-known argument. Let @) := Z:Z% 2~ (1) pn he the Markov resolvent kernel
associated with P. Then Qv > 0 on X from (29). Hence we have X = {Qv¢ > 0} = Up>1E}
with Ey, := {Qv > 1/k}, and n(1g,) < kn(QvY) = kn(y) < oo from Markov’s inequality.
Thus 7 is o—finite. Next prove by contradiction that n(¢)) > 0. Assume that 7()) = 0. Then
we obtain that 7(1g,) = 0 for any & > 1 from the last inequality above, so that n(1x) = 0
since X = Uy>1 Ey: This is impossible since 7 is a positive measure on (X, X’). Now recall that
tr is P—invariant under the assumption pz(1) = 1 due to Theorem 3.5, and prove that n =
() pug. From (17) and the P—invariance of n we obtain that: ¥n > 1, n > n(¢) Y p_, vRF1,
Thus n > n(¢)pur from the definition (21) of pg. Next, since both n and py are o—finite
from the above, it follows from the Radon-Nikodym theorem that there exists a measurable

e}
0).
O

v
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function v on X such that n(¢¥))ur = v-n with 0 < v < 1x n—a.e.. Let X\ be the non-negative
measure on (X, X) defined by: A := (1x — v) - . Since n(Qvy) = n(v)) < oo by hypothesis
with @ defined above, we obtain that the function v x (Qv) is n—integrable too, so that

MQY) = /X(Q¢)(ﬂf)ﬁ(dw) —/X(Qﬂ))(x)v(ﬂf)n(dw) = n(Q¥) = n(¥)pr(QY) =0

from the P—invariance of both 1 and py and from the assumption pz(10) = 1. It follows that
A = 0 since Qi > 0 on X. Thus we have v = 1x n—a.e., so that n(¢))ur = 1. Assertion 1. of
Theorem 3.8 is proved.

Now assume that pg(¢)) < 1. Thus we have v(h5) > 0 from (25). Recall that Rhy = h$y.
Then, Formula (17) applied to A%y and the equality Rhy = hy give

n—1
Vn>1, P'hy =hy +v(hy)> Py,
k=0

from which we deduce that: ¥n > 1, Y775 P*y < v(h3) 'y since hyy > 0 and P"h < Ix
from h3y < 1x. Consequently the function Z,j:og P*4 is bounded on X. Now assume that P is
irreducible. Recall that pg(1) > 0 from Lemma 3.10. Thus, as in the proof of Lemma 3.11,
there exists ¢ > 0 and a set F. such that uz(lp.) > 0 and 15 < ¢/e. We deduce that
Zf{i‘(’) P"1F,. is bounded on X. Consequently P is not recurrent. Next let us prove that P is
transient as defined in Theorem 3.8. We have X = ULO?A;C. Indeed, otherwise there would
exist x € X such that: Vk > 1, Z?ZO(Rj@Z))(m) < 1/k, so that ZjﬁS(R]w)(:p) = 0: This
contradicts Lemma 3.10. Finally let £ > 1. Observing that 14, < k:Z?:O Ry, we obtain
that (see (7))

+o00 +o00 k k +o00
D> Ry, < kZR”(ZW) = kZRj<ZR"1/z>
n=0 n=0 7=0 j=0 n=0
k
<kv(lx)™' ) Rilx < k(k+ 1)v(1x) '1x (using (24) and Rlx < Ix).
7=0

Moreover, integrating the previous inequality w.r.t the positive measure v, it follows from the
monotone convergence theorem that p1z(14,) < k(k+1). Then the last inequalities combined
with Formula (28) applied to 14, provide

+00 +oo
> P <k(k+1)[v(1x) N+ M]lx with M=) PFl|y,.
n=0 k=0
The proof of Theorem 3.8 is complete. O

Recall that P is irreducible (see (29)) if, and only if, the function series 3"/ P*y) takes
its values in (0, +oo]. Thus, when P is irreducible, the recurrence/transience dichotomy can
also be addressed focusing solely on this function series.

Corollary 3.12 Assume that P satisfies Condition (M, ) and is irreducible. Then the
following alternative holds:
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1. There exists some x € X such that Y ;25 (P*y)(z) = +oo: In this case P is recurrent, and
Wr 1S the unique P—invariant positive measure n (up to a multiplicative positive constant)
such that n(v) < co. Moreover we actually have ZZEB Pkep = 400 on X. This corresponds
to the case ur(v) =1 of Theorem 3.8.

2. There exists * € X such that Y }20(PF)(x) < oo: In this case the function series
720 PR is bounded on X, and P is transient in the sense given in Assertion 2. of
Theorem 3.8.

Proof. Recall that ug(¢) € (0,1] from Proposition 3.4 and Lemma 3.10. In Case 1., the
function series Zz;’f) P¥3 is not bounded on X, so that P satisfies Case 1. of Theorem 3.8.
It follows from Lemma 3.11 that 2:56 PF1) = 400 on X. In Case 2., P is not recurrent from
Lemma 3.11, so that Case 2. of Theorem 3.8 applies. O

When the positive measure py is finite (i.e. pz(lx) < 00), then we have pz(y) = 1 from
Theorem 3.6. Moreover any P—invariant probability measure 7 is such that 7(¢)) < oo since
1 is bounded. Therefore, the following statement is a direct consequence of Assertion 1. of
Theorem 3.8.

Corollary 3.13 Assume that P satisfies Condition (M, ;) with pr(lx) < oo and is irre-
ducible. Then P is recurrent, and the probability measure wp given in (26) is the unique
P—invariant probability measure.

Actually, depending on the nature of the state space X and the particular form of the
Markov kernel P, there are many classical results that ensure the existence of a P—invariant
probability measure (see Subsection 3.5). Then the link with Corollary 3.13 can be specified
as follows.

Proposition 3.14 Assume that P satisfies Condition (M, ) and is irreducible. If P admits
an invariant probability measure, then it is unique and equal to T given in (26).

Proof. 1f n(¢) = 0 then for every n > 1 we have n(R"1x) = 1 using (17) applied to 1x and
integrating w.r.t. the P—invariant probability measure 7. Hence it follows from Lebesgue’s
theorem w.r.t. n that n(hy) = 1 with A% given in (20). Thus n(h3y) = n(1x), from which we
deduce that hyy = 1x n—a.s. since hy < 1x. Hence there exists € X such that h3(x) = 1.
This provides > 725 (R*9)(z) = 0 from (24), which contradicts Assertion 1. of Lemma 3.10.
We have proved that 7(¢)) > 0, so that pz(1x) < oo from Theorem 3.6. Then Equality n = mp
follows from Corollary 3.13. 0

3.4 Further statements

The two first following propositions are used in the bibliographic discussions of Subsection 3.5.
The second one may be relevant to check the condition pz(14) > 0 in the definition (27) of
recurrence. The third proposition is only used in the proof of Propositions 5.12 and 5.13
related to discussion on drift conditions in Section 5.

Proposition 3.15 If P satisfies Condition (M, ;) with pgr(1p) > 0, then P is irreducible
(see (29)) if, and only if,
400
VA€ X: pp(la)>0 = ) P"l4>0 onX. (30)

n=1
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Proof. Equality (28) reads also as 3,/° P = 3% R+ (Y520 P") ® pupy since PO = RO
Thus, we have

+oo +oo
VAe X, Ve eX, Y P'z,A)>pux(1a) Y (P"¥)(x),
n=1 n=0

from which we deduce that the irreducibility condition (29) implies Condition (30). Con-
versely assume that Condition (30) holds. Since there exists ¢ > 0 such that jiz(1y>z) >0
from j15(¢) > 0, it follows from (30) that 312 Py > e >°12 P"lgy>cy > 0on X, ie. (29)
holds. O

Let us introduce the following Markov resolvent kernel

+oo
Q=) 27 (mpn, (31)
n=0

Proposition 3.16 If P satisfies Condition (M, ), then the following equivalence holds for
every A € X:
pr(la) >0 <= v(Q1la) > 0.

Proof. Let A € X. From (17) we obtain that

Qly = 22 (n+1) Rnl +Z2 (n—i—l)z k 11 Pn—kw

= 22 (n+1) R”1A+<22 v(RF11,) )(ZQ*”“W%). (32)
n=0

Then integrating w.r.t. v, it follows from the monotone convergence theorem that

+oo
QlA 22 (n+1) Rn <Z2 Rk llA >(22_(N+I)V(P”¢)>,
n=0

Next from the definition (21) of ur we have: uz(la) = 0 < Vk > 0, v(RF14) = 0. It
follows from the above equality that puz(14) = 0 is equivalent v(Q14) = 0 since all the terms
involved in this equality are non-negative. O

Proposition 3.17 If P satisfies Condition (M) and is irreducible, then every non-empty
—absorbing set is pr—full.

Proof. Let B € X* be a P—absorbing set, that is satisfying: Vn > 1, Vx € B, P"(z, B¢) = 0.
Let @ be defined in (31). Formula (32) applied to A := B¢ provides

Vr € B, 0_22 (n+1) R™ (2, B®) 4 <ZZ v(RF 11BC)>(Q¢)(:B).

n=1

Since P is irreducible (see (29)), we know that (Qv)(x) > 0, so that we have: Vk >
1, v(RF"'1g¢) = 0. Thus pg(1ge) = 0 from the definition (21) of px. O
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3.5 Bibliographic comments

Here we discuss point by point the definitions and results concerning the classical concepts
of this section, i.e. irreducibility, recurrence/transience properties and invariant measures, in
link with the books [ , , ]. A detailed historical background on these
properties can be found in | , pp. 141-144], | , Sec. 4.5, 8.6,10.6] and | ,
Sec. 9.6,10.4,11.6]. In discrete state space, we refer for example to | , , | (see
also | , App. A] for an overview on Markov chains in modern terms).

A) Small-set and small-functions. Let £ > 1. Recall that a set Sy € X* is said to be a
¢—order small-set for P in the standard literature on the topic of Markov chains (e.g. see
[ , , 1), if the following condition holds

e M, P'>1g, @ (e Vo eX, Pz, dy) > 1g,(z) ve(dy)). (33)
The extension to /—order small-functions writes as (see | , Def. 2.3, p. 15])
ve,he) € My x BY © PP >4y @y (e Vo € X, Pla,dy) > vu(z) ve(dy)). (34)

Our minorization condition (M, ) is nothing other than [ , Def. 2.3] with order
one. Finally recall that S € X" is said to be petite (e.g. see [ |) if it is a small-
set of order one for the Markov resolvent kernel 3" a, P" for some (ay)n, € [0, +00)N
such that Z::(’) an = 1. The notion of petite sets is not used in this work. The specific
resolvent kernel z:z% 2=+ P in (31) is only used to prove that py is o—finite in
Assertion 1. of Theorem 3.8, and in part D) below to support the current bibliographic
discussion and to provide a sufficient condition for having h% = 0 in Corollary 4.18.

B) Residual kernels and invariant measure. The representation (21) of P—invariant mea-
sure via the residual kernel was introduced in | , Th. 5.2, Cor. 5.2] under the
minorization condition (M, ) and the recurrence assumption, so that the positive mea-
sure pp necessarily satisfies pz(¢)) = 1 there. The P—invariance of py under the sole
Condition (M) was proved in | ] in the specific case when pg(1x) < oo: This
corresponds to Theorem 3.6. This result is extended to the general case in Theorem 3.5,
that is: under the single minorization Condition (M, ), the P—invariance of p is ac-
tually guaranteed when pg(v) = 1, and is even equivalent to this condition under the
additional strong aperiodicity assumption v(¢)) > 0. Consequently, contrary to the state-
ment | , Th. 5.2, Cor. 5.2, p. 73-74], the P—invariance of py is here related directly
to the condition px(10) = 1, which makes it possible to carry out this study independently
of the recurrence property, and even independently of any irreducibility condition on P.
Recall that the key point in the proof of Theorem 3.5 is the kernel identity (17).

C) Accessibility and irreducibility conditions. Recall that if P satisfies Condition (M, 1)
then the set S is said to be a first-order small set. Let us comment Condition (29)
in case ¥ := lg. This condition then means that the set S is accessible according to
[ , Def. 3.5.1, Lem. 3.5.2]. On the other hand recall that a Markov kernel P
is said to be irreducible according to | , Def. 9.2.1] if it admits an accessible
small set. Thus our definition (29) of irreducibility for a Markov kernel P satisfying
Condition (M, ;) coincides with that of | ] in case of a first-order small set.
Now, thanks to Proposition 3.15, let us recall the link with the irreducibility notion
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used in | ) ]. First, in connection with the condition pz(lg) = 0 which
is not addressed in Proposition 3.15, observe that this condition implies the transience
of P from Theorem 3.8. Moreover this condition cannot hold under Condition (29)
from Assertion 1. of Lemma 3.10 since uz(1ls) = v(>./ %9 R"1g). Finally, nor can this
condition be satisfied under the strong aperiodicity condition v(1g) > 0 since pp > v.
Thus the discussion may be conducted assuming that P satisfies Condition (M, 1) with
pr(ls) > 0 (ie. 3k >0, v(RF1g) # 0). Then it follows from Proposition 3.15 that our
definition of P irreducible (see (29)) is equivalent to the pz—irreducibility of P as defined
in | , p. 11] and | , p- 82], that is (30).

Mazimal irreducibility measures. Although the notion of maximal irreducibility measures
is not explicitly addressed in this work, it has to be discussed since it plays an important
role in | , , |. First note that, if P satisfies Conditions (M, ;)
and (29), then up is an irreducibility measure using the classical terminology in | ,

| (see Item C)). Actually pg is a maximal irreducibility measure according to
the definition [ , Def. 9.2.2]: Every accessible set A € X is such that pz(14) > 0.
Indeed A is accessible reads as Q14 > 0 on X where @ is defined in (31). Next, if
Q14 > 0 on X then v(Q14) > 0, so that ugr(14) > 0 from Proposition 3.16. Of course
Conditions (M, 1) and (29) also ensure that the minorizing measure v is an irreducibility
measure since v(14) > 0 implies that pz(14) > 0. However v is not maximal a priori. As
is well known, any irreducibility measure 7 is absolutely continuous w.r.t. the maximal
irreducibility measure pp since the condition 7(14) > 0 implies that @14 > 0 on X from
the definition of n—irreducibility, so that pz(14) > 0 due to the above.

Recurrence/transience and uniqueness of invariant measure in recurrence case. Our def-

inition (27) of recurrence corresponds to that in [ , pp. 27-28] and | , p. 180]
with pup as maximal irreducibility measure. From the discussion in Item C), this also
corresponds to the recurrence definition | , Def. 10.1.1]. The transience prop-
erty used in Theorem 3.8 is that provided in [ , p. 171 and 180] and | ,
Def. 10.1.3]. The Recurrence/Transience dichotomy stated in Theorem 3.8 is a well-
known result for irreducible Markov chains, e.g. see [ , Th. 3.2, p. 28], | )
Th. 8.0.1] and | , Th. 10.1.5]. The novelty in Theorem 3.8 is that this dichotomy

can be simply declined according to whether pg(¢)) = 1 or ur(y) € [0,1) under the
minorization condition (M, ).

As indicated in Item B), the existence of P—invariant positive measures is obtained in our
work under the minorization Condition (M, ) and independently of any irreducibility
condition on P (Theorem 3.5). Existence of P—invariant positive measures is classically
proved under the recurrence assumption. In fact this is usually done together with the
uniqueness issue. Under the recurrence assumption the existence and uniqueness (up
to a positive multiplicative constant) of a P—invariant positive measure is obtained in
[ , Th. 5.2, Cor. 5.2, p. 73-74] using the representation (21). This result is proved
in | , Th. 10.4.9] and | , Th. 11.2.5] via splitting techniques, providing the
classical regeneration-type representation of P—invariant positive measures.

Note that Proposition 3.14 does not extend to infinite invariant measures, as illustrated
in | , Ex. 9.2.17] where the irreducible Markov kernel of a random walk on X = Z
(the set of integers) is shown to admit at least two infinite and not proportional invariant
positive measures. Such a Markov kernel is transient: Otherwise, Case 1 of Theorem 3.8
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would apply, and irreducibility property would imply uniqueness for invariant measures
(up to a multiplicative positive constant).

F) Strong aperiodicity condition v()) > 0. This condition is a particular case of the aperi-
odicity condition introduced in Subsection 4.2.

G) The splitting construction. To conclude this bibliographic discussion, it is worth re-
membering that the concept of small-set has a natural and crucial probabilistic inter-
est in splitting or coupling techniques: This is the thread and backbone of the books
[ , , ]. Here this probabilistic aspect is not addressed. In this work,
the minorization condition (M, ) allows us to write the Markov kernel P as the sum of
two non-negative kernels: the residual kernel R := P — ¢ ® v and the rank-one kernel
1 ® v. That R is non-negative is the crucial point to define all the quantities related
to R in this section, especially the positive measure py (see (21)) and the function hg
(see (20)). Actually one of the key points of the present section and of the next ones is
the kernel identity (17). This formula is already present in Nummelin’s book | )
Eq. (4.12)]. It seems that the sole way to obtain a probabilistic sense of this formula is
to use the split Markov chain introduced in [ |. The idea is to introduce an appro-
priate enlargement of the state space of the original Markov chain in order to obtain a
new Markov chain - the split chain - which has an atom. Then most of statements on the
original chain are derived from applying results (obtained for example by the regeneration
method) on atomic chains to this split chain. Thus, using the splitting construction re-
quires switching from the original chain to the split chain for assumptions, and vice versa
for results. The enlargement of the state space consists roughly in tagging the transitions
of the original chain according to the occurrence of a ¥»—dependent tossing coin in order
to reflect the decomposition R + ¢ ® v of P in two submarkovian kernels. We refer to
[ , Sec. 4.4], | , Sec. 14.2], | , Chap. 5] for details. See also | | for
a readable survey on this topic in the case of Markov chain Monte Carlo (MCMC) kernels.
Here, the kernel-based point of view allows us to study the general Markov chains in a
single step. There is no need to resort to an intermediate class of Markov chains, e.g.
atomic chains, before dealing with the general case via what may appear to be a technical
device, e.g. the split chain. To turn back to our key formula (17), [ , Eq. (4.24)]
provides a probabilistic interpretation from the splitting construction. What is new here
is that we are exploiting Formula (17) solely as a kernel identity. The price to pay for this
presentation is that we only consider Markov kernels satisfying a first-order minorization
condition.

Appendix A gives the probabilistic interpretation of the main quantities used in this
document. This should facilitate the comparative reading with the statements in reference
probabilistic works as | , , |. And, as for formula (17), all these
probabilistic formulas are obtained from the split chain.

4 Harris recurrence and convergence of the iterates

Assume that the Markov kernel P satisfies the first-order minorization condition (M, ) and
recall that A3y := lim,, R"1x (point-wise convergence, see (20)), where R = R, is the residual
kernel given in (13). Condition A3 = 0 is stronger than v(h$) = 0. Under this condition
h% = 0, the results of the previous section are revisited in the following theorem with an
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additional result on the P—harmonic functions. Next, still under Condition A%y = 0, the
Markov kernel P is shown to be Harris-recurrent, and the convergence in total variation norm
of the iterates of P to its unique invariant probability measure is obtained when pz(1x) < 0o
and P satisfies an aperiodicity condition. The periodic case is addressed in Subsection 4.3.
Finally, introducing a drift inequality on P, a sufficient condition for the condition h% = 0
to hold is presented in Subsection 4.4.

Theorem 4.1 Let P satisfy Condition (M, ). If hyy = 0, then the following assertions hold.

1. The P—harmonic functions are constant on X.
2. P is irreducible and recurrent.

3. The positive measure iy = Y 7o VRF (see (21)) satisfies pr(v)) = 1, and is the unique
P—invariant positive measure n (up to a multiplicative constant) such that n(y)) < oo.
If np(1x) < oo, then mp := ur(lx) pr (see (26)) is the unique P—invariant probability
measure on (X, X).

Proof. 1t follows from (24) and h$ = 0 that

+o00
> RRy =w(lx) k. (35)
k=0

Let g € B be such that Pg = g. Recall that, for every n > 0, we have v(g) > p_, Rf =
g— R"lg from (22). Moreover we have lim,, R"g = 0 since |R"g| < R"|g| < ||g]|1, R"1x and
h3y = 0. Thus g = v(g) ;28 RF). We have proved that ¢ is proportional to 1x. This proves
Assertion 1.

For Assertion 2., apply the kernel identity (28) to ¢ to get
+0o0 +0o0 “+o0o
Y P =R+ ps(y) > P
n=0 n=0 n=0

We have pp(1) = 1 since hyy = 0 (see (25)). Then, we deduce from (35) and the previous
equality that >/ PFp = +00. Thus the irreducibility property (29) holds, as well as the
recurrence property from Theorem 3.8.

The first part of Assertion 3. is a direct consequence of Assertion 1. of Theorem 3.8 using
that v(h?) =0 (i.e. pr(v)) = 1) and that P is recurrent. The second part of Assertion 3. is
Corollary 3.13. The proof of Theorem 4.1 is complete. O

The notations concerning restriction to a set £ € X of functions, measures ans kernels are
provided in Section 2.

Lemma 4.2 Assume that P satisfies Condition (M, ) with pg(¢)) > 0, where R is the
residual kernel given in (13). Let E € X be any pr—full P—absorbing set. Then the Markov
kernel Pg on (E, Xg) satisfies Condition (M, ). Moreover the associated residual kernel
Py —Yp @ vg is the restriction Rp to E of R, and the following equalities hold

Vz € E, hg (z) :=lmRg(z, E) = hy(z) and Vn >0, vp(Rpye) = v(R"Y).
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Proof. Since pr() > 0 and E is prp—full, we have pur(1py) = pr(¥) > 0, thus ¢p is
non-zero. Moreover we have v(1g) = v(1x) > 0 since pz(1ge) = 0 implies that v(1gc) = 0
from the definition of pz. Then Condition (M, 4, ) for the Markov kernel Pg on (E, Xg)
is deduced from the minorization condition (M, ) for P since for every A’ € X'g and any
A € X such that A’ = AN E we have

Ve € E, Pg(x,A")=Px,ANE)>v(ANE))(z)=ve(A)r(z).
That P — v g ® vg is the restriction of R to the set E is obvious. It follows that
Vee E, Y/n>1, Rp(z,E)=R"(z,F)=R"(z,X)
since R"(x, E¢) = 0 from 0 < R"(x, E¢) < P"(x, E°) = 0. Consequently we have for every

x € E: lim, Rj(z, E) = hy(x). Finally we have: Vn > 0,Vz € E, (RyE)(x) = (R™))(x).
Thus vg(REYE) = v(R™)) since v(1ge) = 0. O

4.1 Harris-recurrence

Let us present a first application of Theorem 4.1 to the so-called Harris-recurrence property.
Let (Xy)n>0 be a Markov chain with transition kernel P. If P satisfies Condition (M, )
and if A3y = 0, we know that P is recurrent from Theorem 4.1, that is (see (27))

+00
VAE X : ur(ly) >0=VveeX, E, |:Z]'{Xk€A}:| = +o00.
k=0
This recurrence property for P is proved below to be reinforced in

+oo
VAe X : ugr(ly) >0= VzeX Px{21{xn€A}:+OO}:1. (36)
n=1

Such a transition kernel P is said to be Harris-recurrent.

Theorem 4.3 Let P satisfy Conditions (M, ) and hy = 0. Then the Markov chain
(Xn)n>0 with transition kernel P is Harris-recurrent.

First prove the following lemma.

Lemma 4.4 Let P satisfy Conditions (M, ) and pr(v) = 1. If g € B is such that Pg < g,
then the non-negative function g — Pg is pg-integrable and we have pr(g — Pg) = 0.

Lemma 4.4, which is used below in the proof of Theorem 4.3, has its own interest. Indeed,
from the P—invariance of puyp the conclusion of Lemma 4.4 is straightforward under the
assumption ug(lx) < oo since, for every g € B, the functions g and Pg are pg-integrable
and pur(Pg) = pgr(g). However, if pp is not finite, the conclusion of Lemma 4.4 is no longer
obvious.

Proof of Lemma 4.4. For every n > 1, it follows from Pg = Rg + v(g)t that

> v(RFg—Pg)) = D v(RFg) =D v(R"g)—v(g) > v(RF)
k=0 k=0 k=0 k=0
_— (1 -y u(R’fw) —W(RMy) (37)
k=0

< 2[Jglligr(lx) < oo
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using 0 < Y3 v(RF) < pp(y) = 1 and |g| < [|g]lixlx. Thus the series >/ v(RF(g —
Pg)) of non-negative terms converges, that is ¢ — Pg is pg-integrable. Since pg(v)) = 1
(ie. lim, >3y v(RFp) = 1 from the definition of ug), we know that v(h3) = 0 from (25).
Moreover we have [v(R"™g)| < |g|l1,v(R" ! 1x) with lim, v(R" ™ 1x) = v(h) = 0 from the
definition of A%y and Lebesgue’s theorem. Thus the property ugr(g — Pg) = 0 follows from
(37). The proof of Lemma 4.4 is complete. O

Proof of Theorem 4.3. Let A € X be such that uz(14) > 0. Recall that the function defined
by g% (z) := P { S 1{x,eay = +oo} for any z € X is a P—harmonic function, see (10).
Thus, under Condition A% = 0, we know that g% is constant on X from Theorem 4.1. We
have to prove that g% = 1x, namely that g% (z) =1 for at least one z € X.

Let ga be defined by: Vx € X, ga(z) := Px{T4 < 0o} where T4 :=inf{n > 0: X,, € A}
is the hitting time of the set A. Recall that g4 is superharmonic, i.e. Pgq < g4, and
that g5 = lim, \, P"g4, see (11)-(12). Let n > 0. It follows from P(P"g4) < P"ga
and Lemma 4.4 applies to P"g4 that the non-negative function P"g4 — P"*lg, is such
that pr(P"ga — P"T'ga) = 0. Thus there exists E, € X such that pr(lge) = 0 and
P'gy = P""lg, on E,. Now let E := N,>0E,. Then we have pg(1ge) = 0 and

Ve € E, Vn>0, ga(z)=(P"ga)(a).

Passing to the limit when n — 400 we obtain that every € E satisfies g% (z) = ga(x).
Finally we get from pgr(lge) = 0 that pur(lang) = pr(la) > 0, and we know that g4 = 1
on A from the definition of ga. Therefore there exists a « € X such that g% (x) = 1. Thus
g% = 1x since g% is constant on X. The proof of Theorem 4.3 is complete. U

Corollary 4.5 If P satisfies Condition (M, ), is irreducible and recurrent, then the re-
striction Py of P to the ugr—full P—absorbing set H := {h$y = 0} is Harris-recurrent.

The proof of Corollary 4.5 is based on Lemma 4.2 and on the following lemma.

Lemma 4.6 Assume that P satisfies Condition (M, ) and is irreducible. If v(h3y) = 0,
then the set H := {h3 = 0} is P—absorbing and pup—full.

Proof. Since v(h$y) = 0 the set H is non-empty. Moreover it follows from v(h3) = 0 and
Rhy = hfy that Phyy = hg. Then we have

Ve e H, 0= hi(e) = (PhE)a) = [ ) Pla.dy)

hence P(z, H®) = 0, i.e. P(z,H) =1, for any x € H. Thus H is P—absorbing. That H is
ur—full follows from Proposition 3.17. 0
Proof of Corollary 4.5. We have v(h) = 0 and pg(v0) = 1 from Corollary 3.9. It follows
from Lemma 4.6 that H := {hy = 0} is P—absorbing and puyz—full. From Lemma 4.2 applied
to the set H, we know that Py satisfies Condition (M, y,) and that h = 0 on H from

the definition of H. Consequently the last assertion of Corollary 4.5 follows from Theorem 4.3
applied to the Markov kernel Py on (H, X ). O
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4.2 Convergence of iterates: the aperiodic case

Set D :={z € C: |z| < 1}. If P satisfies Condition (M, ), then the following power series

+o0
pl2) =D w(R* 1) 2" (38)
n=1
absolutely converges for every z € D since up(1) = Y212 v(RF1)) < oo from Proposition 3.4.

If moreover P is irreducible, then this power series p is non-zero since p(1) = () > 0 from
Assertion 1. of Lemma 3.10.

If P satisfies Condition (M, ) and is irreducible, then P is said to be aperiodic if p(z)
defined in (38) is not a power series in z¢ for any integer ¢ > 2. Using the notation g.c.d. for
greatest common divisor, this aperiodicity condition is then equivalent to

ged {n>1:v(R" 1Y) >0} =1. (39)

This condition obviously holds when P is strongly aperiodic, i.e. v(1) > 0. In Subsection 4.3,
under Conditions (M, ) and hy = 0, various equivalent conditions for aperiodicity are pro-
vided by Theorem 4.14. Actually, Assertion (b) of Theorem 4.14 shows that the aperiodicity
condition does not depend on the choice of the couple (v,v) in Condition (M, ;). Assertion
(c) of Theorem 4.14 shows that aperiodicity condition is equivalent to the non-existence of
d-cycle sets for P with d > 2.

When P satisfies Condition (M, ) with pz(1x) < oo, is irreducible and aperiodic, the
convergence of probability distributions (6;P"),>0 to 7 in total variation norm is shown to
be equivalent to the property hy = 0 in the following theorem. As a corollary, the convergence
of the probability distributions (0;P™)n>0 to 7 holds for mz—almost every x € X. Recall that
under these assumptions, 7 is the unique P—invariant probability measure from Assertion
3. of Theorem 4.1.

Theorem 4.7 Let P satisfy Condition (M, ) with pr(1x) < oo. If P is irreducible and
aperiodic, then the following equivalence holds:

he =0 <= VzeX, |0 P" — mg||7v = 0.

lim
n — +0o
Corollary 4.8 Let P satisfy Condition (M, ) with pr(1x) < oco. If P is irreducible and
aperiodic, then

lim ||0,P" — mgll7v =0  for mg—almost every x € X.
n — +00

Proof of Corollary 4.8. From Theorem 3.6 we have pg(v)) = 1, so that v(h$) = 0 from (25).
Then we know from Lemma 4.6 that the set H := {hy = 0} is P—absorbing and pp—full.
From Lemma 4.2 applied to E := H, it follows that Py satisfies Condition (M, 4, ) with
h%, = 0 from the definition of H, and that g.c.d.{n > 1: v (R ) > 0} = 1 since
v (R} ) = v(R" ). Thus Py is irreducible from Theorem 4.1 applied to Py, and
Py is aperiodic too. Finally note that the positive measure ZZEB VHRI]_} is the restriction
tri Of pir to the set H, so that pip g () = 1 since pug(y)) =1 and H is pup—full. Moreover
the restriction 7p 5 of mz to H is a Py—invariant probability measure on (H, X'p). Hence
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Theorem 4.7 applied to Py shows that, for every x € H, we have lim,, |0, Pf; — 7r g ||7v = 0.
Finally, since we have for every x € H and A € X

P"(z,A) —mr(1a) = P"(z, ANH) — mp(lann) = P (2, ANH) — 7r g (Lann)

we obtain that: Vo € H, lim, ||0;P™ — 7g||7y = 0. This provides the expected conclusion
since we have my(1y) =1 from pgr(1ge) = 0. O

Proof of Theorem 4.7. The proof follows from the two next lemmas. Indeed assume that
hsy = 0. Then lim, P" = 7mx(¢)1x (point-wise convergence) from Lemma 4.9, thus the
desired convergence in total variation norm holds from Lemma 4.11. Conversely assume
that, for every z € X, we have lim,, , ;[0 P" — 7g|l7y = 0. Then it follows from the
definition of || - ||7v that lim,, s ;o0 (P™)(x) = 7x(¢)) since ¢ is bounded. Thus Ay = 0 from
Lemma 4.9. ]

Lemma 4.9 Let P satisfy Condition (M, ) with pr(1x) < oco. If P is irreducible and
aperiodic, then

hyy =0 < lim (P™)=mx(¥)lx (point-wise convergence).

n — 400

Proof. Let D = {z € C:|z| < 1}. The following power series

+00 +oo
P(z) := Z 2"P™p and R(z):= Z 2"R™)
n=0

n=0

are well-defined on D since 1 is bounded. Note that P(z) and R(z) are function series. From
the kernel identity (17) applied to 1 it follows that

Vze D, P(z)= JFZOO Z"P™) = f 2"R™p + JFZOO 2" iy(kalw)Pnfkw
n=0 n=0 n=1 k=1
= R(2) +p(2)P(2).
where p(z) is the power series defined in (38). Using uxr(¢) = 375 v(RF 1) = 1 from
Theorem 3.6, we have: Yz € D, |p(z)| < 1. Thus
1
= T

Next, for any k > 1, we have v(RF1x) = v(R* M) —v(1x)v(RF 1) from Rlx = 1x—v(1x).
Thus,

Vze D, P(z)=R(z)U(z) with U(z): (40)

VE>1, v(lx)r(RF) = v(RFyx) — v(RF1x)

and
Vn>1, v(lx)) kv(RMY) = k[v(RF11x) — v(RF1x)]
k=1 k=1
n n+1
= > kv(Rx) =) (k- 1)v(R )
k=1 k=2
= V(Rk_llx) —nv(R"1x).
k=1



Hence m = Y ;2 kv(RF 1) < pr(lx)v(lx) ™! < oo. Now recall that > /2 v(RF1¢) =1
and that p(z) is not a power series in 27 for any integer ¢ > 2 since P is assumed to

be aperiodic. Consequently the Erdds-Feller-Pollard renewal theorem | | provides the
following property for the power series U(z) = 3120 ug2® in (40):
. 1
lim wup = —.
k — 400 m

Let x € X. Identifying the coefficients of the power series in Equation (40) (Cauchy product),
we obtain that for every n > 0

(P™p)(x Zun K(RE) (x Zvn (R*y)(z) with Yk >0, vn(k) = un_r 1l (k).

For every k > 1, we have lim, v,(k) = 1/m, and |v,(k)| < sup; |u;| < co. Moreover recall
that ;2 (Rkw)( ) < oo from Proposition 3.4. Then it follows from Lebesgue theorem
w.r.t. discrete measure that

—+00

Vo € X, lm(Ph)(z) = %Z(Rkw)(m). (41)

k=0

Now we can prove Lemma 4.9. If h%y = 0, then we have Z 2 (RFp) () = v(1x) ™t from (35).
Hence (41) provides: Va € X, hmn(in)( ) = (mr(1x))~! Actually the constant (mv(1x))~*
equals to mx(¢)) from Lebesgue theorem w.r.t. the P—invariant probability measure 7. The
direct implication in Lemma 4.9 is proved. Conversely, assume that lim, P" = m(¢)1x
(point-wise convergence). Then we deduce from (41) that 3720 RFy) = clx with ¢ =
mmr(y). Thus hyy = d1x with d = 1 — cv(1x) from (24). Finally recall that ug(1)) = 1, thus
v(h3y) = 0 from (25). Hence dv(1x) = 0, from which we deduce that hjy = 0. O

Remark 4.10 From the proof of Lemma 4.9 we deduce the following facts. If P satisfies
Condition (M, ) with pur(1x) < oo, then m = S5 kv(RF 1) < co. If moreover P is
irreducible and aperiodic and if h® = 0, then m = (wx(v)v(1x))~t. Finally mention that, for
the direct implication in the equivalence of Lemma 4.9, the renewal theorem in [ , Th 1,
p330] can be directly applied too.

Lemma 4.11 Assume that P satisfies Condition (M, ) and pr(1x) < oo. If hy = 0 and
lim,, P" = 7z (¢)1x (point-wise convergence), then lim,, ||0,P™ —mg|ry = 0 for every x € X.

Proof. Using (17) and mp = 7x(¢)) S5 vRF~! (see (26)), we have for every n > 1 and g € B

n +o0
Py = malg)tx = R + 3 v ) (PH = ma(wt) = ) 3 (80 )1,

k=1 k=n-+1
Thus
n +oo
162 P" —7gll7v < (R™"1x)(x)+ Y v(R 1) [(P"*) (2) = mr(v) |+ 7a(v) D v(R*'1x).
k=1 k=n+1
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We have lim, (R"1x)(z) = 0 from hyy = 0. The term Zziflﬂ v(RF'1x) also converges to
zero when n — +oo since > 425 v(RF1x) = pr(lx) < co. Next note that

n +o00

Y V(R [(P ) (@) = ma(w)] = Y v(RE ) fu(k)

k=1 k=1

with f,,(k) := |(P" ) (x) — 7r(¥)[1[1,n) (k). Then, using S v(RFx) < oo, the above
sum converges to zero when n — 400 from Lebesgue’s theorem w.r.t. discrete measure since,
for every k > 1, we have f, (k) < 2|[¢|1, and lim, f,(k) = 0 by hypothesis. Lemma 4.11 is
proved. O

4.3 Convergence of iterates: the periodic case

Assume that P satisfies Condition (M, ) and is irreducible. Recall that the power series

p(z) given in (38), namely
+o0
p(2) = 3 w(R1g) 2
n=1

is defined on D = {z € C: |z| < 1} and is non-zero. Define
d:=gcd {n>1:v(R"1) >0} (42)

where g.c.d. stands for greatest common divisor computed on a non-empty set. If d = 1,
then P is aperiodic according to the definition of Subsection 4.2. If d > 2, then P is said
to be periodic: In this case p(z) is a power series in z%. Under Conditions (M, ;) and
h3y = 0, Integer d in (42) can be called the period of P without any ambiguity. Indeed under
these two conditions, various equivalent characterizations of Integer d in (42) are presented
in Theorem 4.14 below. Actually, from Assertion (b) of Theorem 4.14, the value of d does
not depend on the choice of the couple (v, 1) in the minorization condition (M, ).

From Theorem 4.1, Conditions (M, ) and hy = 0 imply that P is irreducible, and that
T is the unique P—invariant probability measure when pz(1x) < oo. Under these conditions,
the convergence in total variation norm of the probability measures Zf;(l) 8 P t0 Ty is
obtained in the next theorem. In fact the two next statements are the natural extensions to
the periodic case of Theorem 4.7 and Corollary 4.8.

Theorem 4.12 Let P satisfy Condition (M, ) with pr(lx) < oo and hy = 0. If P is
periodic with period d > 2 (see (42)), then the following convergence holds:

d—1
1
Ve € X, ngrﬁoo H”R p ZoéxpndJrrHTV =0.
r=

The proof of Theorem 4.12 is similar to that of the direct implication of Theorem 4.7 (where
d =1). When d > 2, the proof is just a little more technical, since we have to work with the
sums (1/d) Zg;é 8, P™7 This proof is postponed in Appendix B.

Corollary 4.13 Let P satisfy Condition (M, ) with pr(1x) < oo. If P is irreducible and
periodic with d > 2 in (42), then the following convergence holds :

d—1
nll)r_ri_loo H?TR — ClizoézP”d+T“TV =0 for myp—almost every x € X.
r—=
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Proof. Using the restriction Py of P to the pz—full P—absorbing set H := {hy = 0} from
Lemma 4.6, Corollary 4.13 is deduced from Theorem 4.12 proceeding as for Corollary 4.8:
Use g.ed. {n > 1 : vg(Ry "g) > 0} = d from vg(RS  u) = v(R"'), and apply
Theorem 4.12 to the sums (1/d) fo;é 8, P to conclude. O

In the next statement the space B = By, is extended to complex-valued functions, i.e.:

B(C) := {g : X— C, measurable such that ||g||1, := sup|g(z)| < 0o}
zeX

where | -| stands here for the modulus in C. Recall that z € C is said to be an eigenvalue of P
on B(C) if there exists a non-zero function g € B(C) such that Pg = zg. Finally recall that
P is irreducible under Conditions (M, ) and hy = 0 from Theorem 4.1, so that the positive
integer d = g.c.d. {n > 1: v(R" 1) > 0} in (42) is well-defined in the next statement.

Theorem 4.14 Assume that P satisfies Condition (M, ) and hiy = 0. Let p(z) be the
power series given in (38), and let d := g.c.d. {n > 1 : v(R" ') > 0}. Then the following
assertions holds and are equivalent:

(a) The complex numbers z of modulus one satisfying p(z) =1 are the d—th roots of unity.
(b) The eigenvalues of modulus one of P on B(C) are the d—th roots of unity.

(¢) There exist a pr—full P—absorbing set E € X and sets Cy,...,Cq—1 in X such that

d—1
E=||Cy with V¢=0,...,d=1, Yz €Cy Plx,Cryy) =1
/=0

using the convention Cy = Cj.

Under Condition (M, ) and hy = 0, that any of the three equivalent conditions (a)-(c)
characterizes the period of P, is obvious. Indeed, assume that P satisfies Assertion (a) for
some d > 1, and set d’ := g.c.d. {n > 1: v(R" %) > 0}. Then the complex numbers z of
modulus one satisfying p(z) = 1 are the d'—th roots of unity from Theorem 4.14, thus d’ = d.

The proof of Theorem 4.14 is based on the following two lemmas.

Lemma 4.15 Let P satisfy Condition (M, ) and hyy = 0. Let z € C be such that |z| = 1.
Then z is an eigenvalue of P on B(C) if, and only if, we have p(z) = 1. Moreover, if any of
these two conditions holds, then

+o0
E,:={geB(C): Pg=2z29}=C-v¢, with 1, := sz(kJrl)Rkw.
k=0

Proof. First note that, for any z € C such that |z| = 1, the above function @Zz is well-defined
and belongs to B(C) from Proposition 3.4. Moreover observe that

—+00

v(.) = 3 = E Dy (REY) = p(=7Y), (43)

k=0
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the exchange between series and v—integral being valid since Z;ﬁ% v(R*)) < oo from Propo-
sition 3.4. Now, let z € C, |z| = 1, and let g € B(C), g # 0, be such that Pg = zg. Thus we
have v(g)Y = (2I — R)g from P = R + ¢ ® v. Then we have for every n > 0

V(g) Z Z_(k+1)RkT/J _ <Z Z_(k+1)Rk> (ZI o R)g — Z Z—kng . Z Z_(k+1)Rk+1g
k=0 k=0 k=0 k=0
= g— z—(n-i—l)Rn-‘rlg. (44)

Moreover we have |R"g| < ||g||15R"1x, so lim, R"g = 0 (point-wise convergence) from Con-
dition Ay = 0. Hence g = v(g)th,, with v(g) # 0 since g # 0 by hypothesis. From (43)
it follows that v(g) = v(g)p(z~1), thus p(z~!) = 1, or equivalently p(z) = 1 from 2!
(the conjugate of z) since |z| = 1 and the coefficients of the power series p(-) are real (even
non-negative).

Conversely let z € C, |z| = 1, be such that p(z) = 1, thus p(z~') = 1. From (43) we have
v(1,) = 1. Using P = R+ ¢ ® v and Lebesgue’s theorem w.r.t. R(x,dy) for each z € X we
obtain that

=z

+oo
Py, =2 2 IR vy = 2(d. — 27 )+ = 20 (45)

k=0

Thus z is an eigenvalue of P on B(C) since ¥, # 0 from v(¢),) = 1. The claimed equivalence
in Lemma 4.15 is proved. The last assertion follows from the first part of the proof, where
we obtained that any g € B(C) such that Pg = zg with |z| = 1 satisfies g = v(g)1).. O

Lemma 4.16 Let P satisfy Condition (M, ) and hyy = 0. Let z € C be such that |z| = 1.
Then we have p(z) = 1 if, and only if, z is a d—th root of unity with d given in (42).

Proof. Recall that pg(¢) = ST v(R"1¢) = 1 from Theorem 4.1. Assume that p(z) = 1.
Then

+oo +o0
S uR) A =1=> v(R" ).
n=1 n=1
Writing 2 = € with 6 € [0,27) we obtain that >.'° (1 — cos(nf))v(R" 1) = 0. Define

the set N := {n > 1 : v(R" ) > 0}. Then n € N implies that cos(nf) = 1. Thus
we have: Vn € N,z" = 1. Next from the definition of d, for p large enough there exists
{n;}i_; € NP such that d = 3°%_, kjn; for some {k;}}_, € ZP (Bézout identity). Thus we
have 2% = H§:1 ZFini = 1 since 2™ = 1. Hence z is a d—th root of unity.
Conversely, let z be a d—th root of unity, i.e. 2% = 1. From the definition of d it then
follows that p(z) = > 725 v(RF1) 2k = 1, (y) = 1. O
Now we prove Theorem 4.14.

Proof of Theorem 4.14. Assertion (a) is proved in Lemma 4.16, and the equivalence (a) < (b)

follows from Lemma 4.15. Now let us assume that P satisfies Assertion (b). Let z4 = e2im/ d
Vg = 305 z;(kH)Rki/), and let g0 (resp. 1q1) denote the real (resp. imaginary) part of

the function ¢4. Then it follows from (35) that

+o0
a0 < Jhal < RFp = (1) '1x.

k=0
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Since z, is an eigenvalue of P on B(C) we have p(z;') = 1 from Lemma 4.15, thus v(hg) =1
from (43). Then we have I/(lzd,o) =1
v—a.e. on X: QZd’O = v(1x)'1x and ¥41 = 0. Now define gq := v(1x)1q. From the above
we know that |g4| < 1x and that the set Cp := {gq = 1} is non-empty. Moreover we have
Pgq = z394 from Lemma 4.15. Let z € Cy. Then

1= ga(e) = T2 [ 90 i, gy

Zd Zd

v(v(1x)~!x), so that the following equalities hold

with |ga(y)/z4] < 1 for every y € X since |z4| = 1. It follows that P(x,C1) = 1 where
Cy = {z € X : gq(x) = z4}. Replacing the set Cy with C1, we can similarly prove that,
for every x € C1, we have P(z,C3) = 1 where Cy := {x € X : g4(v) = 24°}. Repeating

this arguments provides the existence of sets Cp,...,Cy_1 in X satisfying the desired cycle
property: V¢ =0,...,d — 1, Vo € Cy, P(x,Cpr1) = 1. These sets are obviously disjoint.
Finally define £ := g;& Cy. This set is P—absorbing since, for every x € FE, there exists

a (unique) ¢ € {0,...,d — 1} such that = € C, so that 1 = P(x,Cp1) < P(z,E) < 1,
thus P(z,E) = 1. Since P is irreducible from Theorem 4.1, the set E is puz—full from
Proposition 3.17. We have proved that (b) implies (c).

It remains to prove that (c) implies (a). Assume that P satisfies Assertion (¢) and let Pg
be the restriction of P to the ur—full P—absorbing set F = lel;é Cy. Let z be any d—th root
of unity and define gg : £ — C by

V=0,...,d—1, Ye e Cy, gp(z)=27"

Then we have for every £ =0,...,d —1 and x € Cp
(Pegr)(e) = [ ap)Pady) = [ g6 PGa.dy) = 21 = 2g5(a)
£+1

since P(z,Cyy1) = 1 and gg(z) = 2%, recalling moreover for the case £ = d — 1 that Cy = Cy
by convention and that 1 = 2% Thus Ppgr = zgp. Next recall that pr(y) = 1 from
Theorem 4.1. It then follows from Lemma 4.2 that Pg satisfies Condition (M, 4,) on
(E,Xg), that hE. =0 on E from the assumption hj = 0, and finally that

+o0
VzeD, ppz)=> ve(Ry 'vp)"=p(2).

n=1

We can now conclude. Since z is an eigenvalue of Pg, Lemma 4.15 applied to Pg ensures that
pE(z) =1, so p(z) = 1. We have proved that, under Condition (c), any d—th root of unity
satisfies Equation p(z) = 1. Moreover we know from Lemma 4.16 that any z € C satisfying
|z| =1 and p(z) =1 is a d—th root of unity. Thus (¢) implies (a). O

4.4 Drift condition to obtain iy =0

Now, we introduce a drift condition to have the property hg := lim, R"1x = 0, the relevance
of which has been highlighted in Theorems 4.1, 4.3, 4.7, 4.12 and 4.14. Actually, under a
drift inequality w.r.t. some measurable function W : X —[0, 4+00), the property hy = 0 is
characterized in Proposition 4.17 by a control of hj; or E,‘!ﬁg RF4 on any level set W, := {x €
X: W(x) <r} of W. Finally, a condition ensuring this control is provided by Corollary 4.18.
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Proposition 4.17 Let P satisfy Condition (M, ) and the following drift condition for some
measurable function W : X —[0, 4+00):

IB>0, PW<W +bib. (46)

For any r > 0 let W, denote the level set of order r defined by: W, := {x € X: W(x) < r}.
Then we have the following equivalences

+o0
hiy =0 < ¥r>0, sup hif(z) <1 < Vr>0, inf Y (R'¢)(z) > 0. (47)
JTEWT weWT- k=0

Proof. The second equivalence in (47) follows from (24). That hy = 0 implies the sec-
ond condition in (47) is obvious. It remains to prove that the second condition in (47), or
equivalently the third one, implies that h = 0.

In the sequel, the third condition in (47) is assumed to hold. First prove that we have the
following point-wise convergence on X

¥p>0, limR"yy, =0. (48)

Let p > 0 and define a = a, := inf,ep, 720 (RE) (). By hypothesis we have a > 0 and

Iy, <a™? S 720 REap, from which we deduce that

“+00
Vn>1, 0< Ry, <a ') Ry
k=n
from the monotone convergence theorem w.r.t. R"(x,dy) for each = € X. Property (48) then
holds since the series ZL% RF1) converges point-wise from Proposition 3.4.

Next note that v(W )y < PW everywhere on X from (M, ), so that v(W) < oo and RW
is well-defined. Let d := max(0, (b —v(W))/v(1x)) and prove that

RWd < Wd where Wd =W 4+ dlx. (49)

Note that v(Wy) = v(W) + dv(1lx) < oo and that PW; = PW + dlx. It then follows from
RWy = PWy —v(Wy)y and from the drift inequality (46) that

RWy < W +bp+dlx — (v(W) +dv(1x))y < Wa+ (b—v(W) — dv(lx))y

so that RW,; < Wy from the definition of d.
Now let us deduce from (48) and (49) that h$y = 0. Let r > d with d given by (49). We

have
Wy
Ix = lpexwy(e)>r) T Heexwy(@)<r} < -t Iw,_,-

Thus we get
R"Wy Wy

r

vn>1, R'ix< + Rnlwrid < + Rnlwq_d

from the non-negativity of R and from R"W,; < W, using (49) and an immediate induction.
Let x € X, ¢ > 0, and fix r > d large enough so that Wy(z)/r < £/2. From (48) applied to
p =r —d, there exists N > 1 such that, for every n > N, we have 0 < (R"1yy,_,)(z) < e/2.
Thus: Vn > N, 0 < (R"1x)(x) < e. This proves that hS = 0.

O
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We conclude this section providing an alternative sufficient condition for A}y = 0. Let us
consider the Markov resolvent kernel @) defined in (31), i.e. @ := Z:ﬁ% 9~ (n+1) pn

Corollary 4.18 Let P satisfy Condition (M, ) and the drift condition (46) for some mea-
surable function W : X —[0, +00). If the following condition holds

Vr >0, (QY)(x) >0, (50)

inf
{L‘GWT
then h3 = 0.

Proof. Below we prove that the third condition in (47) is fulfilled. The claimed conclu-
sion then follows from Proposition 4.17. Recall that ¢ € B, so that Qi and the series
S o0 2= (1) Ry are well-defined. Using (32) with 1 in place of 14,we obtain that

“+00
Qy=> 27 "IRM + aQy
n=0

where o := 3% 27Fy(RF~14)). Note that, either a = 0, or a < pgr(1)) < 1 from Proposi-
tion 3.4, so that

“+o00
S 2 IR = (1-a) QY with 1—a > 0.
n=0

Now let 7 > 0 and a = a, := inf e, (Q)(x). We have a > 0 from (50), and

+00 +oo
Ve e Wy, D (RM)(2) = Y 2 H(RM)(2) = (1 - a) (Qv)(z) = (1 - a)a>0.
k=0

k=0
The third condition in (47) is proved. O

Condition (50) on @ is obviously satisfied under the following stronger condition

Vr >0, 3¢ =q(r) > 1, (Pi)(x) > 0. (51)

inf
zEWr
Note that requiring Condition (51) means requiring that the irreducibility property for P (see
(29)) holds uniformly on each level set W,. This condition is relevant only for unbounded
function W. Indeed, otherwise, the set W, is the whole space X for r large enough, and in this
case Condition (51) is restrictive since it requires that inf,ex(P%)(x) > 0 for some g > 1.
If X is discrete (say X = N) and W = (W(n))nen is an unbounded increasing sequence, then
the sets W, are finite: In this case, Condition (51) holds if, and only if,

VseN, dg=q(s) > 1, Vi e{0,...,s}, (P%)(i)> 0.

If X is a non-discrete topological space, then a natural assumption for Condition (51) to be
fulfilled is that, for every r > 0, the set W, is compact. However this is not sufficient. An
additional natural assumption is that P is weakly Feller (i.e. if g € B is continuous on X,
then so is Pg). Under these two assumptions, Condition (51) actually holds provided that
there exists a bounded and continuous function gy such that 0 < ¢y < and

Vr>0, 3¢ =q(r) 21, Vo € Wy, (Pho)(z) > 0.

Indeed the continuous function P%) then reaches its lower bound on the compact set W,.,
and this lower bound is thus positive under the previous condition.
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4.5 Bibliographic comments

In the present bibliographic discussion we assume that P is irreducible. The uniqueness of 1x
(up to a multiplicative constant) as P—harmonic functions is classically studied in link with
the Harris-recurrence assumption. This is done in | , Th. 3.8, p. 44], | , Th. 17.1.5]
and [ , Th. 10.2.11], essentially using the fact that, for a Markov chain (X, ),>0 on
X and for every A € X, the function g% : z — P,{X} € A io0.} is a P—harmonic function,
where i.0. stands for infinitely often. Similarly, under the aperiodicity condition, the Harris-
recurrence assumption is classically used to prove the convergence in total variation of the
iterates of P to its (unique) invariant probability measure 7 (i.e. Vz € X, lim,, |0, P"—7||rv =
0). This is proved in [ , Ths. 13.0.1, 13.3.5] and | , Th. 11.3.1] via renewal theory
and splitting construction, also see | , Th. 4] for a proof based on coupling method.

In this section, assuming that P satisfies the minorization condition (M, ), we choose a
different approach, first focusing on function A% := lim,, R"1x introduced in the previous sec-
tion. Indeed the condition h% = 0 enables us to prove the above conclusion on P—harmonic
functions (Theorem 4.1), from which the Harris-recurrent property can be derived in Theo-
rem 4.3 using the fact that for every A € X" the function x — P,{X} € Ai.o.} is P—harmonic
(no surprise there). In the case when measure p is finite and P is aperiodic, the condition
h% = 0 is proved to be equivalent to the above mentioned iterate convergence in total vari-
ation (Theorem 4.7). So, to put it simply, the presentation in this section and the resulting
statements focus on the condition hyy = 0 depending on the residual kernel R, rather than
on the Harris-recurrence property. However note that the proof of Theorem 4.7 is original:
Actually Property (24) and the power series formula (40) simply derived from the key equal-
ity (17) allow us to directly apply the renewal theorem proved in the seminal paper | ]
by Erdds, Feller and Pollard, to the power series p(z) in (38) used to define the aperiodicity
condition.

If P is recurrent, then the P—harmonic functions are still constant, but up to a negligible
set w.r.t. to some maximal irreducibility measure, e.g. see [ , Prop. 3.13, p. 44]. In
the same way, if P admits an invariant probability measure 7, so that P is recurrent from a
classical result (e.g. see | , Th. 10.1.6]), then the property lim,, |0, P" — mz|l7v = 0 is
known to hold for m—almost every x € X, e.g. see [ , Th. 11.3.1] and | , Pp- 32-
33]. This is here highlighted using the explicit set H := {hj = 0} which is P—absorbing and
pr—full under the recurrence condition (see Corollary 4.5 and the proof of Corollary 4.8).
Complements using splitting construction can be found in | , Cor. 5.1, p. 71].

Under the irreducibility condition, the d-cycle property for P stated in Assertion (c¢) of
Theorem 4.14 is the standard definition of the period of P, see | , p- 114] and | ,
Def. 9.3.5]. In our work, under the minorization Condition (M, ) and irreducibility con-
dition, Integer d is defined by d := g.c.d.{n > 1 : v(R" !¢) > 0}. Then the alternative
characterizations of this integer d, in particular the d-cycle property for P, are proved under
the condition A}y = 0 in Theorem 4.14. The convergence in total variation norm stated in
Theorem 4.12 corresponds to the standard statements | , Th. 13.3.4] and | ,
Cor. 11.3.2], except that the condition h$y = 0 is used here in Theorem 4.12 instead of the
Harris-recurrence condition in | , ]. In the same way the mz—a.e. convergence in
total variation norm obtained in Corollary 4.13 corresponds to the standard results in | ,
Th. 13.3.4] and | , Cor. 11.3.2]. Again the direct use of the pz—full P—absorbing set
H := {h$y = 0} provides a short proof of Corollary 4.13. The proofs in | , Th. 13.3.4]
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and [ , Cor. 11.3.2] are based on the d—cycles property given in Assertion (c) of
Theorem 4.14. However, since the set E of Theorem 4.14 is not the whole set X a priori (F
is only pr—full), additional work is then required to obtain the conclusion of Theorem 4.14
(i.e. convergence for all = € X). The proof given in Appendix B does not rely on the d—cycles
property: it adapts the arguments of the direct implication of Theorem 4.7 to the periodic
case, thus directly giving the conclusion of Theorem 4.14.

The sufficient condition provided in Proposition 4.17 for the condition h% = 0 to hold
is the analogue of the standard statements ensuring that P is recurrent or Harris-recurrent
under drift condition, e.g. see | , Prop. 5.10, p. 77], | , Th. 8.4.3, Th. 9.1.8],
[ , Th. 10.2.13]. More precisely the drift inequality (46) in Proposition 4.17 is the
same as in the previously cited works. Moreover Condition (47) in Proposition 4.17 replaces
the classical assumption that W is unbounded off petite set (i.e. each level set W, := {W < r}
is a petite set). This last condition means that, for every r > 0, there exists a := (ay), €
[0, 1]N with Z:Lri% a, = 1 and a positive measure v, such that Q, > 1y, ® v, where
Qq = ::i% anP". Expressed with a,, = 2~ (™1 this assumption is clearly stronger than
Condition (50) in Corollary 4.18, which only focusses on the lower bound of the function Q1
on W, (no minorizing measure is involved in (50)).

Before diving into the details of the modulated drift condition used in the next sections, let
us present some comment on the probabilistic meaning of the simpler drift condition (46). Let
(Xn)n>0 be a Markov chain with state space X and transition kernel P. Let W : X —[0, 4+00)
be measurable. For any r > 0 the set W, = {z € X : W(z) < r} must be thought of as the
level set of order r in X w.r.t. the function W. Since (PW)(z) = E,[W(X;)] for any z € X,
the Markov kernel P satisfies Condition (46) with ¢ = 1y, for some s > 0 if, and only if,

sup E; [W(Xl)] <oo and VreX\W, E,; [W(Xl)] < W(x). (52)
TEWs

The second condition in (52) means that, for any r > s, each point x € X such that W (z) =r

transits in mean in W,. If X = R? is equipped with some norm | - ||, then W may be of the
form W = v(|| - ||) with unbounded increasing function v : [0, 400) —[0, +00). In particular,
if W = || - ||, then the second condition in (52) means that, starting from = € R? far enough

from the origin, the state visited after a first transition of the Markov chain admits in mean
a norm less than ||z||, namely is closer to the origin. For a random walk on N, it means
that, for 7 large enough, the steps of the walker starting from ¢ are in mean more to the left
than to the right, namely it tends to go back towards 0. In case X = Z and W (z) = |z|, a
typical illustration of the explicit computations needed for obtaining the drift inequality (46)
can be found in | , Sect. 8.4.3 ] for random walks with bounded range and zero mean
increment. If (X, d) is a metric space and W (z) = d(x, xo), level sets are the balls centred at
xg. However the possibility of considering other level functions more suited to the transition
kernel (i.e. possibly considering level sets other than balls) offers flexibility for the validity of
Conditions (52) or of the modulated drift condition involved in the next sections.

5 Modulated drift condition and Poisson’s equation
Throughout this section, the Markov kernel P is assumed to satisfy the first-order minoriza-

tion condition (M, ). Then, the following V;—modulated drift condition is introduced:
PVy < Vy — Vi + by with some measurable function Vp : X —[1, +00) and the so-called mod-
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ulated measurable function V; : X —[1,400). The minorization condition is the first pillar in
this work, this modulated drift condition is the second one. Note that the modulated drift
condition is a re-enforcement of the drift inequality (46) of Proposition 4.17.

Under the minorization Condition (M, ) and the Vi—modulated drift condition, the
convergence of the series Z;ﬁ% REV; is proved in Theorem 5.4 thanks to an auxiliary V-
modulated residual drift inequality following the same lines as for (49). Then the series

gjg) RF1x converges point-wise since 1x < Vi, so that the function A% := lim, R"1x (see
(20)) is zero on X. Under the same assumptions it is also shown in Theorem 5.4 that the
positive measure pg given in (21) is finite, i.e. pgr(lx) < oco. Accordingly, when Condi-
tion (M, ) and the Vi-modulated drift condition are assumed to hold, all the conclusions
of Theorems 4.1, 4.3, and Theorem 4.7 or 4.12 hold true, that is:

(i) The P—harmonic functions are constant on X.
(ii) P is irreducible (see (29)) and recurrent (see (27)).

(iii) The positive measure pp (see (21)) satisfies pr(yp) = 1, and is the unique (up to a
positive multiplicative constant) P—invariant positive measure n such that n(y) < co.

(iv) 7r = pr(lx)"‘ug (see (26)) is the unique P—invariant probability measure on (X, X),
we have () > 0, and P is Harris-recurrent (see (36)).

(v) The convergence in total variation of Theorem 4.7 or Theorem 4.12, depending on
whether P is aperiodic or periodic, holds.

Actually the convergence of the series Zgj{ REV, gives more, in particular it naturally
provides solutions to the so-called Poisson’s equation (Theorem 5.6). This is the main moti-

vation of this section.

5.1 Modulated drift condition D (Vp, V;)

Let us introduce the following condition for any couple (Vp, V1) of measurable functions from
X to [1, 4+00):

dep GB*_,'_, HboEbo(V(),Vl,w) >0: PV <Vy—Vi+ byt (D¢(V0,V1))

This condition is said to be a Vi —modulated drift condition for P, and Vy and Vy in Dy (Vo, V1)
are called Lyapunov functions for P. The functions Vp, V1,1 are assumed to be everywhere
finite, so the function PV} is too. It is worth noticing that the modulated function Vj
must be larger than one for the results of this section to hold. In fact, it is only required
that Vj is non-negative and Vj is uniformly bounded from below by a positive constant.
Indeed, if PVj < Vj — V{ + /4 for some positive constant ' and some measurable functions
Vo > 0 and V| > clx with ¢ > 0, then Condition D (Vp, Vi) holds with Vi := V{/c > Ix,
Vo = 1x+Vy/c > 1x and by := b/ /c > 0. Moreover observe that if Conditions Dg(Vj, V1) for
some ¢ € B is satisfied then Dy (Vp, V1) holds for any ¢ € B such that 1) > ¢ (using any
constant by (Vp, V1, 1) larger than by(Vp, Vi, ¢)).

In the special case 1 := 1g for some S € X'*, the above condition writes as

35 € &%, Iy = bo(Vo, Vi,15) >0: PV < Vo — Vi + bolg. (D14(Vo, V1))
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Note that Condition D1 (Vp, V1) implies that V > V; on S¢. In fact Condition D¢ (Vp, Vi) is
equivalent to : There exists S € X such that sup,cge I'(x) < 0 and sup,cg'(x) < oo with the
measurable finite function I'(z) := (PVy)(z) — Vo(x) + Vi(z). Thus if Condition D14 (Vo, V1)
holds, then any constant bg(Vp, V1,1g) > sup,cgI'(z) may be chosen. Finally recall that
Conditions (M, 14) and D14(Vp, V1) are the most classical minorization/drift assumptions
in the literature.

Let us return to Markov kernel P satisfying the assumptions of Proposition 3.1. Then both
Conditions (M ,14 ) and (M, y4) hold with v € M7 , and 1 > 1g given in (15). Moreover, if
P satisfies D 4(Vp, V1), then Condition Dy, (Vp, V1) holds since ¢g > 1g. The next statement
ensures that the constant by(Vp, Vi,1s) may be chosen smaller than by(Vp, Vi, 1g).

Proposition 5.1 Let P satisfy the assumptions of Proposition 3.1 and Condition D14 (Vop, V1)
for some couple (Vy, V1) of Lyapunov functions on X. Then P satisfies Condition D, (Vy, V1)
with g > 1g given in (15), and we can choose

bo(%v‘/th) S bO(Vbu‘/l)]-S)‘ (53)

Proof. Since ¥g defined in (15) is such that g > 1g we already quoted that P also satisfies
Condition Dy (Vp, V1). Next, set

r .
bo(V, Vi s) 1= sup L with D(z) := (PVo)(z) — Vi(x) + Vi(a).
zes Vs(x)
Since ¢S Z 157 we have bO(va VI)¢S) S Supxesr('r) S bO(‘/Oa V17 15) U

Example 5.2 (Geometric drift condition) Let us introduce the following so-called V —geo-
metric drift condition (to be discussed in Section 6):

3 e B, 36 € (0,1), I e (0,+00): PV <6V +bap (Gy(5,V))

where V : X—[1,+00) is a measurable function. Again recall that the most classical case is
when Y := 1g for some S € X*, that is

A8 € x*, 35 € (0,1), I € (0,400): PV <5V +blg. (G145, V)

Observe that Gy(0,V) implies that PV < V — (1 — 6)V + by, so that P satisfies the
Vi—modulated drift Condition Dy,(Vo, V1) with Vo :=V/(1=6), V1 :=V and by := b/(1—6).

5.2 Residual-type modulated drift condition

Under Conditions (M, ) and for any couple (V,W) of measurable functions from X to
[1,4+00) such that v(V) < oo, let us introduce the following residual-type modulated drift
condition involving the residual kernel R = R, given in (13):

RV <V -W (R, (V, W)

Note that Condition R, ,;(V, W) rewrites as PV < V—W +v(V)1, which is a specific instance
of Condition D (V,W) with by = v(V). The next simple lemma shows that D (Vp, V1)
generates a residual-type modulated drift condition up to slightly modify Vj. Recall that
the kernel identity (17) used throughout Sections 3-4 and only based on the minorization
condition (M, ) is the first key point of this work. Lemma 5.3 based on the modulated drift
condition Dy, (Vp, V1) is the second key point (already used in the proof of Proposition 4.17
under the weaker drift condition (46)).
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Lemma 5.3 If P satisfies Conditions (M, ) and Dy (Vo, V1), then v(Vo) < oo and for
any constant ¢ satisfying ¢ > (bg — v(Vo))/v(1x) the residual kernel R = R,y given in (13)
satisfies Condition R, (Vo a, V1) with V4 := Vo + dlx > Vy where d := max(0, c).

Proof. We already quoted that PV} is everywhere finite under Condition Dy (V, V1), so that
0 < v(Vo)Y(x) < (PVy)(x) for every = € X from (M, ;). Then it follows that the function
RV is well-defined and is everywhere finite. Note that v(Vpq) = v(Vo) + dv(1x) < oo and
that PVyq = PVy + dlx. We get from the definitions of R and Vj 4

RVog = PVoua—v(Voa)p = PVo+dlx — (v(Vo) +dv(lx))v

< Vo—Vi+boyp +dlx — (V(Vo) + du(lx))z/) (from Assumption Dy (Vp, V1))

= Vo= Vi+ (bo — v(Vo) — dv(lx))¥
Vo.a — Vi (from the definitions of ¢ and d).

IN

Hence the proof is complete. O

Under Conditions (M, ;)-D.(Vo, V1) the following theorem provides relevant properties
on the non-negative kernel Z;ﬁ% RF involving the residual kernel R, from which further
statements on P and 7w are obtained. Moreover the bounds (54a)-(54b) below are crucial
for the study of Poisson’s equation in the next subsection.

Theorem 5.4 Let P satisfy Conditions (M, y)-Dy(Vo,V1). Then

+oo +oo
‘ bo — v(Vo)
< Fly < o< (1 = —_— 4
0 < kZ_OR x < kZ:OR Vi <(1+do)Vp with dy:= max (O, (1) (54a)
+o0 +o0
0 <) v(RMx) < D v(RWI) < (1+do)v(Vp) < 0. (54b)
k=0 k=0

Moreover the conclusions (1)-(v) provided at the beginning of this section hold true, as well
as the following additional assertions:

(vi) The unique P—invariant probability measure g is such that mz(V1) < 0.
(vil) If mr(Vo) < oo, then mr(Vi) < by mr(1)) < by where by is the constant in D, (Vo, V7).

(viii) if PVi/Vi is bounded on X, i.e. PBy, C By,, then the P—harmonic functions in By,
(i.e. g € By, such that Pg = g) are constant on X.

Inequalities (54a)-(54b), thus the constant dy, will play a crucial role for the bounds of
solutions to Poisson equation in Subsection 5.3 and for the polynomial rates of convergence.
Recall that the constant dy depends on the minorizing measure v in (M, ) and on the
constant bo(Vo, Vi, ) in Dy (Vo, V). First prove the following.

Lemma 5.5 Assume that P satisfies Condition (M, ) and that the associated residual ker-
nel R = R,y given in (13) satisfies Condition R, ,(V,W) for some couple of Lyapunov
functions (V,W) such that v(V') < co. Then we have

+oo —+o00

0< ) RMx < Y RwW<v (55a)
k=0 k=0
—+o00 “+o00

0< ) v(Rx) < Y v(RW) <w(V) < oo (55b)
k=0 k=0
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Proof. From R, ,(V,W), we derive that 0 < W <V — RV, so that

n n n+1
Vn>1, 0<> RFW <Y RV-> RVV (56)
k=0 k=0 k=1

since R"*1V > 0. This proves (55a). Next (55b) is obtained using the monotone convergence
theorem. g

Proof of Theorem 5.4. Inequalities (54a)-(54b) directly follow from Lemma 5.3 and from
Lemma 5.5 applied to W =V} and V := V) + dplx with dy = max(0, (bp — v(Vp))/v(1x))
observing that V' < (1 + dp)Vp. Next, the point-wise convergence of the first series in (54a)
proves that A%y := lim,, R"1x = 0 (see (20)), while the convergence of the first series in (54b)
reads as 15 (1x) = Y720 v(RF1x) < oo (see (21)). Recall that the conclusions (i)-(v) provided
at the beginning of this section then follows from Theorems 4.1, 4.3, 4.7 and 4.12. Now prove
the additional assertions (vi)-(viii). That m(V1) < oo follows from the definition of 75 and
from the second inequality in (54b) which provides pg(V1) < oo. To prove (vii), note that

mr(PVo) = mr(Vo) < mr(Vo) — mr(V1) + bomr(¥)

from the P—invariance of mz and Dy (Vp, V). Finally the proof of (viii) follows the same
lines as for Assertion 1. of Theorem 4.1, replacing the function 1x with Vi and observing
that P(By,) C By, thus R(By,) C By;, when PV;/V; is bounded on X. Indeed, first
recall that ¢ := F20 REp = v(1x) !y from (35) since hy = 0. Now let g € By, be
such that Pg = ¢g. Using R(By,) C By, and proceeding as in Lemma 3.3, we obtained
that v(g) > p_, Rk = g — R g for every n > 1. Moreover we have lim, R"g = 0 since
|R"g| < R™g| < ||g|lv; R"V1 and lim,, R"Vi = 0 from (54a). Thus g = v(g)¢, from which it
follows that ¢ is constant. O

5.3 Poisson’s equation

When P satisfies Conditions (M, ) and Dy, (Vy, V1), recall that 7 given in (26) is the unique
P—invariant probability measure on (X, X).

Theorem 5.6 Let P satisfy Conditions (M, )-Dy(Vo, Vi) and R = R, be the associated
residual kernel given in (13). Then the following assertions hold.

1. For any g € By,, the function series g := 2‘2‘8 RFg absolutely converges on X (point-wise
convergence). Moreover we have g € By, and

~ ) by — v(V¢
e < (1 dolglh - with do = max (0, 2250 7)
v(1x)
where by is the positive constant given in Dy (Vo, V1).
2. For any g € By, such that mx(g) = 0, the function g satisfies Poisson’s equation
(I—-Plg=y. (58)
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Proof. Let g € By,. Using |g| < |lg]v,Vi and |ng| < Rk\g\ < ||g||V1RkV1, Assertion
1. follows from (54a). Next, note that 7x(|g|) < oo since mx(V1) < oo from Assertion (vi) of
Theorem 5.4. Now define

n
Yn>1, gn:= Zng.
k=0
Then, using P = R+ ¢ ® v we have

gn - Pgn = gn - Rgn - V(ﬁnﬁb =9g— Rn+lg - V(gn)¢ (59)

We know that lim, R"t!'g = 0 (pointwise convergence) from the convergence of the se-
ries Y ;25 R*g. Moreover, using v(g,) = > p_ov(R¥g) and pr(Vi) < oo, we obtain that
limy, 100 ¥(gn) = pr(g) from Lebesgue’s theorem w.r.t. the measure v. Finally, for every
x € X, we have lim, (Pg,)(z) = (Pg)(z) from Lebesgue’s theorem applied to the sequence
(gn)n w.r.t. the probability measure P(z,dy) since lim, g, = ¢, |gn| < ||gllv, Vo (from As-
sertion 1.) and (PVp)(x) < oo. Taking the limit when n goes to infinity in (59), we get
that

(I —P)g=g— pzr(g)¢- (60)

Next, if we assume that mz(¢g) = 0, then Equality (60) rewrites as (I — P)g = ¢ since
wr(g) = 7r(9)/7r(1¥)) = 0 from (26). Theorem 5.6 is proved. O
For g € By, such that mz(g) = 0, the solution g := :ﬁ% R¥g in By, to Poisson’s equation

(I — P)g = g in Theorem 5.6 is not mp—centred a priori, i.e. mz(g) # 0. The natural way to
get a mp—centred solution is to define § = g — mx(9)1x, but we then need to assume that g is
mr—integrable. Accordingly, to obtain such a mz—centred solution to Poisson’s equation in
general terms, the assumption 7(Vy) < oo must be made.

Corollary 5.7 Let P satisfy Conditions (M, )-Dy(Vo, Vi) with mx(Vy) < oo. For any

g € By, such that mx(g) = 0, set § := > ;20 R¥g. Then the function § = § — mx(9)1x is a
mr—centered solution on By, to Poisson’s equation (I — P)g = g. Moreover we have
19llve < (1 +do) (1+ 7=(V0)) llgllv, (61)

where the positive constant dy is given in (57).

Proof. Let g € By, be such that mz(g) = 0. Obviously we have g € By, and 7z(g) = 0.
Moreover we obtain that (I — P)g = (I — P)g = ¢ from Theorem 5.6 and (I — P)lx = 0.
Finally we have

[9llve < (L +7r(Vo) [11xllvo) 19llve < (1 + do) (1 + (Vo)) lgllva (62)
using the definition of g, the triangular inequality and [g] < ||g||v; Vb for the first inequality,
and the bound (57) applied to g for the second one. O

Let g € By, be such that mz(g) = 0. Under the assumptions of Corollary 5.7, when a
mr—centred solution g € By, to Poisson’s equation (I — P)g = ¢ is known, and when two
solutions to Poisson’s equation in By differ from an additive constant, then we have g = g, so
that the bound (61) applies to g. Of course such a solution g may be obtained independently
of the function g. For instance it can be given by g = Z;:OB P%g provided that this series
point-wise converges and defines a function of By,. Note that the choice of the minorizing
measure v and of the function ¢ used in Conditions (M, ) and D (Vy, Vi) of Corollary 5.7
naturally has an impact on the constant dy in (61).
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Remark 5.8 Recall that, under Conditions (M, y)-Dy(Vo, V1), the function hyy = lim, R™"1x
(see (20)) is zero from the convergence of the first series in (54a), so that ) := S o0 RFqp =
v(1x)~x from (35). So the presence of the term v(1x)~! in the general bound (57) is quite
natural (it is not due to the proof of Theorem 5.6). This does not mean that the bound of
the Vo— norm of solutions to Poisson’s equation could not be improved. But in fact this last
question is not well formulated since solutions to Poisson’s equation are not unique, and the
solutions given in Theorem 5.6 are very specific: they are defined from the residual kernel R,
in particular they are not wp—centred (see Corollary 5.7).

Remark 5.9 Assume that P satisfies Conditions (M, 14)-D14(Vo, V1) with Vo > Vi and
inf Vo = 1. Then we have dy = 0 in the bound (57) of Theorem 5.6 if, and only if, S is an
atom, i.e. Va € S, v(dy) = P(a,dy). Indeed, if S is an atom, then P satisfies D14 (Vo, V1)
with by = v(Vp) since Vo > V1. Thus dyg = 0. To prove the converse implication, note that

v(1x) ™" =v(lx) Mixllve < (1+do)llLslv, < (1+do)

from (57) applied to g := 1g and (35) with here b :== 1g. Hence, if dy = 0, then v(1x) > 1.
Thus S is an atom since, for every a € S, the non-negative measure n,(dy) = P(a,dy)—v(dy)
satisfies nq(1x) < 0, so that n, = 0.

5.4 Further statements

Under Conditions (M, y)-Dy(Vo, V1) and the additional condition 7z (Vp) < oo, the sequence
(P™Vp)p is shown to be bounded in (By, || - ||v;) in the following lemma.

Lemma 5.10 Let P satisfy Conditions (M, )-Dy(Vo, Vi) with mx(Vy) < 0o. Then we have
for everyn > 1:

[9]l1 (7r (Vo) + do) bo —V(Vo))>
(V) v(1x)
Proof. 1t follows from Lemma 5.3 that RV} 4, < Vp 4, with Vp 4, := Vo +dolx and R = R, y in

(13). Using the non-negativity of R and iterating this inequality gives: Vn > 1, R"Vp 4 < Vp 4.
From Formula (17) and 0 < P*1) < |91, 1x, we obtain that

P"Vo < W+

Ix  with |94 :=supy(z), dp := max (0,
zeX

n
Vn>1, P"Voa=R"Voa+ Y v(R* "WVoa) PP % < Voa+ ¥y pa(Voa)lx
k=1
with pr = mr/mr(1) given in (26). This provides the desired inequality using the definition
of V.4, Plx = 1x and mx(V)) < oo. O

Now, given any measurable function V; : X —[1, 400), we present a necessary and sufficient
condition for P to satisfy a V3 —modulated drift condition.

Proposition 5.11 Assume that P satisfies Condition (M, ). Let Vi : X—=[1,400) be any
measurable function. Then there exists a measurable function Vy : X —[1,4+00) such that P
satisfies Dy (Vo, Vi) if and only if

“+oo
Vo € X, /I}I(az) = Z(Rle)(az) < oo and I/(/‘}I) < 0 (63)
k=0

where R = R, is the residual kernel in (13).
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Proof. If P satisfies Condition D (Vp, V1) for some Lyapunov function Vj, then (63) holds
true from Theorem 5.4 (in fact we know that val < ¢V for some positive constant ¢). Con-
versely, if V| satisfies (63) with R = R, in (13), then we have (Rval)( ) = va1( ) — Vi(z)
for every x € X from the monotone convergence theorem w.r.t. the measure R(l’ dy). Hence

Condition RV¢(V1, V1) holds. Then Condition D¢(V1, V1) holds with by := 1/(V1) O

The next statement completes Theorem 3.6.

Proposition 5.12 Assume that P satisfies Condition (M, ) and is irreducible. Then the
two equivalent conditions 1. and 2. of Theorem 3.6 are also equivalent to the following one:
There exists a P—absorbing and pr—full set A € X such that the restriction of P to A satisfies
the modulated drift condition Dy, ,(Va,14) for some measurable function V4 : A—[1,400),
where 4 is the restriction of Y to A.

If P satisfies the minorization condition (M, ), is irreducible and admits an invariant prob-
ability measure 7, then we have n = w5 from Proposition 3.14, and all the conclusions of
Theorem 5.4 then hold on some P—absorbing and m;—full set thanks to Proposition 5.12.

Proof. Under Condition M, 4, let R = R, r be the residual kernel defined in (13). Assume
that Condition 2. of Theorem 3.6 holds, i.e. pug(lx) < oo. Define on X the function V' :=
720 RF1x taking its value in [0, +0c] a priori. Since v(V) = ur(1x) < oo, the set

A:={zeX:V(z) <oo}

is non-empty. Moreover, if z € A, then we have (RV)(z) < oo since (RV)(z) = V(z) — 1
from the monotone convergence theorem w.r.t. the measure R(x,dy). We then obtain that
(PV)(x) = (RV)(x) + v(V)Y(z) = V(z) — 1+ v(V)y(x) < oco. This proves that A is
P—absorbing. Since P is irreducible, A is pz—full from Proposition 3.17. Furthermore,
the previous equality proves that the restriction of P to A satisfies the modulated drift
condition Dy, (Va,14) where V4 is the restriction of V' to the set A.

Conversely assume that the condition provided in Proposition 5.12 holds. Using the fact
that A is P—absorbing and proceeding as in the proof of Corollary 4.5, it can be proved that
the restriction P4 of P to A satisfies on A the minorization condition (M, ,) with small-
function ¥4 and minorizing measure v4 defined as the restriction of v to A. Then it follows
from Theorem 5.4 applied to the Markov kernel P4 that there exists a unique Pj-invariant
probability measure n4 on A and that n4(¢4) > 0 (apply Assertion (iv) to P4). Next let
us define the following positive measure on (X, X): VB € X, n(1g) := na(lanp). Since A
is P—absorbing, n is a P-invariant probability measure, and we have n(1)) = na(4) > 0
Consequently Condition 1. of Theorem 3.6 holds for P and Proposition 5.12 is proved. [

Finally, under Conditions (M, )-Dy(Vo, Vi), the next statement provides a necessary
and sufficient condition for the (unique) P—invariant probability measure 75 given in (26)
to satisfy mx(Vp) < oo.

Proposition 5.13 Let P satisfy Conditions (M, y)-Dy(Vo,V1). Then the two following
conditions are equivalent:

1. mx(Wp) < 0.

2. There exists a P—absorbing and mr—full set A € X and a measurable function L > Vy on A
such that the restriction Pa of P to A satisfies the modulated drift condition Dy, (L, VOlA),
where Vy, , (resp. 1 4) is the restriction of Vi (resp. of 1) to A.
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Proof. The proof follows the same limes as for Proposition 5.12. Let R = R, r be the
residual kernel given in (13). Assume that m;(Vp) < oo and define on X the [0, +oo]—valued
function Vg := ;35 R*Vy. Then Vy > Vo, and the following equality holds in [0, 4+o0]:
R% = % — V4. Note that there exists x € X such that %(az) < 00 since V(%) =pur(Vh) < o0
from 74(Vy) < oo, where up := > /20 VR (see (26)). Now define the non-empty set A :=
{r e X: Volz) < oo} € X. Let x € A. Then we have (RVp)(z) < oo from (RVp)(z) =
Vo(z) — Vo(z), so that (PVp)(z) = (RVp)(z) + v(Vo)ib(z) < co. Thus P(x, A) = 1. This
proves that A is P—absorbing. Since P is irreducible from Theorem 5.4, A is mg—full from
Proposition 3.17. Moreover the restriction L := VO\ 4 of Vj to A is a measurable function on
A satisfying RL = L — Vi on A, so that the restriction P4 of P to A satisfies the modulated
drift condition Dy, (L, Vp,,) as stated in Assertion 2. of Proposition 5.13.

Conversely assume that P satisfies Assertion 2. Then, proceeding as in the proof of
Corollary 4.5, we know that P4 satisfies on A the minorization condition (M, ,,) where
vy is the restriction of the minorizing measure v to A. Thus it follows from Assertion (vi)
of Theorem 5.4 applied to P4 under Condition (M, y,) and Dy, (L,Vp ,) that the unique
Pj—invariant probability measure, say 74, is such that m4(Vp,,) < co. Using the fact that 7y
is the unique P— invariant probability measure, we then obtained that w4 is the restriction
of mp to A and that mx(Vp) = ma(Vp,,) < oo since A is P—absorbing and 7p—full. O

5.5 Bibliographic comments

Condition Dy, (Vp, V1) (or Di4(Vp, V1)) is the so-called Vi-modulated drift condition, e.g. see
Condition (V3) in | , p- 343]. Although the functions Vy, Vi in Dy, (Vp, V1) satisfy Vo > V3
in general, this condition is not useful in this section. Such drift conditions was first introduced
for infinite stochastic matrices in [ | to study the return times to a set, see | , p- 198]
and [ , p- 96, 164, 337] for an historical background on this subject. Lemma 5.3 and
its direct use to obtain Theorem 5.4 (via Lemma 5.5) were presented in [ ]. Again note
that the non-negativity of the residual kernel R plays a crucial role in Theorem 5.4 since the
point-wise convergence of the series in (54a) is simply obtained bounding the partial sums
(see (56)).

Under the Vj—modulated drift condition D4 (Vp, Vi) w.r.t. some petite set S € X, the
existence of a solution £ € By, to Poisson’s equation (I — P)§{ = g was proved in | )
Th. 2.3] for every mp—centred function g € By, , together with the bound ||£]|v;, < ¢ ||g]|v; for
some positive constant ¢y (independent of g). When S is an atom, the solution ¢ in | ,
Th. 2.3] can be expressed in terms of the first hitting time in S, and the non-atomic case is
solved via the splitting method. Under the irreducibility and aperiodicity conditions, Glynn-
Meyn’s theorem is related to point-wise convergence of the series Zgﬁg Pkg, see | ,
Th. 14.0.1]. With regard to the above two representations of solutions to Poisson’s equation,
the reader may consult the recent article | ]. We point out that the constant ¢g in | ,
Th. 2.3] is unknown in general, excepted in atomic case: see | , Prop. 1] for a discrete
state-space X. Thus, the novelty of Theorem 5.6 and Corollary 5.7 already proved in | ]
is to provide a simple and explicit bound in Poisson’s equation in the non-atomic case.

Let us briefly discuss the Central Limit Theorem (C.L.T.), which is a standard topic where
Poisson’s equation is useful. If (X,,),ecn is a Markov chain with state space X and invariant
distribution 7, then a measurable m—centred real-valued function g on X is said to satisfy the
C.L.T. under I, for some initial probability measure 7 (i.e. 7 is the probability distribution

45



of Xy) when the asymptotic distribution of n=/25,,(g) with S,(g) = ZZ;(% 9(Xk) is the
Gaussian distribution N(0, 0’3) for some positive constant 03, called the asymptotic variance
of g. We refer to | , Chap. 21] for a nice and comprehensive account on the Markovian
C.L.T. and the classical approach via Poisson’s equation. Here, in link with Corollary 5.7,
we just recall the following classical C.L.T. proved in [ ] for Markov chains satisfying a

modulated drift condition:

Glynn-Meyn’s C.L.T. | |- If the transition kernel P of the Markov chain
(Xn)nen satisfies Conditions (M, )-Dy(Vo, Vi) with Vi < Vo, mr(VE) < oo, and
if n is any initial probability measure, then every mr—centred function g € By, satisfies
the C.L.T. under P,, with asymptotic variance given by 03 = 27mx(99) — 7r(g?), where
g € By, is the solution to Poisson’s equation (I — P)g = g provided by Corollary 5.7.

The condition 7(VZ) < oo is required for the function g to be square mz—integrable in
order to apply the Markovian C.L.T. | , Th. 21.2.5] under P, where 73 is the
unique P—invariant probability measure from Theorem 5.4. The extension to any initial
probability measure follows from | , Cor. 21.1.6] since P is Harris recurrent under
the assumptions of Corollary 5.7 from Theorem 5.4. Note that the asymptotic variance 02
can be upper bounded using the bound (61) (see [ , Cor. 2.7]).

To conclude this section let us make a few additional comments on the modulated drift
condition, which is the main assumption of this work together with the minorization condition.
If (X,)n>0 is @ Markov chain with state space X and transition kernel P, then the modulated
drift condition has the following form when the modulated function V; is constant and ¢ = 1y,
for some s > 0 where Vs = {z € X : Vj(z) < s} is the level set of order s w.r.t. the function Vj:

sup B, [Vo(X1)] <oo and Ja >0, Vo € X\ V,, E;[Vo(X1)] < Vo(z) —a. (64)
$€Vs

The second condition in (64) means that, for any r > s, each point x € X such that Vy(z) = r
transits in mean to a point of the level set V,_,. For a random walk on N, it means that, for
i large enough, the steps of the walker starting from ¢ are in mean strictly more to the left
than to the right, the gap being controlled by a fixed additive constant a > 0. Recall that
the weaker drift condition (52) was introduced in Proposition 4.17 to obtain lim;, RF1x = 0.
The additive reduction by the positive constant a in (64) is the sole difference with (52),
but it is crucial for obtaining the convergence of the series ZZ‘;’E RF1x in Theorem 5.4. The
general modulated drift condition D, (Vp, V1) corresponds to (64) with a positive term Vi (z)
depending on x instead of the positive constant a.

Under the minorization condition (M, ), Propositions 3.14 and 5.12 show that, if P is
irreducible and admits an invariant probability measure 7, then P satisfies a modulated drift
condition with Vj(z) = 1 on some absorbing and 7—full set. Hence modulated drift condi-
tion is a perfectly natural assumption. In the discrete state space, any irreducible discrete
Markov kernel P admitting an invariant probability measure 7 satisfies all the conclusions of
Theorems 5.4, 5.6 and Corollary 5.7. Indeed S = {x} for some state x may be chosen such
that 7(1(;) > 0, and S = {x} is obviously a first-order small-set. We have m = 75 from
Proposition 3.14. Next, it follows from Proposition 5.12 that P satisfies all the conclusions
of Theorem 5.4 on a P—absorbing and w—full set A € X. In fact we have A = X here:
Indeed, otherwise any x € A would satisfy P"(x, A°) = 0 for every n > 1 with A¢ # (), which
contradicts the irreducibility condition (i.e. the communication property between any two
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states, e.g. see [ , p. 78]). Various examples of discrete Markov models are presented
in | , , ]. In fact, many of the above conclusions are milestones in Markov
theory. In particular, Forster’s criterion as a necessary and sufficient condition of existence of
a P—invariant probability measure (or for positive recurrence) for irreducible Markov kernels,
is nothing else that a 1—modulated drift condition. This explains why the minorization and
drift conditions are so popular for studying Markov models.

Note, however, that Proposition 5.12, as well as Proposition 5.11, are only of theoretical
interest. In practice the form of the Markov kernel P is directly taken into account to find
explicit functions Vy and V; satisfying Condition D, (Vo, Vi). Finally, as shown for instance
for random walks on the half line in | ], recall that the condition 7z(Vp) < oo is not
automatically fulfilled under Condition D (Vp, V1). In fact, as proved in Proposition 5.13,
this additional condition 7z(Vp) < oo is closely related to an extra Vp—modulated drift
condition.

6 V —geometric ergodicity

Let V : X —[1, +00) be measurable. Recall that the V —geometric drift condition for P is
e B, 36 €(0,1), b€ (0,+00): PV <6V +b2 (Gy(0,V))
and that this condition provides the modulated drift Condition D, (Vp, V1) with
VW:=V/(1-9¢), Vi:=V and by:=0b/(1-9) (65)

(see Example 5.2). From now on, let us assume that P satisfies the first-order minorization
condition (M, ) and the geometric drift condition G (d,V). It follows from Theorem 5.4
and Condition Dy, (Vp, V1) with Vp, Vi and by given in (65) that the residual kernel R = R,
given in (13) fulfils the following properties

+o00 +o0
1+d b—v(V
0 < ZRklx < ZR’“Vﬁ + OV with do :zmax(() IM) (66a)
k=0

k=0 1-0 "v(lx)(1 - 9)
+oo 00
0< > v(RF1x) < +Zu(}z’fv) < W < o0, (66b)
k=0 k=0

so that h® = 0 and 75 := pr(lx) ‘us (see (26)) is the unique P—invariant probability
measure on (X, X'). Moreover we have from Conclusions (iii) and (vi) of Theorem 5.4 that

pr() =1 and wgp(V) = mr(V1) < oo. (67)

Below a direct application of Theorem 5.6 and Corollary 5.7 for Poisson’s equation pro-
vides Corollary 6.1. Then, assuming further the aperiodicity condition (39), the so-called
V —geometric ergodicity is obtained in Subsection 6.2 using elementary spectral theory.

6.1 Poisson’s equation under the geometric drift condition

Corollary 6.1 Let P satisfy Conditions (M, )-Gy(6,V) and R = R,y be the associated
residual kernel given in (13). Then:
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1. For any g € By, the function series g := Z;ZOB RFg absolutely converges on X (point-wise
convergence). Moreover we have g € By and

- 1+ dy , b—v(V)
< —_— = _——
llgllv < T3 lgllv  with dp := max (0, )1 = 0) (68)

where §,b are the constants given in Gy (5,V).

2. For every g € By such that mz(g) = 0, the function g := g — wr(g)1x is the unique
mr—centered function in By solution to Poisson’s equation (I — P)g = g, and we have

(1+do) (1 +7r(V))
1-90

19l < lgllv- (69)

For the sake of simplicity this statement is directly deduced below from Theorem 5.6 and
Corollary 5.7. A self-contained proof of Corollary 6.1 could be also developed starting from
(66a) and mimicking the proofs of Theorem 5.6 and Corollary 5.7.

Proof. Using the modulated drift condition D, (Vp, V1) with Vo, Vi, by given in (65), it follows
from Assertion 1. of Theorem 5.6 that

Vg€ By, Gl < (1+do)lgly with do ::max(o

b—v(V) )
v(1x)(1 - 9)

from which we deduce (68) since || - ||y, = (1 — )| - |- Now, apply Corollary 5.7 to prove
Assertion 2. First note that mz(Vy) < oo since Vo = V/(1—0) and 7z (V') < oo (see (67)). Next
we know from Corollary 5.7 that § = g — mx(g)1x is a mz—centered function in By solution
to Poisson’s equation (I — P)g = g. Moreover observe that 7z (V0) ||1x|lv, = m=(V) [|1x]|v <
mr(V). From the first inequality in (62) and again || - ||y, = (1 —0)|| - ||, we obtained that

g1y < 1+ 7=(V)) lIgllv

from which we deduce (69) using (68).

Finally it follows from Condition G (9, V') that PV/V is bounded on X, i.e. PBy C By,
since the small-function ¢ is bounded and 1x < V. Then Assertion (viii) of Theorem 5.4
ensures that By := {g € By : Pg = g} =R 1x. Hence two solutions to Poisson’s equation in
By differ from an additive constant. Consequently ¢ is the unique 7z—centered function in
By solution to Poisson’s equation (I — P)g = g. O

6.2 V—geometric ergodicity

Recall that, under Conditions (M, )-Gy (6, V), we have hyy = 0, so that the aperiodic-
ity condition (39) corresponds to the case d = 1 in Theorem 4.14. Now, under Condi-
tions (M, )-Gy(0, V) and (39), the so-called V —geometric ergodicity of P is proved. The
proof is based on Inequalities (66a)—(66b), Corollary 6.1 and elementary spectral theory. This
requires to extend the definition of By to complex-valued functions, that is: For every mea-
surable function g : X = C, set ||g||v := sup,cx |9(x)|/V (x) € [0,4+00] where | - | stands here
for the modulus in C, and let us define

By (C) := {g : X— C, measurable such that ||g|ly < oo}.
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Note that, under Condition Gy (6,V), P defines a bounded linear operator on By . Since
every function g in By (C) writes as g = g1 + iga with g1, g2 € By, Pg is simply defined by
Pg = Pg1+1Pgs, so that P obviously defines a bounded linear operator on the Banach space
By (C), |l - [lv) too.

Theorem 6.2 Assume that P satisfies Conditions (M, ;)-Gy(0,V) and is aperiodic (see
(39)). Then P is V —geometrically ergodic, that is

dp € (0,1), 3¢, >0, Vg € Bv(C), Vn > 1, |[P"g — mr(g)xllv < ¢pp"[lgllv- (70)

Note that the geometric rate of convergence in the case of uniform ergodicity (see Exam-
ple 3.7) corresponds to the 1x—geometric ergodicity.

Let g € By be such that mx(g) = 0. It follows from Property (70) that

+o0
Y 1Pl < et =) lgllv < oc.
k=0

Consequently the function series g := 370 P*g absolutely converges in (By, || - ||v/) and

lallv < et = o) lgllv-

Note that g is mz—centred and satisfies Poisson’s equation (I — P)g = g, so that g equals to
the function g of Corollary 6.1. Inequality (69) then provides the following alternative bound:

jally < LED 2Ty

Now, the needed prerequisites in spectral theory are listed. Let L be a bounded linear
operator on a Banach space (L, || - ||):

(S1) The spectrum o(L) of L: o(L) := {z € C: zI — L is not invertible} where I denotes
the identity map on L. Recall that o(L) is a compact subset of C.

(S2) The operator-norm of L, still denoted by ||L||: ||L| :=sup{||Lf]| : f € L, | f]| < 1}.

(S3) The spectral radius r(L) of L: r(L) := max{|z|: z € o(L)},
and Gelfand’s formula: (L) = lim,, ||L™||*/™.

Under the assumptions of Theorem 6.2, Lemmas 6.3-6.4 below show that, for any z € C
such that |z| =1 and z # 1, the bounded linear operator zI — P on By (C) is invertible.

Lemma 6.3 If P satisfies Conditions (M, ,)-G (6, V') and is aperiodic, then for any z € C
such that |z| =1 and z # 1 the bounded linear operator zI — P on By (C) is one-to-one.

Proof. Let z € C be such that |z| = 1 and assume that zI — P on By (C) is not one-to-one,
that is: there exists g € By (C), g # 0, such that (21 — P)g = 0. Below this is proved to be
only possible for z = 1, which provides the desired result. Let g € By (C), g # 0, be such
that (21 — P)g = 0. Since P, thus R, defines a bounded linear operator on the Banach space
(By(C), ] - lv), Equality (44) of Lemma 4.15 can be proved similarly, that is we have:

Y, > 0, I/(g) Z z—(k’-i-l)Rk’w =g— Z_(n+1)Rn+1g.
k=0
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Moreover we know from Assertion 1. of Corollary 6.1 that the series g := Z;ﬁg RFg point-wise
converges on X, thus: limg RFg = 0 (point- -wise convergence). Hence we have g = v(g )Jz,
with ¢, = Z+°° z~ (k1) Rky. Recall that 1/12 is bounded on X from Proposition 3.4. Thus
g is bounded on X so that z is an eigenvalue of P on B(C) and p(z) = 1 from Lemma 4.15,
where p(-) is defined (38). Since the aperiodicity condition corresponds to the case d =1 in
Theorem 4.14, it follows that z = 1 from Assertion (a) of Theorem 4.14. g

Lemma 6.4 If P satisfies Conditions (M, )-G(6, V) and is aperiodic, then for every z €
C such that |z| =1 and z # 1 the bounded linear operator zI — P on By (C) is surjective.

Proof. Let z € C be such that |z| =1 and g € By. Define
n

Using P = R + ¥ ® v we obtain that
Zﬁn,z - Pgn,z = Zgn,z - Rgn,z - V(gn,z)w =g — Z_(n+1)Rn+lg - V(ﬁn,z)'(z}- (71)

Moreover we have
400
11111 Onz =Gz = Z z— (1) Rk g (point-wise convergence)
n—
k=0

with g, € By(C) since

+00 +oo
> 1z FHIRNg < lgllv Y RFV <V with e= (1+do)(1—6)"
k=0 k=0
from the second inequality in (66a). Also note that, for any = € X, we have (PV)(z) < oo

from Condition D (Vp, V1), and that |g, .| < ¢V. It then follows from Lebesgue’s theorem
w.r.t. the probability measure P(z,dy) that lim,(Pg, .)(z) = (Pg;)(x). Finally we have

n

= [ —(k+1) k (k+1) K
L m v(gn,z) ngrgook_oz v(R%g ZZ v(R%g)

since the last series converges from |z~ *+tDy(R¥Fg)| < ||g||y ¥(R*V) and (66b). Then, when n
growths to +oc in Equality (71) (point-wise convergence on X), we obtain that (21 — P)g, =

g — 1=(g)¥. With g := ¢ this provides (21 — P)¢. = (1 — p-(¢))1 with

—+00 —+00

Yo=Y 2 FIREY € By(C) and  p(¢p) =Y 2 FHIu(REp) = p(z7")

k=0 k=0

where p(-) is defined (38). Since z # 1 and d = 1 (aperiodicity condition), we know from
Assertion (a) of Theorem 4.14 that p(z~!) # 1. Thus

- fo s 4955 -

from which we deduce that zI — P is surjective. O
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Proof of Theorem 6.2. Recall that (V) < oo under the assumptions of Theorem 6.2 (see
(67)). Thus 7 defines a bounded linear form on By (C), so that By := {g € By (C) : mr(g9) =
0} is a closed subspace of By (C). Note that By is P—stable (i.e. P(By) C Bp) from the
P—invariance of 7. Let Py be the restriction of P to By. Assertion 2. of Corollary 6.1 shows
that I — Py is invertible on By. Next let 2 € C be such that |z| = 1, z # 1. It follows
from Lemma 6.3 that zI — Py is one-to-one. Now, let g € By. From Lemma 6.4 there exists
h € By (C) such that (2 — P)h = g. We have (z — 1)mz(h) = mr(g) = 0, thus mz(h) = 0
(i.e. h € By) since z # 1. Hence zI — Py is surjective.

We have proved that, for every z € C such that |z| = 1, the bounded linear operator
zI — Py is invertible on By. Let r(P) denote the spectral radius of P on By (C). Recall
that r(P) = lim,, (]| P"||v)"/™ from Gelfand’s formula, where || - ||}, denotes here the operator
norm on By (C). We know that r(P) < 1 from Lemma 5.10 (in fact we have r(P) = 1 since
Plx = 1x). Hence the spectral radius ro = r(Py) of Py on By is less than one too. In fact
we have 79 < 1 since the spectrum o(Fp) of Py is a compact subset of C which, according to
the above, is contained in the unit disk of C and does not contain any complex number of
modulus one.

Let p € (ro,1). Since 1 = lim,(][P¢lo)"/™ from Gelfand’s formula where || - [|o denotes
the operator norm on By, there exists a positive constant ¢, such that: ||Pj[lo < ¢, p". Thus

Vn > 1, Vg € By(C), [|[P"g = mr(9)1xllv = [P"(9 — 7r(9)1x)|lv (from P"1x = Ix)
= ||Pg'(g — mr(9)1x)|lv (since g — mr(g)1x € Bo)
< ¢, p" lg — mr(9)1x|lv
< cp(L+7R(V)) p" [lgllv (72)
from triangular inequality and 7z (|g]) < 7x(V)||g|lyv. This proves (70). O

6.3 Bibliographic comments

A detailed and comprehensive history of geometric ergodicity, from the pioneering papers
[ , , | to modern works, can be found in [ , Sec. 15.6, 16.6], see also
[ , Sec. 15.5]. Theorem 6.2 corresponds to the statement | , Th. 16.1.2] and
[ , Th. 15.2.4], except that it is stated here with a first-order small-function instead
of a petite set. The proof in | , ] is based on renewal theory and Nummelin’s
splitting construction. Alternative proofs of V' —geometric ergodicity can be found in [ ]
based on coupling arguments, in [ | based on renewal theory, in [ | based on an
elegant idea using Wasserstein distance, in the recent paper | ] based on the dual version
of the geometric drift inequality, and finally in [ , , , | based on spectral
theory (quasi-compactness) whose first founding ideas are already present in | ]. Note
that the use of Wasserstein distance in | | requires the condition 7x(1g) > 1/2 on the
set S'in (M, 14). We refer to the recent paper | ] where 27 conditions for geometric
ergodicity are discussed.

Since the pioneer work [ | much effort has been made to find explicit constant ¢
and rate of convergence p in Inequality (70). Under Assumptions (M, ;)-Gy(6,V) and
the strong aperiodicity condition, such an issue is fully addressed in | | via renewal
theory. Alternative computable upper bounds of the rate of convergence p can be found
in | , , , | using splitting or coupling methods, and in | , ]
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using spectral theory. We refer to | | for a recent review on various methods for deriving
convergence bounds for MCMC. Recall that any methods based on Hairer and Mattinglsy’s
result [ | are faced to the condition mz(1g) > 1/2 for the small-set S. Surprisingly, extra
conditions on 7g(lg) appear in others works related to geometric or polynomial rates of
convergence. For example the first part in the proof of | , Th. 9] provides a quantitative
control on V —geometric rate of convergence under some additional condition on the data
in Assumptions (M, 14)-G14(6,V): this condition actually requires that 7z(1g) is bounded
from below by some explicit positive constant. Without this extra condition, the convergence
rate in | , Th. 9] is no longer quantitative. Finally recall that converting bounds on
Wasserstein’s distance into (weighted) total variation bounds are generally based on | ,
Th. 12] which requires that the probability measures P(z,dy) have a density with respect to
some reference measure (see also | ).

In Section 8 the geometric rate of convergence of the iterates of P is addressed. A theo-
retical result for P acting on a general Banach space B is provided, and then apply to the
cases B := By and B := L%(r;) under Conditions (M, )-Gy(8, V). This result depends
on the spectral radius 74 of R on B and on the possible solutions to Equation p(z71) = 1
in the complex annulus {z € C : ry < |z| < 1}, where p(-) is the power series introduced in
(38).

Poisson’s equation for V-geometrically ergodic Markov models is classically studied start-
ing from Inequality (70), which ensures that, for every g € By such that mz(g) = 0, the
function g := z;xé Pkg in By is the unique mp—centred solution to Poisson’s equation
(I — P)g = g. A quite different development is proposed in this section: Indeed Pois-
son’s equation is first solved in Corollary 6.1 as a by-product of the modulated drift Condi-
tion Dy (Vp, Vi) (see (65)). Next this study is used for proving the V —geometric ergodicity:
Indeed note that this prior study of Poisson’s equation plays a crucial role at the beginning
of the proof of Theorem 6.2 and that the convergent series in (66a)-(66b) are repeatedly used
in the proof of Lemmas 6.3-6.4. A standard use of Poisson’s equation is to prove a central
limit theorem (C.L.T.). Let P be a Markov kernel satisfying Conditions (M, ) and the
V —geometric drift condition G, (9, V). Then P satisfies Condition D, (Vp, V1) with Vo, Vi, bo
given in (65). Consequently, if 7(V?) < oo, then the conclusions of Glynn-Meyn’s C.L.T.,
recalled page 46, hold true (note that By, = By here). Mention that the residual kernel
R and its iterates have been considered in | ] to investigate the eigenvectors belonging
to the dominated eigenvalue of the Laplace kernels associated with V —geometrically ergodic
Markov kernel P. This issue called "multiplicative Poisson equation” in [ ] is used to
prove limit theorems for the underlying Markov chain (also see | ). This question is
not addressed in our work.

In this section, the key idea is to apply Theorem 5.4 under the modulated drift Condi-
tion Dy, (Vp, V1) provided by the geometric drift condition G (d,V). Recall that the main
argument for Theorem 5.4 is the residual-type drift inequality introduced in Subsection 5.2.
The alternative residual-type drift inequality RV < §* V¢ for some suitable a € (0, 1] has

been introduced in [ | under Conditions (M, 14)-G14(5,V). This drift inequality can
be used to study the geometric ergodicity w.r.t. the Lyapunov function V¢: This issue is
presented in [ | and revisited in Section 8. Let us simply mention here that the drift

inequality RV® < §“V® implies that the spectral radius of R on By« (C) is less than 0%, so
that a simple bound for the V*—weighted norm of solutions to Poisson’s equation can be
obtained using the function series g of Corollary 6.1. This bound detailed in | | involves
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the constant (1—8%)~!, which is large when the drift inequality RV < §* V¢ is only satisfied
for « close to zero. In such a case, the bounds (68) and (69) for the V —weighted norm of
solutions to Poisson’s equation may be more relevant.

7 Perturbation results

The main objective of this section is the control of the deviation between the invariant
probability measure of a reference Markov kernel and the invariant probability measure of
some Markov kernel which is thought of as a perturbation of the reference one. Thus the
bounds on the gap on the invariant probability measures are expected to be expressed in
function of that on the Markov kernels. To be consistent, such a bound must converge to
0 when the perturbed kernel converges (in some sense) to the reference one. Throughout
this section, the reference Markov kernel is assumed to satisfy the first-order minorization
condition (M, ) and the V;—modulated drift condition Dy, (Vp, V1). The control of the gap
on the invariant probability measures is in norm [ - ||}, and || - [[7v (see (8)). The basic tools
are: First the fact that, for two Markov kernels P and K with respective invariant probability
measures 7 and k, we have

Vg € By, H(g) - 71-(g) = K‘((K - P)g)

where the function £ is any solution to Poisson’s equation (I — P){ = g — m(g)1x; Second
the control of the solution to Poisson’s equation provided by Theorem 5.6. Recall that any
Markov kernel satisfying both minorization and modulated drift conditions has a unique
invariant probability measure (see the introducing part of Section 5 for a list of properties
satisfied by such a Markov kernel).

7.1 Main results

First, let us present a statement based on Theorem 5.6 on Poisson’s equation. It gives an
estimate in norm || - [|1, and |- ||y of the gap between the invariant probability of a Markov
kernel P satisfying Conditions (M, )-Dy(Vo, V1) and the invariant probability measure
of any Markov kernel K on (X, X) satisfying ||KVo|ly, < oo and k(Vh) < oc.

Proposition 7.1 Assume that P satisfies Conditions (M, ;)—D.;(Vo, V1), with P—invariant
probability measure denoted by 7. Let K be a Markov kernel on (X, X) with (any) invariant
probability measure K such that | KVy|lv, < oo and k(Vp) < co. Assume that the non-negative
function Ay, defined on X by

VzeX, Ay(@):=|P(z,) - K=,y
is X —measurable. Then
I = 7lly; < (1+do)(1+ 7(V1)[[1xlv,) k(Avy) (73)
where dy := max(0, (bg — v(Vp))/v(1x)) and (V1) < oo.

The function Ay, on X quantifying the gap between the two Markov kernels is assumed to
be X —measurable in Proposition 7.1. In the other statements of this subsection (Proposi-
tion 7.2, Theorem 7.3), such a measurability assumption on the corresponding “gap function”
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is also introduced. It turns out that, when X is countably generated, the “gap function” is
X —measurable. We refer to Subsection 7.4 for some details.

Proof. Recall that ||[PVylly, < oo from Dy (Vy, V1), so that Ay, and x(Ay,) are well-defined
under the assumptions of Proposition 7.1.
Let g € By, be such that ||g||y, < 1. Since (V1) < oo from Assertion (vi) of Theorem 5.4,

m(g) is well-defined. Introduce gy := g — m(g)1x and the residual kernel R := P — ¢ @ v. Let
go := Y129 R¥ gy be the function in By, provided by Therorem 5.6. Then we have

K((K = P)go) = r(go) — £(go — 90) = K(g0) = r(g) — 7(9) (74)

using the K —invariance of k, the Poisson equation (I — P)gy = go from Theorem 5.6, and
finally the definition of gg. It follows from the definition of the X —measurable function Ay
that

k() —7(9)] S/X\(K%)(w)—(P%)(w)\ﬂ(dw) < IIQBIIVO/XAVO(J?) r(dz) = [|g0llvo (Avp)-

Finally we know from Theorem 5.6 that ||g]|v, < (1 + do)l|gol|v; with do defined in (57), so
that
190llve < (L+do) llg — m(9)xlvi < (1+do)(L+ m(V1)1xllvz)
from which we deduce (73). O
Now let {Py}gco be a family of transition kernels on (X, X'), where © is an open subset of
some metric space. Let us fix some 6y € ©. The family {FPy,0 € © \ {0y} } must be thought
of as a family of transition kernels which are perturbations of Py, and which converges (in

a certain sense) to Py, when 6 — 6y. To that effect, when Py, satisfies Conditions (M, )
D, (Vp, V1) and || PyVo||v, < oo for any 8 € © \ {6y}, we can define

VO € O, Vr € X, A97VO(SU) = ||P90($, ) — P@(x, )H/Vo (75)
As a direct consequence of Proposition 7.1, we obtain the following perturbation result.

Proposition 7.2 Assume that the Markov kernel Py, satisfies Conditions (M, )-Dy(Vo, V1),
and let mp, be the Py,—invariant probability measure. Suppose that, for every 8 € ©\ {6y},
we have ||PyVpllv, < oo and that there exists a Py—invariant probability measure mg such
that mg(Vp) < oo. Finally assume that the non-negative function Agy, defined in (75) is
X —measurable for any 0 € ©. Then we have the two following bounds

|mo — mo,llv, < (1+do) co, mo(Do,vp) (76a)
mg — moollTv < 2(1 +do) me(Da,vp) (76b)

with dy := max (0, (by — v(V0))/v(1x)) and cgy := 1 + m, (V1) || 1x vy < o0. If mg, (Vo) < o0
then Coy < 1+ bOH1X||V1-

Proof. Under these assumptions, the bound in (76a) directly follows from Proposition 7.1
applied to (P, K) := (Py,, Py) with 0 # 6y. If m,(Vo) < oo then cg, < 1+ bo||1x]lv, from
Assertion (vii) of Theorem 5.4.

When Condition Dy, (Vp, V1) is satisfied, so is Condition Dy, (Vp, 1x) since Vi > 1x. Thus,
the bound (76a) also holds with V; := 1x and then provides the control of the total variation
error since ||y — mg,[lTv = [|mg — 7g, ||7,- Then, using mg,(1x) = 1, [[1x|l1, = 1, so that
cg, = 2, we obtain the estimate for ||my — my,||Tv in (76b). O
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Note that the bounds in (76a)—(76b) are of interest only when the term mg(Ag ;) is com-
putable and can be proved to converge to 0 when 6 — 6y. Now, the objective is to pro-
pose fair assumptions under which the convergence of the deviation between 7y and g, to
zero can be derived from the following natural condition of closeness between Py and Fjp,:
limg _, g, Ag,vp () = 0 for any = € X. A way is to reinforce the knowledge on the Markov
kernel Py for 6 # 6p. It turns out that, in many perturbation problems, not only does Py,
satisfies minorization and modulated drift conditions, but so all other transition kernels in the
family {Pp}gco. Such instances are provided by the standard perturbation schemes of Sub-
section 7.3. Thus, let us introduce the following minorization and modulated drift conditions
w.r.t. the family {Py}gco: for every § € ©

Ty € Bj_, dyy € Mj—,bv Py > Yy ® vy, (Mp)
and there exists a couple (Vp, V1) of Lyapunov functions such that, for every € ©
Jbg >0, PyVo < Vo — Vi + by . (Dg(Vo, V1))

Under Condition Dg(Vp, V1), we have PyVy < (1 + by)Vj so that the function Agy, defined
in (75) is well-defined for any § € ©. Finally, under the additional conditions supycg by < 00
and infgeo vg(1x) > 0, let us introduce the following positive constant

by — V@(Vo))
d:=max (0,sup —— | . 77
( veo  vo(1x) (77)

In Theorem 7.3 below, each Markov kernel Py is assumed to satisfy Conditions (Mpg)—
Dy (Vy,V1). Thus the Py—invariant probability measure denoted by 7y in these two state-
ments is given by (26) with v := vy and Ry := Py — 1y @ vp.

Theorem 7.3 Assume that, for every 6 € ©, Py satisfies Conditions (Mg)-Dg(Vp, V1) and
that b := supycg by < 0o and infoce vg(1x) > 0. For any 0 € O, the Py—invariant probability
measure my is assumed to satisfy mo(Vy) < oo. Finally, the non-negative function Agy,
defined in (75) is assumed to be X —measurable.

Then we have

Vo € O, ”71'90 —7'('9”/‘/1 < (1+d) min {690 F@(AQ’VO)7 CQWQO(AQVO)} (78&)
I — moollTv < 2(1+d) min {mp(Ag,1;) . oo (Do,v) (78b)

with d defined in (77) and with
co =1+ m(V1)[1x[vy <1+ 1xlv;. (79)

Moreover, if the following convergence holds

Ve € X| lim Agyo (:E) =0, (AVO)
9*)90

then we have
. / .
915%0 g — 7oolly, =0 and 915%0 7o — 7o, |ITv = 0.
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Proof. Let 0 € ©. Recall that || PyVp||v, < oo from Dg(Vp, V7). It is assumed that mp(Vp) < 0o
and that the function Agy;, is X'—measurable. Thus Proposition 7.1 can be applied to
(P, K) := (Py,, Pp) and to (P, K) := (Fy, Py,), which provides Inequality (78a). The bounds
in (78b) are derived from (78a) as in Proposition 7.2. The assumption 7y(V)) < oo allows us to
obtain as in Proposition 7.2 that cg < 1+4by||1x||v;. Thus (79) holds with b := supycg by < 0.

Next, we have

lim g, (Agy,) = eli_%o /X Ag v, (z)m, (dz) =0 (80)

9—)90

from Lebesgue’s theorem using Agy, < 2(1 + b)Vo, mp, (Vo) < oo and Assumption (Avyy).
Then we obtain that limg_, ¢, |9 — m)OH’Vl = 0 and limg_, ¢, |79 — 7, ||Tv = O from the
second bound in (78a)-(78b) and from the inequality (79). O

Let us stress that, in our perturbation context, mg, is (generally) unknown and my is
is expected to be known, so my(Agy;) to be computable. Thus, the bounds of interest in
(78a)-(78b) are the following ones

|mo — moolly, < (L4 d) oy mo(Dovp) < (14 d)(1+ bol[1xlvy) mo(Agvp)
7o — 7o llTv < 2(1 +d) m(Aa,vp)-

The convergence of my,(Agy;,) to 0 when § — 6y in (80) is of theoretical interest here. It is
used to prove that limg_, ¢, ||mg — 7, ||§/1 = limg ¢, ||m9 — 7o, ||Tv = 0 in Theorem 7.3.

7.2 Examples

Let us illustrate the results of Theorem 7.3 through the two following examples where the
set of parameters © is assumed to be some open metric space.

Example 7.4 (Geometric drift conditions) In the perturbation context, under Condi-
tion (Mpg) for any 6 € ©, the standard geometric drift conditions for some Lyapunov function
V' are the following ones (see Gy(6,V)):

VO € ©, 35p € (0,1), ACy) > 0, PV < 09V + Cy1y. (81)

Moreover suppose that C' := supycg Cp < 00 and 0 := supycg g € (0,1). Since PV <
0V 4+ Cy for any 6 € ©, we know from Example 5.2 that

VOO, PyVo<Vo—Vi+biy

with Vo :==V/(1=9), Vi :==V and b := C/(1 =), that is Condition Dg(Vy, V1) is satisfied
for any 0 € ©. Thus, we know from Theorem 5.4 that the unique Py—invariant probability
mp 15 such that mp(V1) = me(V) < oo for any 6 € ©. Let Oy € O be fized. Assume that the
non-negative function Agy, is X—measurable for any 0 € ©. Finally if infpce vg(1x) > 0
where vy € M, is given in (Mp), then the familly {Py}oco satisfies the assumptions of
Theorem 7.3 which provides a control of ||mg — mg, ||}, and ||mg — g, ||Tv. Finally, we have
limg _, g, ||m0 — 7o, ||, = 0 and limg_, g, |79 — mg, ||Tv = 0, provided that Condition (Ay) is
satisfied.
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Example 7.5 (Random walk on the half line) For any 0 € O, let us consider the ran-
dom walk {XT(LQ)}%N on the half line X := [0, +00) given by

Xée) eX and VYn >1, X,(f) ‘= max (O,X(e)

n—1

+ 5519)) (82)

where {5%9)}721 is a sequence of independent and identically distributed R-valued random

()

variables assumed to be independent of XOG and to have a parametric probability density
function pg w.r.t. the Lebesgue measure on R. The transition kernel associated with {Xg}neN
s given by

—x +00
VreX VA, P d) =10 [ wwd+ [ LaGrnmd. (63

—0o0 —x

Next define the following Lyapunov functions on X:
VeeX, Wi(z)=00+z)?2 Vi@)=1+z and Vi(z)=1.

Assume that

+oo
my = supIE“sge)\Q] < oo and Fxg >0, sup/ ypo(y)dy < 0. (84)
0cO 00 J—x
Let 0y € © be fired. Here the state space is X := [0,4+00) equipped with its Borel

o—algebra X which is countably generated. Therefore for any Lyapunov function on X, say
V, for any § € ©, the non-negative function on X, x — Agy(z) = || Py(x, ) — Py (z, )|}/, is
X —measurable. Next, we have for every x € X

—x

“+o0o
p@<y>dy+/ (Lt +y)paly) dy — (1+2)

—00 —x

— _gg/_mpg(y)der/mype(y)dy

—00 —x

(PaVp)(x) = Vo (x)

+0o0
< / ype(y) dy. (85)

—T

Let us introduce from (84)

+o00
cp = —sup/ yPpo(y)dy > 0.
0€e® J —xq

Then we obtain from (84) and (85)

Ve > o, (PaVp)(x) — V() < —cpVa(x)
and Vx € [0,10], (PpVy)(z) — Vy(z) + cpVi(x) < /ma + cpVi(x) = /ma + ¢,

that is
PyVy < Vg — cpVi+ (¢t + v/m2) 1o 2] (86)
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Next, we get in a similar way that, for any x € X,

(PoW')(z) — W'(x)

—x +oo
- p@<y>dy+/ (142 +9)2poly) dy — (1 + 2)°
- :;3 +o0 400
= (- +2?) [ pew)dy+2(1+2) / ypo(y) dy + / v po(y) dy
. —00 . —x —x
< 2(1+2) / ypo(y) dy + / ¥ po(y) dy. (87)

Using the above constants ma, ¢, and xo, we obtain
Vo >z, (PyW')(z) — W (x) < —2¢, V() + ma.

Then it follows from this inequality and from (87) that there exists x1 > 0, which only depends
on ma, ¢y such that

Vz > s:=max(xg,z1), (PW')(z)—W'(z) < —c)Vj(x)
and Yz € [0,s], (PpW')(z) — W'(z) + ¢{ Vo (z) < 2y/ma Vj(x) + mo + ¢,V ()
< (2y/ma + ) (1 + 5) + ma,

that s
PW <W' — 06‘/3 + ((1 + 8)(06 +2y/ma) + mz)l[o’s]. (88a)

Since s > g, we can use in (86) the same compact set [0, s| so that
PyVy < Vg — Vi + (co + vm2) 1o - (88D)

It follows from (88b) that Py, for any 0 € ©, satisfies Condition Dg(Vo, V1) with g := 1) 4,
with Lyapunov functions Vi := 1x and Vy := V§/¢ for ¢ := min(1,c}), and finally with
by 1= suppeg by < (yVma + ¢j)/c’. Set S := [0,s]. Next assume that the following non-
negative function
R := inf inf —
vy €R, ps(y) = inf inf po(y — )

is positive on some open interval of R. Then, for every 6 € ©, Py satisfies Condition (Myg)
with Yy := 1g and vy := v, where v is the positive measure on R defined by

VAEX, u(ly) = /X 1(y) ps(y) dy

(see Proposition 3.1 for details). Note that both 1y and vy do not depend on 6 here. Thus,
for every 6 € ©, Py satisfies Conditions (Mg)—-Dg(Vy, V1) w.r.t. the Lyapunov functions Vj
and Vi defined above, with by := supgeg by < 00 and infpce vp(1x) = v(1x) > 0. Moreover
any Py has a unique invariant probability measure denoted by mg (see Assertion (iv) at the
beginning of Section 5).

To apply Theorem 7.3, it remains to prove that mg(Vy) < oo, for every § € ©. We have
from (88a) that Py satisfies Conditions (Mg)-Dg(W,Vyy) with Sy := S and with Lyapunov
functions Vj(z) =1+ 2z and W (z) = W(z)/c. It follows Assertion (vi) of Theorem 5.4 that
(V) < 00 so that mp(Vp) < oo from Vo = Vy/c.
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Thus, we have proved that Theorem 7.3 applies under Assumptions (84) on the noise

process {5510)}7121. Howewver, for these statements to be relevant, we have to investigate the
function Ag v, and the quantity mo(Ag v, ). To that effect, recall that pg denotes the probability
density function of the noise. Now fix some 6y € © and define

VOO, YycR, po(y):=Ipo(y) —pa,(¥)l,
%:Am@@ WiwmzéMMw@

Note that 69 < 2. Let g € By, be such that |g| < Vi. Then we have

—x +oo
veeX, |(Pog)a)— (Prog)@)| < %@/’pmmw+/ Vole +) po(y) dy

—0o0 —Zx

5o 1
s,+,/u+x+wnmw@
C C R
0, m
< C—f+5gvo(a:)+ 01,’9.

Thus

do(1+ Vo)) +myg

/

VeeX, Apy(x)< .

Therefore Condition (Avy) in Theorem 7.3 holds provided that

Hli—%o (59 + mw) =0.

This is a natural assumption on the noise in our perturbation context, that is: When 6 — 6y,
the distribution of the perturbed noise converges to that of the unperturbed one in total vari-
ation distance, as well as in weighted total variation norm.

Finally we have

(59(1 +c 71'9(V0)) +mig
c '

W0 €O, mo(Doy,) <

Hence the following bound (see (78b))

|9 — o, || Tv < 2(1+d) m9(Dpyyy)  with d := max (O, bo;(f()%)) (89)
X

is of interest, provided that the quantities dg, my g and mg(Vy) are computable for 6 # 0y and
that both g and my g converge to 0 when 6 — 0y.
Note that, for this specific model, it follows from [ , Prop. 3.5] that
Wy € [2,400), E[(max(0,e?))] < oo <= / o[ Ly (dz) < oo
R

Therefore, under Conditions (84), the Lyapunov function Vi is expected to be the greatest
possible one providing Condition Dg(Vy, 1x) with mg(Vp) < oo for any 6 € ©.
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7.3 Application to standard perturbation schemes

In the two following perturbation schemes — the truncation of infinite stochastic matrices and
a state space discretization procedure of non-discrete models — the unperturbed Markov kernel
P := Py, satisfies Conditions (M, 14)-D14(Vo, V1), that is the minorization and modulated
drift conditions for vy, := 1g for some S € &X. Then it turns out that Py satisfies Condi-
tions (M ,14)-D14(Vo, Vi) for any 0 € ©. In this case the conditions b := supycg by < 00
and infpco 19(1x) > 0 of Theorem 7.3 are straightforward. Finally, note that the o—algebra
X associated with the state spaces X involved in this subsection is countably generated. As
previously quoted, it follows that for any 6 € O, the function Agy, quantifying the gap
between perturbed and unperturbed Markov kernels in Theorem 7.3, is X —measurable. We
will therefore no longer refer to this hypothesis here.

7.3.1 Application to truncation-augmentation of discrete Markov kernels

Let P := (P(2,Y))(z,)en> be a Markov kernel on the discrete set X := N. Assume that P
satisfies Conditions (M, 1) and D14 (Vo, V1)

P>1s®v and dbg >0, PV <Vy—Vi+bylg
with S, v and V{ such that:

e S is a finite subset of N and the support Supp(v) of v € MY , is a finite subset of N,

o 1y :=(V(x))zen is an unbounded and non-decreasing sequence with V' (0) > 1.

Thus P has a unique invariant probability measure denoted by .

For any k > 1, let By, := {0,...,k} and By := N\ Bi. Recall that the k-th truncated
and arbitrary augmented matrix Py of the (k+ 1) x (k + 1) north-west corner truncation of
P is defined by

\V/(CL', y) € BkQa Pk(x¢ y) = P(l’, y) + P(l‘, Bkc) ’{m,k({y}) (90)

where k1, is some probability measure on Bj. A linear augmentation corresponds to the case
where r, ), = ki only depends on k. The so-called first or last column linear augmentation
corresponds to the case when ki is the Dirac distribution at 0 and at k respectively. The
goal here is to prove that the P—invariant probability measure m can be approximated by
the Pr—invariant probability measure 7, with an explicit error control in function of the
integer k. Since P is an infinite matrix, first define the following extended Markov kernel ﬁk
of P, on N:

~

V(x,y) S NQ, Pk('rvy) = Pk’(xay)lBkXBc(xay) + 1Bkc><{0}($7y)'

Similarly, if m is a Py—invariant probability measure on By, then we define the extended
probability measure 7, on N by

Ve e N, %k(l{x}) = Wk(l{x}) 1Bk (CL') (91)

The next lemma provides the expected results that 7, is a ﬁk—invariant probability measure,
which is the unique one provided that 7 is the unique Pj—invariant probability measure.
The proof is postponed to Appendix C.
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Lemma 7.6 Let P be a Markov kernel on N, and, for any k > 1, let Py be the stochastic
matriz Py given in (90). If 7y is a Py—invariant probability measure on By, then Ty defined
in (91) is a ﬁk—invariant probability measure on X. If Py has a unique invariant probability
measure, then so is for ]3k

Next, let kg € N be the smallest integer such that
S C By, and Supp(v) C B,. (92)
Let us introduce the following family {FPy}oco of Markov kernels with 6y := +oo
©:={keN:k>k}U{+oc}, Pio:=P, VOc{keN:k>ky}:P:=D,. (93

The next proposition provides assumptions under which the family {Py}gco satisfies all the
assumptions of Theorem 7.3, so that all the conclusions of this theorem hold in the present
truncation context.

Proposition 7.7 Let P satisfy Conditions (M ,14)-D14(Vo, V1) with P—invariant probabil-
ity measure m such that w(Vp) < oco. Then, the family {Pp}toco defined in (93) satisfies all
the assumptions of Theorem 7.3 including (Avy).

The proof of Proposition 7.7 is based on the following Lemmas 7.8-7.9.

Lemma 7.8 If P satisfies the conditions (M, 14)-D14(Vo, V1), then for every integer k > ko,
the Markov kernel Py satisfies the same conditions (M, 14)-D14(Vo,V1). Thus, for any
k > ko, P. and Py have a unique invariant probability measure T and .

Proof. Let k > ky. For every x € S and every A C N we have

ﬁk(‘TvA) > Z ﬁk(l’,y) > Z P(l’,y) = P(x7AmBk) > V(lAﬁBk) - V(lA)
yEANDBy yEANDBy

using successively x € S C By, C By and the definitions of ISk and Py, Assumption (M, 1),
and finally Supp(v) C By, C Bj. This proves that Py satisfies Condition (M, 1) with the
same S, v as for P.

Now let us prove that ]3k satisfies Condition D;,(Vp, V1) for any integer £ > 1. From
D, (Vp, V1) for P, it is sufficient to prove that P,Vp < PVj. Recall that Vj := (Vo(2))zen is

~

a non-decreasing sequence with V(0) > 1. Let & > 1. We have from the definition of Py

Vo € B, (BVo)(@) = D Pla,y)Voly) + Pla, Be) Y ker(y)Vo(y)

YE By yEBy,

< Y Pl + P B[ 3 kast)]
yEBy yeBy,
=Y Plx,y)Voly) + > Pla,y) Volk)

yEBy yEB©

< Y P yVy) = (PV)(z) (94)

yeN
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since for any (y,z) € By x B¢, Wo(y) < Vo(k) < Vo(z) and since k() is a probability
measure on Bj. Next, using the definition of Py, we have for any k£ > 1

Vo € ByS,  (PVo)(z) = Vp(0).

Note that V5(0)1x < Vp since Vj is non-decreasing. Then Vo(0)Plx = Vp(0)1x < PVj since
P is a non-negative kernel. Therefore, we have that (P;Vp)(x) = Vo(0) < (PVp)(x) for any
x € By°. This proves that Py satisfies D14 (Vp, V1). O

The next lemma states that Condition (Avy;) holds when P satisfies (M ,,14)-D14(Vo, V1).

Lemma 7.9 If P satisfies Conditions (M, 14)-D14(Vo, V1), then Condition (Av,) holds
true.

Proof. From the definition of Py, and (90), we have for every = € By,

Arv(x) = > |P(x,y) — Pelz,y)|[Vo(y)

yeN
= P,B) Y kex@Vo(y) + Y P(z,y)Vo(y)
yEBy yEBL®
< Pz, B) Vo(k) + Y Pla,y)Voly)
yEB©
< ZPCCZVO Z (x,y)Vo(y <22 (z,y)Vo(y (95)
zEBy° yeBL® yEBL®

since Vp is non-decreasing and kg ,(By) = 1. Now fix x € N. Then it follows from (95)
applied to any k > x that limy, Ay v, () = 0 since >, .y Pz, y)Vo(y) = (PVo)(z) < oo from
D ,(Vp,V1). Thus Condition (Avys) holds true. O

Finally, for the family {FPy}sco defined in (93), note that the Py—invariant probability
measure mg for any 6 # 6, is finitely supported so that my(Vj) < co. Since the Py, —invariant
probability measure g, is assumed to satisfy mp,(Vp) < oo in Proposition 7.7, it follows
from Lemmas 7.8-7.9 that all the assumptions of Theorem 7.3 hold true. The proof of
Proposition 7.7 is complete.

7.3.2 Application to state space discretization

Assume that (X, d) is a separable metric space equipped with its Borel o-algebra X, and that
P is a Markov kernel on (X, X) of the form

Ve €X, P(z,dy)=p(z,y) Ndy), (96)

where p : X? —[0, +00) is a measurable function and ) is a positive measure on X. Typically
X is R? and )\ is the Lebesgue measure on R%. Let 2o € X be fixed, and for every integer
k > 1 consider any Xj, € X such that

{z eX : d(z,x0) <k} C X C {zeX:dz) <k}

Now let (6;)k>1 € (0, +00)Y be such that limy_, 1 6 = 0, and for any k > 1 consider a finite
family {X;;}jer, of disjoint measurable subsets of X, such that

Xp=| | Xjx  with Vj € I, diam(X;x) < (97)
JE€lk
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where diam (X ;) := sup {d(z,2’) : (z,2) € X;;}. The positive scalar d; must be thought
of as the mesh of the partition {X; 1 };er, of Xj. Define

k> 1, W@ y) € X% il y) = 1x,(y) ) Lk (@) nf p(ty).
icly, ik

Observe that pp < p. Next define the following submarkovian kernel @k on (X, X):
weX VACX, Qued) = [ Liw)piley) Ady)
X
= S ([ 10 gt 2@ )1, 0. (08)
i€l Xy teXik

Note that Qp(z,-) = 0 if z € X;,¢ := X\ X.. Define ¢y := 1x — Qxlyx. We have ¢, = 1 on
Xi¢ and 0 < ¢y < 1x since 0 < Qplx < Plx = 1x. Then the kernel Py defined on (X, X) by

Vo € X, VA€ X, Py(x,A) = Qule, A) + La(xo) px(x) (99)

is a Markov kernel. Let by := 1x,c and let F} be the finite-dimensional space spanned by
the system of functions Cj := {1Xi,k’ i€ Ik} U {bx} which forms a basis of Fj. For every

measurable function f : X — R such that (P|f|)(z) < oo for any = € X, we have P.f € Fy.
Define the linear map Py : Fj — F) as the restriction of P, to Fj. Let Nj := dim F; =
Card (Ix) + 1, and let By be the Ny x Ny—matrix defined as the matrix of Py with respect
to the basis C, of Fi. The next lemmas states that By is a stochastic matrix and that a
ﬁk—invariant probability measure can be derived from any invariant probability measure of
the finite stochastic matrix Bg. Their proofs are postponed in Appendix C.

Lemma 7.10 For any k > 1, the matrix By is a stochastic matriz.
Thus, for any k > 1, there exists a stochastic row-vector 7, € [0, 4-00)V* such that
7y B = m. (100)

Note that Pyby = Pylx,c = ]Sklxkc = @klxkc + 1x,<(z0) ¢x = 0 (see (99)) so that the last
component of 7y is zero. The component of 7 associated with the element 1x, , of the basis
C, is denoted by ; i, so that 7, = ({7 }icr, , 0). For every k > 1, set

Ti(f) == 7k Fy (101)
where F}, = Fj(f) is the coordinate vector of ﬁk f in the basis Cy.

Lemma 7.11 For any k > 1, let m, be a Br—invariant probability measure. Then T, defined
in (101) is a Py—invariant probability measure and can be written as

Autdy) = ) M) + (1= [ pu(s) M) ) (1022)
where 0y, is the Dirac distribution at xo and py, is the non-negative function defined by
VyeX, pr(y) =1x,(y ;Wzk elnf p(t,y). (102b)
1ely
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Next, assume that there exist a positive integer kg and s € (0, 4+00) such that the function

Y Gko.s(Y) == iIelgpko(l’,y) with S:={z eX, d(z,z9) < s} (103a)

is positive on a subset D € X" such that A(1p) > 0. Then, define v € M’ , by

VACX, v(la)i= /X 1a(9) g (1) Aly). (103b)

The Markov kernels P and {ﬁk}kszo satisfy Condition (M, 14) w.r.t. the above set S and
positive measure v

P(z,A) > v(14)1g(x)  and Vk > ko, Pe(z, A) > v(14) 1g(2) (104)

since
VEk > ko, V(z,y) € S x X, p(z,y) > pr(2,y) = Pro(2,Y) > Gro,s(y)-

Let us introduce the following family of Markov kernels { Py }gco with 6y := +o00 and
©:={keN:k>ky}U{+oo}, Piog:=P, V0 {keN:k >k}, Py:=D,. (105)

The next proposition provides assumptions under which this family {Py}eco satisfies all the
assumptions of Theorem 7.3, so that all the conclusions of this theorem hold true in the
present context of state space discretization.

Proposition 7.12 Let P be the Markov kernel defined in (96) with a function p(-,-) assumed
to be such that x — p(x,y) is continuous on X for every y € X. Assume that P satisfies
Condition D14(Vo, V1) with respect to S and v given in (103a)-(103b) and to Lyapunov
functions Vi, i = 0,1 on X of the form Vi(-) := v;(d(-, o)) for some non-decreasing function
v; : [0, +00) =[1,+00). Moreover, assume that the P—invariant probability measure m is such
that w(Vp) < oo.

Then the family {Py}oco defined in (105) satisfies all the assumptions of Theorem 7.3 in-
cluding Condition (Av).

Recall that, from (104), the family {Py}sco satisfies Condition (M, 1) with S and v given
in (103a)-(103b). The proof of Proposition 7.12 is complete using the two following lem-
mas. The first one shows that if the unperturbed Markov kernel Py, := P satisfies Condi-
tion D14 (Vo, V1), then for any § € ©\{6y}, Py satisfies the same condition. The second lemma
shows that, under the continuity assumption on p(-,-) in Proposition 7.12, Condition (Avyy)
holds true.

Lemma 7.13 If P satisfies Condition D1,(Vy, V1) then, for any integer k > ko, the Markov
kernel Py, satisfies the same Condition D14 (Vy, Vi).

Proof. Since P satisfies Condition D1 (Vp, V1), it is sufficient to show that

PV < PV (106)
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to prove the first statement. If z € X;°, then (PeVo)(z) = Vo(zo) er(x) < Vi(zo) from (99),
Qr(z,-) = 0 for z € Xi° and ¢, < 1x. Note that vy(0)1x = Vo(zo)lx < Vp since vg is
non-decreasing, so that Vy(zg)lx < PVp since P is a Markov kernel. Now, let = € X.. Then
(PVo)(z) = (QiVo)(x) + Vo(zo) (1 — (Qulx)(x)) (from (99))
= Vo(zo) + (Qk(Vo — Vo(z0)1x)) (x)

= Viteo) + 3 ([ () - Vo(ao)) iaf ple.0) M) )1, ) (roma(99)

icly,
< Vit + 3 ([, (000 = Vateo) ) M) ) 1, )
< Volwo) + (PVo)(x) — Vo(zo) (since Y 1Ix,, (z) = Ix, (x) = 1).
iely
This proves (106). O

Lemma 7.14 Let p(-,-) in (96) be such that, for every y € X, the function x — p(x,y) is
continuous on X. Then the following assertion holds:

Ve X, lim|P(r,) ~ Pula, )l = 0.
Proof. Let x € X be fixed. Observe that

1P(,) — Oula, )y, < /X Vo) [p(a ) — o )| A(dy)-

From the continuity assumption on the function p(-,-) we have limy py(z,y) = p(x,y) for any
y € X, and we know that [p(x,y) — pr(z,y)| < 2p(x,y). From Lebesgue’s theorem it follows
that limy, || P(z,-) — Qk(z, )|}, = 0 since (PVp)(x) < oco. Finally note that

1P(z,) = Prle, )y, < I1P(2,) - @c(wa g, + Volo) wr(x) R
< [1P(2,) = @n(x, )y, + Volzo) [1P(2, ) — @r(x, )y,

from (99), ¢p(z) == 1 — (Qplx)(z) = (Plx)(z) — (Qilx)(z), 1x < Vp and the definition
of || - |lvy- The proof of the convergence of Pi(z,-) to P(z,-) in Vy—norm is complete. O

Finally, for the family {FPy}pco defined in (105), note that the Py—invariant probability
measure 7y for any 6 # 6y, is finitely supported so that mp(Vy) < oo. Thus, since the
Py,—invariant probability measure 7y, is assumed to such that mg,(Vy) < oo, Theorem 7.3
applies.

7.4 Bibliographic comments

A) Markovian perturbation issue. The perturbation theory for Markov chains has been widely
developed in the last decades, see e.g. | , , , , , ,

, , , , , , , , and references therein|. The
perturbation material in Section 7 is based on [ ]. Moreover here, in Subsection 7.3,
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two standard issues are analysed as a perturbation problem: truncation and discretiza-
tion of the state space X. The central Formula (74) was first used in | | for finite
irreducible stochastic matrices, see also [ ]. This formula can be subsequently used
in any problem which can be thought of as a perturbation problem of Markov kernels
(e.g. see | , | and Section 17.7 in | ])- Note that neither the specific inves-
tigation of uniformly ergodic Markov chains as in | , ) , 1,
nor that of reversible transition kernels as in | ) ], are addressed here.

On the condition (V) < co. For a Markov kernel P with invariant probability measure 7,
the condition 7(Vp) < oo is in force in this section. When P satisfies Conditions (M, ;)
D, (Vp, V1), we have m(V1) < oo from Theorem 5.4, but recall that the condition 7(Vp) <
oo does not hold automatically. It is in fact satisfied provided that P satisfies (M, ;) and
any preliminary Vp—modulated drift condition D, (L, Vj) for some Lyapunov function L.
We refer to Proposition 5.13 for a general statement and to Example 7.5 for a specific
situation. Finally, recall that such a nested modulated drift conditions D (L, Vp) and
D,(Vp, V1) occur in most of the analysis of polynomial or subgeometric convergence rate
of Markov models, e.g. see | , , , , ].

On the measurability of the function Ay . Let P and K be two Markov kernels on (X, X)
and V be a Lyapunov function such that ||[PV||y < oo and ||[KV]y < co. Assume
that the o—algebra X" is countably generated. Then the function on X, z — Ay (x) :=
|P(z,) — K(x,-)|{,, is X—measurable. Indeed, for every x € X we have |P(z,-) —
P'(z,-)|lv = [n2|(V') where |n,| is the total variation measure of the finite signed measure
N = P(x,-) — K(x,-). Moreover the map z — [n;|(V) is X—measurable since so is
x> n:(V), see [ ].

On the Condition (Ay). As introduced in | | for discrete set X, Condition (Ay )

Ve eX, lim Agy(z)= | Pay (z,-) — Py(z,-)||}, = 0,
9—)90

lim
9—}90
is the expected continuity assumption in order to study the convergence to 0 of the
V —weighted total variation distance between 7y and mg,. Let us discuss Condition (Ay)
and alternative assumptions used in prior works.

e The standard operator-norm continuity assumption introduced in | | writes as
lim9_>90 ||P9 - PQOHV = 0, namely

A
lim sup 70"/(3:)

=0.
900 zex V(x)

This condition is clearly much more restrictive than Condition (Ay ). Such a con-
dition is suitable when Py = Py, + 0D where 6 € R and D is a real-valued kernel
satisfying D(z, 1x) = 0 for every = € X e.g. see [ , ]

e The weak operator-norm continuity assumptions, based on Keller’s approach for

perturbed dynamical systems | |, require that
A B, ) — P, |,
lim supe’lix(x) = lim sup 1Po(z, ) = Poo (@, )y =0. (107)
0 — 09 reX V(;U) 0— 6o rxeX V(I’)
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To understand the difference between Conditions (Ay) and (107), consider the
following simple example derived from perturbed linear autoregressive models (see
[ , Ex. 1] for some details on this model):

V0 € (0,1), Vx e X:=R, VAe X, Py(z,A):= / 1a(y) p(y — 0x) dy,
R
where X is here the Borel o—algebra on R and where p is some probability den-
sity function with respect to Lebesgue’s measure on R. Let 6y € (0,1) be fixed.
Condition (Ay) writes as follows

vreR, lim [ V(y)|p(y —0z) —p(y — boz)|dy =0, (108)
9—)90 X

while Condition (107) is:

) fX|p(z70x) fp(zfeox)}dz _
915%0 ilelg V) =0. (109)

Actually Conditions (108) and (109) are quite different. In (108) the convergence is
simple in € R, but the presence of V(y) in the integral may be problematic. In
(109) the absence of the function V' in the integral is of course an advantage, but the

convergence has to be uniform on R (actually it has to be uniform on every compact
of R thanks to the division by V(z)).

This weak continuity assumption (107) has been adapted to V-geometrically ergodic
Markov models, either using the Keller-Liverani perturbation theorem from [ ]

(see | , , ]), or using | | based on Wasserstein distance as in
[ | orin | , |. In the next item, the perturbation bound obtained
in [ | and | | under this condition (107) is compared with the bound of
Theorem 7.3.

E) Geometric ergodicity case. If {Py}oco satisfies the assumptions of Example 7.4, then the
bound (78b) of Theorem 7.3 gives

2 (1 + d)

- <
Imo = o lrv < ——

L 1 C
W@(A@}V) with d = m max (0, m> (110)

where m := infypco vp(1x) > 0. The focus here is on the comparison of the error bound
(110) with that obtained in [ , Prop. 2.1] and | , Eq. (3.19)] (see also [ ]
for the iterated function systems), that is

. Ag 1y (x
HTI’@—T['@OHT\/SC’}/QUH’}’@‘ with vy :=sup 15(2)

vex  V(x) )

where the positive constant ¢ depends on the above constants §, C and on the V —geometric
rate of convergence of the iterates P," to the invariant distribution 7y. The interest of the
bound (111) is that it uses Ag 1, () rather than Agy (x) in (110). The drawback of (111)
is that it involves a logarithm term, but above all that the constant ¢ in (111) depends
on the V—geometric rate of convergence of P;* to my, which is unknown in general (or
badly estimated).
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F) Approzimation by truncation. The issue of approximating the main characteristics of a
Markov chain has a long story. Here we focus on the approximation by a truncation of
the state space X. Specifically we are interested in the so-called truncation-augmentation
technique and essentially in the study of convergence of the truncated invariant prob-
ability measure 7, to m. We refer to [ , , , , ) ,

, , , , , and references therein] for countable set X and
[ , , ] for a continuous state space. Note that the stochastic monotonic-
ity property is widely used in the statements of most of these references. Various points
related to the results of Subsection 7.3.1 are discussed below, keeping in mind that trun-
cation scheme is considered as a perturbation issue.

e Convergence of {Ti}n>0 to m. The convergence in the V-weighted total variation
norm is proved to take place in | , Th 3.2] for the first-column linear augmen-
tation (see (90) with k,j is a Dirac distribution at 0) of V-geometrically ergodic
discrete Markov chains. Using regeneration methods, such a convergence is ex-
tended to V-geometrically or polynomially ergodic Markov chains with continuous
state space in | , Th 2] for a specific linear augmentation. Finally mention that
the weak convergence in the case of general augmentation of continuous state space
Markov chains has been recently addressed in [ ]. Note that in such context,
the weak convergence does not provide the convergence in the total variation norm.

e Rate of Convergence of {Tk}n>0 to m. The bound of Theorem 7.3 for a V —geo-
metrically ergodic Markov kernel P and v := 1g for some set S (see also Propo-
sition 7.7) then provides a generalization of the bound (10) in [ , Th. 2] to a
general state-space X without assuming the existence of an atom. Similarly the
bound of Theorem 7.3 extends the bound (16) in | , Th. 3] (with m :=1) to a
general state-space X without assuming that the residual kernel is a contraction on
By, i.e. RV < BV for some 8 < 1 (see Condition 3 in [ , Th. 3]).

G) Approximation though numerical computations. The discretization procedure of the
general state-space X in Subsection 7.3.2 can be used to numerically approximate the
P—invariant probability measure. This has been proposed in [ | in the specific con-
text of a V—geometrically ergodic Markov chain. We refer to | ] for various illus-
trations, in particular for autoregressive models. Here, the procedure has been adapted
to a general context in Proposition 7.12, where the geometric drift condition is replaced
by any modulated drift condition. Fine discretizations of continuous state-space models
used on computers introduce round off errors, and therefore produce bias in the results of
computations. Thus, it is of interest to show that such a bias is negligible under fair condi-
tions. There, using perturbation techniques may be relevant (e.g. see | , D).
Such an issue was discussed in [ ] for a more general mechanism of round-off than
in | , | and for iterated function systems of Lipschitz maps. It should be
noted that the problem addressed in | | fits naturally into the current discussion on
the use of perturbation techniques for analysing the effect of numerical approximation
on the calculation of stationary characteristics. We refer to | , , ,
and references therein| for such a study in MCMC computations with respect to weighted
total variation, Wasserstein and y—metrics.
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8 Geometric rate of convergence of the iterates

In Subsection 8.1 the geometric rate of convergence of the iterates of P is studied on a general
Banach space 8 by introducing the spectral radius of the residual kernel R on 8. This
general framework is then applied under the first-order minorization condition (M, ) and
the geometric drift condition Gy (9, V) to obtain the rate of convergence, first for V —weighted
norm in Subsection 8.2 to complete Theorem 6.2, second for IL?(7;)—norm in Subsection 8.3
with the specific reversible case in Subsection 8.4, and finally for V*—weighted norm in
Subsection 8.5 for a belonging to some set A C (0, 1]. Further statements on the reversible
and positive reversible cases are provided in Subsection 8.6. The spaces £ (7z) and £2(7),
as well as the standard Lebesgue spaces (L!(7z), || - [l1), (IL2(7x), || - ||l2) and (L>°(7x), || - |oo)
w.r.t. the probability measure 7, are defined in Section 2. Finally, when L is a bounded
linear operator on a Banach space B, we shortly write L € £(8). The prerequisites in
spectral theory are those given by (S1)-(S3) in Subsection 6.2 (see page 49).

8.1 Geometric rate of convergence on a Banach space

Let P satisfy Condition (M, ) with A%y =0 and pg(1x) < co. Hence all the conclusions of
Theorem 4.1 hold true: The P—harmonic functions are constant on X; P is irreducible and
recurrent; The positive measure pp satisfies (1)) = 1 and is the unique P—invariant positive
measure 7 (up to a multiplicative constant) such that n(1) < oco; Finally 7 := pr(1x) s
(see (26)) is the unique P—invariant probability measure on (X, X). Let (B, ||-||) be a Banach
space satisfying the following assumptions:
Assumptions (B). Either the set B is composed of C-valued measurable functions on X and
B, CB C LY (7R); or B is composed of classes modulo wy, of C-valued measurable functions
on X and L>®(rz) C B C LY(ng). Moreover the norm || - | on B satisfies the following
condition:

Je>0, VgeB, mx(lgl) < cllgll- (112)

If P € L(*B), then P is said to be geometrically ergodic on (B, || - ||) if
Jp€(0,1), 3¢, >0, Vg €B, Vn2>1, [[P"g—ma(g)lx]l < c,p"[gll. (113)
In this case we define the following real number py € (0, 1)
0% = 0x(P) :=inf {p € (0,1) such that Property (113) holds}. (114)

The power series p(z) used below is that introduced to define the aperiodicity condition (see
(38)-(39)). Finally, when R € L(*B8), we denote by 7y the spectral radius of R on (B, | - ||).

Theorem 8.1 Assume that P satisfies (M, y) with hyy =0, pr(lx) < oo, and is aperiodic.
Let (B, - ||) be a Banach space satisfying Assumptions (B) and assume that P € L(B).
Then R € L(B). Moreover, if ry < 1, then P is geometrically ergodic on (9B,| - ||). More
precisely the radius of convergence of the power series p(z) = Z;:g v(R"14) 2" is larger
than 1/ry, and the following alternative holds:

(a) If Equation p(2~1) =1 has no solution z € C such that ry < |z| < 1, then oy < rs.

(b) Otherwise, we have oy = max {|z| : 2 € C, p(z71) =1, ry < |2] < 1}.
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Based on the definition of the spectral radius ry of R on B, the following simple lemma is
the first key point to prove Theorem 8.1.

Lemma 8.2 Let us assume that P satisfies Condition (M, ) with hyy =0 and pr(1x) < oo,
and that P € L(B) where (B, || - ||) is a Banach space satisfying Assumptions (B). Then
R € L(*B), and the following assertions hold:

1. For every z € C such that |z| > ry and for every g € B, the series g, := ;;’3 z~ (bt REg
absolutely converges in 8.

2. The radius of convergence of p(z) := ;rg V(R Y) 2™ is larger than 1/ry.

Proof. From (M, ;) and the P—invariance of 7 we know that 7z > mx(¢)v with 7z(¢)) > 0
(see Theorem 3.6). Thus

vge B, v(lgl) < 7)) m(lgl) < emr(y) gl (115)

due to (112). From the definition of R and (115), we obtain that, for every g € B, the
function Rg (or its class modulo 75) belongs to B with

IRgll < 1Pgll + v(lgDllwll < (1P + eme() ™ [2]) gl

where || P|| denotes the operator-norm of P on (B, || - ||). Note that ||| is well-defined since
¥ is bounded, so that 1 (or its class) belongs to 6. Thus R € L(8). Now prove Assertion
1. From the definition of rz we know that

Vy € (re,4+00), ¢y, >0, Vg€ B, Vn>1, [[R"g| <cyv" 9]l (116)
Let z € C be such that |z| > ry and let v € (7, |2]). Then for every g € B we have
|27 F VI RFgI| < 1217 ey (v/12)" llgll,

from which we deduce that > /25 |z|~**+D||RFg| < co. Now prove Assertion 2. Let v > 7.
From (115) and (116) we obtain that

0 < v(R*) < emn(¥) IR | < emn(v) ™ ey 7™ 9]

so that the series 3" v(R"14)) 2 converges for every z € C such that |z| < 1/. Hence
the radius of convergence of the power series p(z) is larger than 1/~, thus larger than 1/ry
since 7 is any real number in (ry, +00). O

Recall that, in case B := By (C), the series involved in Lemma 8.2 are those used in
Section 6.2 to study the invertibility of the operator zI — P for z € C of modulus one, see
Lemmas 6.3-6.4. From these lemmas and the compactness of the spectrum, the geometric
ergodicity on By (C) was then easily deduced in Theorem 6.2, i.e. o5 < 1, but without control
of the rate of convergence because of the restriction to the complex numbers of modulus one
in Lemmas 6.3-6.4. Using Lemma 8.2 and repeating on the general space 8 the arguments
of Section 6.2, the proof of Theorem 8.1 as a whole is therefore a refinement, often even a
simple copy, of that of Theorem 6.2. Indeed it can be similarly shown that, for any z € C
such that |z| > 7y, the operator zI — P is invertible on B if, and only if, p(271) # 1. Then
the alternative (a)-(b) of Theorem 8.1 is obtained noticing that gy is nothing else but the
spectral radius of the restriction Py of P to the subspace By := {g € B : mz(g) = 0} of B.
For the reader’s convenience, the proof of Theorem 8.1 is postponed to Appendix D, where
the following additional statements are also obtained in Case (b) of Theorem 8.1.
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Proposition 8.3 Let P satisfy the assumptions of Theorem 8.1 with rg < 1. Then the
following properties hold in Case (b) of Theorem 8.1. For every r € (ry,1) the set

Spi={2€C, p(z7") =1, r<|z| < 1}

is finite, and it is non-empty for r € (rs,1) sufficiently close to rs. Moreover every z € S,
is an eigenvalue of P on B with

EZ::{gG%:Pg:zg}:(C-LZZ

where Jz € B is non-zero and defined by JZ = ,;EB z— (k1) Ry,

8.2 Rate of convergence in V—geometric ergodicity
Under the assumptions of Theorem 6.2 define the following real number gy € (0,1)
ov = ov(P) :=inf {p € (0,1) such that Property (70) holds}. (117)

In other words gy is nothing else but gy with 8 := By (C). To apply Theorem 8.1 in the case
B := By (C), we first prove the following statement, in which ry denotes the spectral radius
of the residual kernel R on By (C) (i.e. ry =75, (¢) with the notation of Theorem 8.1).

Proposition 8.4 Let P satisfy (M, ,)-Gy(0,V). Then

ry = li111n||R"\|%//” - 1i£n||R”V|ylv/” <1.

The proof of this proposition is a consequence of | , Prop. 2.1] on polynomial rate of
convergence using two nested modulated drift conditions derived from the geometric drift
condition G (6, V) (use | , Sect. 3.2]). The details will be specified in the next version
of the document including the material on polynomial rate of convergence.

Under Conditions (M, )~Gy (0, V) we have hyy = 0, uz(1x) < oo and mx(V') < oo (see the
beginning of Section 6). Moreover the Banach space (By (C), ||-||v) satisfies Assumptions (B)
since 1x < V and

Vg € By (C), mx(lgl) <m=(V)lgllv-

When P satisfies (M, ,)-Gy(0,V) and is aperiodic, we know from Theorem 6.2 that P is
V —geometrically ergodic, i.e. oy < 1. Corollary 8.5 below is thus a refinement of Theo-
rem 6.2 since it provides a bound (even the exact value in Case (b)) of the real number gy .
Corollary 8.5 is a direct consequence of Proposition 8.4 and Theorem 8.1.

Corollary 8.5 Assume that P satisfies (M, ,)-Gy(6,V) and is aperiodic. Then the radius
of convergence of the power series p(z) 1= :{i’i v(R" %) 2" is larger than 1/ry. Moreover
the alternative (a)-(b) of Theorem 8.1 and the additional statements of Proposition 8.3 hold
with B := By (C), 0w := oy and re :=1y.
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8.3 Geometric ergodicity on L?(7y)

Here P is assumed to satisfy (M, )-Gy(0,V), so that 7y is the unique P—invariant proba-
bility measure. Recall that P € £(IL?(7z)), more precisely P is a contraction on £(IL?(7y)),
ie. Vg € L2(ma), [[Pgll2 < [lgll2, since

1Pol = | ] [ stwpie.a)

from the Cauchy-Schwarz inequality w.r.t. the probability measure P(x,dy) and from the
P—invariance of 7. If P is geometrically ergodic on L?(7y), i.e. when (113) holds with
(B, ||-1]) := (L?(7r), || - |2), then the corresponding real number 01.2(rp)(P) in (114) is shortly
denoted by g2. Recall that, if L € L(IL?(7z)), then its adjoint L* € L(IL?(7R)) is defined by:

2
s 2 T = T 27TR T
r(dz) < / / l9(y)I"P(x, dy)mr(dz) = / |9(@)|" 7r(dx)

V(£ 9) € L2(mn) x L?(m), / (Lf)(x) g(@) mn(dz) = /X (@) T g)@) mnldr).  (118)

The residual kernel R is also a bounded linear operator on (IL?(7z), | - ||2): in fact it is a
contraction on L?(7) since 0 < R < P. Let R* be the adjoint operator of R on L?(7y), and
define the following [0, +oco]—valued quantity

*n, 1/n
Py := limsup H RV , (119)
n — +00 00
where || - |looc = || - |loo,np is defined in (9). Recall that the spectral radius ry of R on By (C)

satisfies ry < 1 from Proposition 8.4. We simply denote by ro the spectral radius of R on
L2(7g) (i.e. 72 = T1L2(ry) With the notation of Theorem 8.1). Note that 72 < 1 since R is a
contraction on L2(my).

Theorem 8.6 Assume that P satisfies (M,,,)-Gy (8, V) with mx(V?) < 0o and is aperiodic.
If ¥y < o0, then ro < (rvﬂv)l/Q. Neat, if 9y < 1/ry, then ro < 1 and P is geometrically
ergodic on 1L.2(mg). More precisely the radius of convergence of the power series p(z) :=
T U(RM1) 2" is larger than 1/ry. Moreover the alternative (a)-(b) of Theorem 8.1 and
the additional statements of Proposition 8.8 hold with B := L2(1y), 0w := 02 and ry = ro.

In the proof below we use the following well-known fact. Let L € L(*B8) for some Banach

space (B, - ||) and assume that there exists a dense subset D in 8 and a positive constant
d such that: Yh € D, ||Lh|| < d||h||. Then the operator-norm ||L| of L on (B, || - ||) is less
than d. Indeed, let g € B and (hy,), € D" be such that lim, ||g — hy| = 0. Then

ILgll < 1L(g = ha) | + |LAn|l < [ILI g — Tl + d [P

When n — 400 this provides || Lg|| < d||g]|.

Proof of Theorem 8.6. Let g € B1,(C). Let (9,r) € (Vyv,+00) X (ry,4+00) with Jy < oo.
From the definition of ¥y and ry we know that

dng > 1, Vn > ng, RV < 9"V wrp—a.s. and 3Id >0, Vn>1, R"V <dr"V. (120)
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We have for every n > ng

iRyl = [ ( / ggyfﬂwy)”?R“(m,dy>)2m<dx>

< d(rd)" [ |g(@)® ma(dz)

using successively the Cauchy-Schwarz inequality w.r.t. the non-negative measure R"(z,dy),
the second inequality in (120), the definition of the adjoint operator R*" of R™ noticing that
|g]?/V and V belong to L2(7y) since g € B1,(C), V > 1 and 74(V?) < oo, and finally using
the first inequality in (120). We have proved that

Vg € B, (C), |R"gll» < d"?(r9)"/2.

From the density of Bi,(C) in L?(my) it follows that the operator-norm |R"|2 of R™ on
L2 (my) satisfies | R™||o < dY/?(r9)™?, from which we deduce that 7y < (719)/? from Gelfand’s
formula. This provides ro < (rvﬁv)l/ 2 since r and ¢ are arbitrarily close to ry and ¥y
respectively. Next, if ¥y < 1/ry, then ro < 1 and the other assertions of Theorem 8.6 follows
from Theorem 8.1 applied with (3B, || - ||) := (L?(7z), || - ||2), observing that this Banach space
obviously satisfies Assumptions (B). O

8.4 Geometric ergodicity on LL?(7;) in the reversible case

Again P is assumed to satisfy (M, )-Gy(0, V). Recall that P is said to be reversible with
respect to its (unique) invariant probability measure 75 if

Tr(dz)P(z, dy) = mr(dy) P(y, dz).

This is equivalent to the condition P* = P where P* is the adjoint operator of P on L2(7y).
In other words P is reversible if, and only if, P is self-adjoint, that is:

V(f,9) € L*(mr) x L(mr), /X(Pf)(fﬂ)g(:E)TrR(dfﬁ) :/Xf(x) (Pg)(x) mr(de).  (121)

Geometric ergodicity on L?(7my) (case B := L?(rg)) in the reversible case is particularly
interesting since not only can the value p := 02 = gp2(s,)(P) € (0,1) be considered in
Property (113), but also the corresponding constant c,, is equal to one.

Lemma 8.7 Assume that P is reversible and is geometrically ergodic on L?(w) for some
P—invariant probability measure w. Then

Vg € L*(r), Yn > 1, |P"g—7(9)1xl2 < o'llgll (122)

where g = op2(x) (P) € (0,1) is given in (114).
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Proof. To obtain Property (122) note that gy is the spectral radius of the operator P — II
where IT := 1x ® 7: This follows from the definition of g2 and Equality P" —II = (P — II)"
due to the P—invariance of m. Moreover, since P — II is self-adjoint from the reversibility of
P, we know that g2 equals to the operator-norm || P — II||2. Thus

Vo> 1, [P =1lls = [[(P = )"[ls < [|P = II[|" = @2"

from which we deduce (122). O

Recall that ry denotes the spectral radius of the residual kernel R on By (C) and that oy
is defined in (117). Under the assumptions of the following theorem we know that ry < 1
and gy < 1 from Proposition 8.4 and Corollary 8.5 (or simply Theorem 6.2). Finally recall
that 7 denotes the spectral radius of R on L2(7y).

Theorem 8.8 Let P satisfy Conditions (M, )Gy (5,V) with mx(V?) < co. If P is re-
versible and aperiodic, then

rg < (ry max(ry, Qv))l/2 <1 (123)

and P is geometrically ergodic on 1L?(ng). More precisely the radius of convergence of the
power series p(z) = Y. v(R" 1) 2" is larger than 1/ra, and Property (122) holds with
02 satisfying the following alternative:

(a) If Equation p(x~') = 1 has no solution in the interval (—1,—r3), then 03 < 73.

(b) Otherwise, we have p» = max {|z|: p(z™) =1, z € (—1,—r2)}.

02,

V1.

Moreover the additional statements of Proposition 8.8 hold with B = L2(ny), o
re := 1o, and with set S, for v € (ro, 1) given here by: S, := {x € (=1, —r3), p(x~!

The proof of Theorem 8.8 is based on the following proposition.

Proposition 8.9 If P satisfies Conditions (M, ,)~G(0,V) and is reversible, then we have
Yy < max(gy,ryv) where ¥y is defined in (119).

To prove Proposition 8.9 we use the two following lemmas. Recall that, for any non-negative
measurable function f, we denote by f - m; the non-negative measure defined on (X, X’) by

(f -mr)(14) := [x La(z) f(x)mR(dx) for every A € X.

Lemma 8.10 Let P satisfy Conditions (M, )-Gy(0,V). Then there exists ( € B such
that v = C - . Moreover T := 1 ® v defines a bounded linear operator on 1L.2(ny), and its
adjoint operator T* on 1L2(ry) is defined by:

T =(® (¢ 7g). (124)
Proof. From (M, ) and the P—invariance of 7z we have 7 > mz(1))v, so that v is absolutely

continuous w.r.t. g, i.e.: there exists a non-negative mp—integrable function {y such that
v = (o mr. Thus we have 7z > 7z(1))((o - 7r), so that

vaex, [ (1= m(w)) dmiz 0
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Therefore the set Ag = {x € X : (o(z) > mr(x) "'} is such that 7;(Ap) = 0. Then, defining
((x) =0forz € Ag and ((z) = (p(z) for z € X\ Ay, we obtain that v = -7z with ¢ bounded
by (1)~ on X. This proves the first assertion. Next we have from T =1 ® (¢ - 7z)

W(f,g) € L3(ma)?, / (TF)(2) g(@) maldz) = / (€ ) (F)(e) 9() Ta(de)
X
— / / F@)CW)ma(dy)d()g(@) w(de)
— / fly / (2)9(@) 7(dz) C(y)mr(dy)
— / £(0) @ - 7n)(@)C(y) maldy)
from which we deduce that T'= ( ® (¢ - 7g). O

Lemma 8.11 Assume that P satisfies (M, )Gy (0, V) and is reversible. Let ¢ € B’ be
given in Lemma 8.10. Then the following equalities of linear operators on L%(mz) hold

Vn>1, P'=R"+Y P" " @Ry m). (125)
k=1

Note that Formula (125) is not the adjoint version of (17). However, starting from Equal-
ity P = R* +T* and using Formula (124), the proof by induction of (125) is identical to that
of (17), except that function equalities must be considered here in L?(7z). For completeness,
a proof of Lemma 8.11 is provided to Appendix E.

Proof of Proposition 8.9. Recall that >/ RF=1¢) = v(1x)'1x from (35). Thus

n 400 400
=1, Y (REeme)(V) = Y (RN eme)(V) = Y (RM - me)(V)
k=1 k=1 k=n
—+00
= v(x) 'ma(V) —e, with &, := Z(Rk@b -mr)(V)
k=n
from monotone convergence theorem. Applying (125) with g := V| we can write that for

every n > 1

R*nV — PnV _ zn:(Rk_l¢ . WR)(V) Pn_kC
= PV =Y (R mr) (V) (PR — v(1x)1x) — v(1x) (D (RF M ma) (V) 1x

k=1 k=1

= PV =Y (R mp) (V) (P"F¢ — v(1x)1x) — ma(V)1x + v(1x) enlx.  (126)

Let v > max(oy,ry). Note that the series ww = 325y FRF14) absolutely converges
in By from v > ry and the definition of 7. Moreover there exists d, > 0 such that:
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Vk > 1, R < d,||9|lvy*V. Set ay := d,||¢|lvma(V?)/(1 — 7). Then

¥n>1, en<apny” and 0< Yy F(RNYmR) (V) < (U - mR)(V)
k=1

with (JW'WR)(V) < oo since mz(V?2) < oo by hypothesis. Finally, from the definition of gy and
v > ov, we know that there exists ¢y > 0 such that: Vn > 1, Vg € By (C), |P"g—mz(g)1x| <
cyllgllv 4™ V. Since V, ¢ belong to By (C) and v(lx) = mz(¢) from the definition of ¢ in
Lemma 8.10, the previous inequality can be applied to both V and ¢ in (126). We then
deduce from the triangular inequality in (126) and the above facts that

R*TLV n N n B B . 1
2l T < Vi +e Iy >y R Y m) (V) + v(lan”
k=1
= [C’Y t¢y HCHV(@ZV -mr)(V) + I/(lx)av] A"

using 1x < V. Thus we have Jy < +, and finally ¥y < max(gy,ry) since «y is arbitrarily
close to max(oy,ry). O

Proof of Theorem 8.8. From Theorem 8.6 we know that 75 < (ry9y)Y/2, so that the bound
(123) is deduced from Proposition 8.9. The conclusions of Theorem 8.8 then follow from
Property (122) and Theorem 8.1 applied with B = L?(7z), 0 = 02, and ry = 7o since the
following equality holds here:

{zeC:irm<|zl<1, plz ) =1} ={z € (=1,—r) : plz™!) = 1}.

Indeed, let z € C be such that p(27!) = 1 and ro < |2| < 1. Then z is an eigenvalue of
P on L%(ry) from Proposition 8.3, i.e. 3h € L%(wy), h # 0, Ph = zh. From reversibility
we then obtain that z € R (apply (121) with f = g = h). Moreover Equation p(z~!) =

TR V(R 4) 27" = 1 has no solution = € (r2,1) since p(1) = pr(¢)) = 1. The claimed
equality is proved. O

8.5 From V—geometric ergodicity to VV“—geometric ergodicity

Recall that the modulated drift condition Dy, (Vp : V2) derived from G (0, V') plays a central
role in Proposition 8.4 to obtain ryy < 1. Here we present an alternative approach using
Lyapunov function V¢ for a € (0,1]. More specifically we restrict this study to the case
when P satisfies Conditions (M, 14)-G14(d, V) for some S € X*, and we define the following
set associated with the residual kernel R:= P — 1g ® v:

A:={ae(0,1]: RV* <§*V*}. (127)

Proposition 8.12 Let P satisfy Conditions (M, 14)-G14(5,V) for some S € X* such that
K :=sup,cg(PV)(x) < co. Then the set A is non-empty and reduces to

A={ae€(0,1]:Vz €S, (RV*)(z) <*V(z)*}. (128)

Moreover we have A = (0, ap| with ag :=sup A € (0,1], and
Vae A, rye <||R|ye <6 (129)
where |R||ye (resp. rye) denotes the operator norm (resp. the spectral radius) of R on

By (C). Finally, if S is an atom, then oy = 1.
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Condition K < oo holds under Assumptions (M, 14)-G14(0,V) when V is bounded on S.
This condition K < oo is necessary to obtain (130) in the proof below.

Proof. Let o € (0,1]. If z € X'\ S, then we have (PV?)(z) < §*V(x)* from G14(d,V) and
Jensen’s inequality w.r.t. P(z,dy). Hence the definitions (127) and (128) of the set A are
equivalent. Next, if z € S, then we have (PV®)(z) < K“ from Jensen’s inequality, thus

Va € (0,1], Ve € S, (PV¥(z) -6V (x)* —v(V*) < K* - 0% — v(lx)
using 1x < V. Moreover we have

lim (K*—6%—v(lx)) = —v(1x) (130)

a—0
with v(1x) > 0. Thus the left hand side of the above inequality is negative for every x € S
provided that o € (0, 1] is small enough. We have proved that, for a € (0, 1] small enough, we
have RV* < §*V®. This shows that A # (. Now prove that ag :=sup A € A. Let (an)n €
AN be such that lim,, ' a,, = ap. Let 2 € X. We have lim,, V(x)** = V(z)%. Moreover we
deduce from Lebesgue’s theorem w.r.t. P(z,dy) and v(dy) that lim,, (PV)(z) = (PV%)(z)
and lim,, v(Von) = p(V) (use Vo <V, (PV)(x) < 0o and v(V) < 00). Since oy, € A for
any n, this easily implies that ag € A. If S is an atom (i.e. v(-) := P(ay, -) for some ay € S),
then we have

Va e (0,1], Ve € S, PV®(z)—8*V(z) — (V) = —6*V(z) < 0,

so that Inequality RV < 6%V holds on the set S. Thus, in atomic case, we have A =
(0,1] from the definition (128) of A. Now assume that S is not an atom and prove that
(0,ap) C A. Let x € S. Note that o,(-) := P(z,-) —v(-) is a positive measure on (X, X') from
Condition (M, 14): In fact 0 := 0,(1x) = 1 — v(1x) does not depend on x and is positive
since S is not an atom. Thus the following probability measures are well-defined on (X, X):

Ve S, Gu(dy) = éax(dy) = L (P(a,dy) — v(dy)). (131)

Let o € (0,@p). We deduce from Jensen’s inequality and from ag € A that for every x € §

(Pva)<m) o V(Va) _ U&\I((V&o)a/&o) < O_(&\I(Vao))a/ao _ U1-a/ao(<PVao)(x) o V(Vao))a/ao
< g0 5OV (1),

This gives: Vo € S, (RV®)(z) < o' ~®/@0 §2V (2)* < §*V(z)® since 0 < 1 and a < a.
Hence a € A from (128). We have proved that (0,ap) C A. Thus A = (0, ap).

It remains to prove (129). Let a € A. Inequality RV® < §*V* implies that || Ry« < 6%
since || R||ye = [|[RVY||ve from the non-negativity of R. This proves the second inequality in
(129). The first one is obvious from Gelfand’s formula. O

According to the notation (117), for every a € (0, 1] the real number gyo = gyo(P) stands
for the lower bound of all the positive real number p such that ||P" — IIz|lya = O(p") with
g := 1x ® wz. Thus P is V*—geometrically ergodic if, and only if, gy« < 1.

Corollary 8.13 Let P satisfy Conditions (M, 14)-G14(0,V) for some S € X* such that
K :=sup,cq(PV)(x) < co. If P is aperiodic, then the following assertions hold.
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1. For every o € (0,1], P is V*—geometrically ergodic (i.e. gyo < 1).
2. For every a € A the following alternative holds:

(a) If Equation p(z—') = 1 has no solution z € C, 6% < |z| < 1, then gy« < §%.
(b) Otherwise, we have gyo = max {|z|: 2 € C, p(z71) =1, §* < |2| < 1}.

In Case (b) Proposition 8.3 applies with B := By«(C) and any r € (6%,1).

Proof. Let o € (0,1]. If x € X'\ S, then we have (PV%)(z) < §*V(x)® from G14(6,V)
and Jensen’s inequality. Moreover, for every x € S, we have (PV®)(z) < K¢ again from
Jensen’s inequality. Consequently P satisfies Conditions (M, 1) and G14(0%, V%), so that
P is V*—geometrically ergodic from Theorem 6.2 applied with the Lyapunov function V<.
Moreover the real number gy« satisfies the claimed alternative applying Corollary 8.5 with
the Lyapunov function V' and using the upper bound 6% of ry« provided by (129). O

Let us now specify the alternative of Corollary 8.13 for « € A = (0,ap] according to
whether Case 2.(a) or 2.(b) holds for the specific value aj.

Corollary 8.14 Let P satisfy the assumptions of Corollary 8.13. Then the following asser-
tions hold.

(i) If Case 2.(a) of Corollary 8.13 is fulfilled for ay, then we have: Ya € (0, ap], oye < §¢.

(i) If Case 2.(b) is fulfilled for Qg, then there exists a unique @ € (0,Qg) such that 6% = gya,,
and
Vo€ (a’ao]’ Qve = Qyag, Va € (0,&], Qv Sda

Proof. Case (i) means that there is no solution z € C of Equation p(z~!) = 1 such that
5% < |z| < 1, so that the same holds when 6% < |z| < 1 for a € (0,ap)], thus gya < §% from
Corollary 8.13. Case (ii) means that there exists a solution zg € C of Equation p(z~!) = 1
such that §% < |z0| = oyap < 1, and that this equation has no solution z € C such that
oya, < |2| < 1. The existence and uniqueness of @ € (0,a) such that 6% = gy.a, hold since
a = 6% is bijective from (0, @p) into (6%, 1). From Corollary 8.13 we obtain that gye = oya,
for every a € (@,@ap) since zo satisfies 0% < |z| < 1 from 0% < 6% = ga, = |20|. On the
other hand, again from Corollary 8.13 we have gye < §¢ for every a € (0, @] since there is
no solution z € C of Equation p(27!) = 1 such that 6% < |z| < 1 from gy, = 6% < §*. O

Figure 1 helps to get a picture of the status of the value §% w.r.t. the convergence rate
ove in the alternative of Corollary 8.14. Note that the upper bound of gy« degrades when
a — 0, which is consistent with lim, o V% = 1x and the fact that P is not 1x-geometrically
ergodic in general (i.e. P is not uniformly ergodic in general, see Example 3.7).

Recall that A = (0, ap] with ap € (0, 1] from Proposition 8.12, and that A = (0, 1] when S
is an atom. In the non-atomic case a positive lower bound of @ can be obtained using (130)
(i.e. consider av € (0,1] such that K* — §“ < v(1x)). The next statement provides a more
accurate estimate of aj.

Proposition 8.15 Let P satisfy Conditions (M, 14)-G14(0,V) for some S € X* which
is not an atom. Assume that K := sup,cq(PV)(x) < oo and define M := K — v(V),
o:=1-v(lx) € (0,1). Then there exists ag € (0,1] such that M¥ogl=% < §% and such
an o belongs to A, i.e. (0,9 C A.
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0 o 0

Case (i) of Corollary 8.14 Case (i) of Corollary 8.14

Figure 1: Status of the value §* w.r.t. gy« for a € A = (0, @] according to Cases (i) or (ii)
in Corollary 8.14: upper bound in dashed-line, exact value in full-line.

Proof. Recall that o € (0,1) since S is not an atom. For any x € S let 7, be the probability
measure defined in (131). It follows from Jensen’s inequality that

Va € (0,1], Ve € S, (PV*)(z)—v(V?) =00,(VY) < a(&x(V))a = olfa((PV)(a:)—l/(V))a,
from which we deduce that
Va € (0,1], Ve € S, (PVY(z)—v(VY) =V (z)* < ol M@ — 5@

since V > 1x. The claimed conclusion then follows from lim, _, o' ™ M® —§* =0 — 1 < 0.
Hence there exists ag € (0,1] such that M@ g~ < §% and such an ag belongs to A from
the definition (128) of A. O

8.6 Further results in the reversible and positive reversible cases
If R is self-adjoint, then the proof of Theorem 8.8 is simpler. More precisely:

Proposition 8.16 Assume that P satisfies Conditions (M, )-Gy(8,V) with mr(V?) < oo,
and that P is reversible and aperiodic. Let ¢ € B’y be given in Lemma 8.10. Then the
residual kernel R is self-adjoint on 1L.2(7y) if, and only if, ¢ = cv for some positive constant
c. Moreover, in this case, we have 1o = ||R|2 < ry < 1, so that P is geometrically ergodic
on L2(wr) and the last assertion of Theorem 8.8 holds.

Proof. When P is reversible, R is self-adjoint on L?(7y) if and only if T' := 1 ®v is self-adjoint
on L?(7y). Thus, the first assertion is obvious from Lemma 8.10. Next, assume that R is
self-adjoint on L?(7,). Then we know that ro = ||R||o. Moreover recall that 75 < (rydy)/?
from Theorem 8.6. Thus we have ro < ry since ¥y < ry from R* = R and the definitions of
¥y and ry. That ry < 1 is proved in Proposition 8.4. Hence we have ro < 1, and the others
assertions of Proposition 8.16 follow from Theorem 8.1 applied with B := L2(75). O

The case when the residual kernel is self-adjoint is not unrealistic, as illustrated by the
following proposition .

Proposition 8.17 Let P satisfy Conditions (M,,145)-G14(3,V) for some (v,S) € M7, x
X* such that v(lge) = 0. If the function ( € BY in Lemma 8.10 is such that d :=
infres ((x) > 0, then P also satisfies Conditions (M, 4, )-Gy, (8, V) with ¢ := \/c( and
vy := \/ev where ¢ = (sup,eg((x)) L. If moreover P is reversible, then the residual kernel
Ry := P — 1 @1y is self-adjoint on (7).
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Proof. We have v = ( - w5 from Lemma 8.10, with here ( = 0 on S€ since v(1gc) = 0. Thus
P>1g®v>c(®v.

Hence P > 41 ® vy with ¢; := \/c( and v1 := \/cv = 11 - mz. Moreover we deduce from
Gy, ((5, V) that
PV <6V 4blg <6V +d1¢=6V+d ey,

thus P satisfies Gy, (0,V). Finally, under Conditions (M, 4,)-Gy, (0,V), Lemma 8.10
implies that 71 := ¥ ® 11 = 1 ® (1 - 7r) is self-adjoint on L2(7z). Consequently
Ry := P — 91 ® v is self-adjoint when P is reversible. O

Next the following proposition combining the results of both Theorem 8.8 and Corollary 8.5
is relevant when the spectral radius 7y of R on By (C) is easier to compute or to estimate
than the spectral radius 75 of R on L?(7y).

Proposition 8.18 Assume that P satisfies Conditions (M, )-Gy(8, V) with mr(V?) < oo,
and that P is reversible and aperiodic. Set Iy := 1x®@mg. Let r € [ry,1). Then the following
alternative holds.

(a) If Equation p(z~') = 1 has no solution x € R such that r < |z| < 1, then we have g2 <,
thus : Yn > 1, ||P" —Ig|l2 <™.

(b) Otherwise, we have o2 = oy, thus: Yn > 1, ||P" — g2 < of}.

In particular, using Proposition 8.12 and Corollary 8.13, the alternative (a)-(b) of Proposi-
tion 8.18 holds with Lyapunov function V¢ for o € A (in place of V') and with the upper
bound r = ¢ of rya.

Proof. Recall that Equation p(z~!) = 1 in the alternative (a)-(b) of Theorem 8.8 only
focusses on real numbers z such that ro < |z| < 1 from reversibility. Similarly Equation
p(z~!) = 1 in the alternative (a)-(b) of Corollary 8.5 only focusses on real numbers z such
that ry < |z| < 1: Indeed this again follows from Proposition 8.3 applied to B := By (C)
using By (C) C L?(7y) and reversibility.

Assume that Equation p(z~!) = 1 has no solution x € R such that r < |z| < 1. Then we
have gy < r from Corollary 8.5. Thus ro < (ry max(ry, gv))1/2 < r from Theorem 8.8 and
the assumption r > ry. Then Inequality ro < r combined with Theorem 8.8 provides the
following alternative: If Equation p(z~!) = 1 has no solution z € R such that ro < |z| < 1,
then we have g3 < ro <7 ; Otherwise the solutions z € R of Equation p(x~!) = 1 such that
ro < |z| < 1 necessarily satisfy 7o < |z| < r, thus we still have g9 < r from Theorem 8.8.
Case (a) of Proposition 8.18 is proved.

Now assume that Equation p(z~1) = 1 has solutions z € R such that r < |z| < 1. Then
we obtain that oy = max{|z| : z € R, p(z™!) =1, r < |z| < 1} from Corollary 8.5, so
that r < oy. Thus 5 < (ry max(ry, ov))"/? < oy. It then follows from Theorem 8.8 that
oo =max{|z|:z €R, plz7) =1, ry <|z| <1} = ov. O

Finally recall that a reversible Markov kernel P is said to be positive if the following
condition holds

Vg € L2(mn), /X (Pg)(2) 9(@) ma(dz) > 0. (132)

The relevant fact to apply Theorem 8.8 to the positive reversible case is that any eigenvalue
z € C of P (i.e. 3h € L*(7wz),h # 0, Ph = zh) is in fact a non-negative real number. Indeed
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we know that z € R from reversibility. Moreover Condition (132) applied to h implies that
27r(h?) = mr(Ph - h) > 0 with 7x(h?) > 0 since h # 0 in L?(7z). Thus z > 0.

Proposition 8.3 and the previous fact then imply that Case (a) of Theorem 8.8 holds when
P is positive reversible.

Corollary 8.19 Let P satisfy Conditions (M, )-Gy(5,V) with mr(V?) < oco. If P is
aperiodic and positive reversible, then P is geometrically ergodic on L2(my) with 02 < T2,
where ro € (0,1) is the spectral radius of the residual kernel R on L?(my).

If P is reversible, then P? is reversible too, and it is positive since

Vg € L*(mp), /X(PQQ)(SU) - g(2)ma(de) = /X(Pg)(x) - Pg(x)mr(dr) > 0.

Then the following statement can be deduced from Corollary 8.19.

Corollary 8.20 Assume that P satisfies Condition (M, ) with pr(1x) < oo, and is irre-
ducible, aperiodic and reversible. Moreover assume that P? satisfies Conditions (M, ., )-
Gy, (62, V) for some (v2,92) € MY, x BY, 62 € (0,1) and Lyapunov function V' such that
7r(V?) < 0o. Then P is geometrically ergodic on L?(my) and we have 03 < \/r2(R2), where
ro(R?) is the spectral radius of Ry := P% — 1)y ® 1o on L2(7y).

Proof. Recall that 7 is the unique P—invariant probability measure under the assumptions
on P (see Corollary 3.13). Next, we know from the assumptions on P? that P? admits a
unique invariant probability measure which is given by 7p,. Since 7y is also P?—invariant, it
follows that mp, = mz. We deduce from Corollary 8.19 applied to P? that P? is geometrically
ergodic on L2(7z) with g2(P?) < ro(R?). Now, writing any integer n > 1 as n = 2k +r with
r € {0,1} and defining II; := 1x ® 7z, we obtain that

P" 1, = (P - )% = (P - IL,)" ((P})" - L)

from which we easily deduce that g2(P) < \/02(P2) < \/r2(R2). O

8.7 Bibliographic comments

A bibliographic discussion on the V—geometric rate of convergence was presented in Sub-
section 6.3. The general presentation in Theorem 8.1 based on the condition ry < 1 is new
to the best of our knowledge. Actually Theorem 8.1 is the extended version of | 1,
which focused solely on V —geometric ergodicity. Here the case B = By (C) is obtained in
Subsection 8.2 under Conditions (M, )-Gy(d,V) as a by-product of Theorem 8.1. More
generally, all the arguments used in this section, including those in Appendix D, are based
solely on the spectral theory prerequisites (S1)-(S3) presented in Subsection 6.2 (page 49).

The rate of convergence in L?(7y,) is classically studied for reversible Markov kernels. Here
the first application of Theorem 8.1 to the case B := L?(7y) is addressed in Theorem 8.6 for
general Markov kernels, introducing the quantity ¥y linked to the adjoint operator of R on
L2(7s), see (119). To our knowledge this result is new. The computation used for bounding
|R"g||s> in the proof of Theorem 8.6 is inspired by | ]. The second application in
Theorem 8.8 concerns the reversible case. It is in fact a weak version of the classical result in
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[ |, stating that an aperiodic and reversible Markov kernel satisfying Conditions (M, 1)
G1,(3,V) with mx(V?) < oo is geometrically ergodic on L2 () with g2 < gy, see also | ,

, , ]. The proof in | | is based on an argument involving spectral
measures. Explicit rates of convergence are obtained in | , | under minorization
and geometric drift conditions. In Theorem 8.8 the geometric ergodicity on L2(7y) is proved,
but Inequality g2 < gy is only obtained when max(ry,r2) < gy, in which case we actually
have g2 = gy according to the alternative stated in both Corollary 8.5 and Theorem 8.8.
Complements and examples for reversible Markov kernels, in particular in connection with
MCMC algorithms, can be found in | | and | , Chap. 2 and 22]. The positive
reversible assumption addressed in Corollaries 8.19-8.20 is detailed in [ , Def. 22.4.6
and examples therein]. Finally recall that the geometric ergodicity of P on () implies
the geometric ergodicity on ILP(7y) for every p € (1, +00) from the Riesz-Thorin interpolation
theorem, e.g. see | ]-

The drift inequality RV < 6*V? for some suitable exponents o € (0,1] was intro-
duced in | | to study Poisson’s equation and the V*—geometric ergodicity under Condi-
tions (M, 14)-G14(9,V). The fact that such exponents form an interval A C [0, 1) completes
this study (see Proposition 8.12). Recall that we have A = (0, 1] in atomic case. In fact this
equality A = (0, 1] may also occur for non-atomic small-set S, even in the case of a continuous
state space X, see | , Ex. 5.1].

Finally, we emphasize the following point which is important in practice and not addressed
in our work: What is called rate of convergence in this section only concerns the real number
0% in (114). The constant c, in (113) is not investigated here (see the references given in
Subsection 6.3 on this topic). We simply recall that the most favourable case is reversibility,
since in this case g2 can be considered in (113) (case B := L%(7,)) with associated constant
Cop =1 (see (122)).
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A Probabilistic terminology

The split chain (e.g. see | , ). Let (X,)n>0 be a Markov chain on the
space (X, X) with kernel transition P satisfying condition (M, ) with v € M3 ;¢ € B,
that is

R=P—-y®v>0.

Let us introduce the bivariate Markov chain ((X,,Y:))n>0 with the state space X x {0,1}
and the following transition kernel P: for every bounded measurable function f on X x {0,1}

E[f(XnJrlenJrl) | O'(Xk,Yk, k< n)] = E[f(XnJrlenJrl) | U(Xn)] = (Pf)(Xn)
with
VAe X, P(z,Ax{0})=R(z,A) Pz, Ax{1})=1(x)v(la).

((Xn, Yn))n>o is called the split chain associated with (X, ),>0. Note that, for any A € X,
P(z, A x {0,1}) = P(z, A x {0}) + P(z,A x {1}) = P(z, A) so that the marginal process
(Xn)n>0 is indeed the original Markov with transition kernel P. Next, for any f € B and
v €X, E[f(Xns1) | Xn = 2, Vi1 = 1] = v(1x) " tv(f) for every n > 1. It follows that the
set X x {1} is an atom for the split chain. Let oy := inf{n > 1,Y,, = 1} be the return
time to the atom X x {1} of the split chain or the return time of (Y,)n>0 to state 1. It is a
regeneration times of the split chain. Such a material leads to using the so-called regeneration

method to analyze the split chain and to deduce, when possible, the properties of the original
Markov chain.

Probabilistic counterparts of various quantities in this document.

Let us introduce the probability measure 7 = v(1x) '~ on X. The probability P when Xg
has probability distribution 7, is denoted by PP;, and E, is the expectation under IP;,.

VA e X and Vo € X:
o (R"14)(w) = R"(z,A) =P{X,, € A, 001} > n};
(Rnlx)(:ﬂ) = Rn($aX) = Px{a{l} > TL};
T2 (RMx) () = Eofoy;
e hiy(r) = lim,(R"1x)(z) = Py{ogy = +oo};
o (R '9)(x) = Po{opy = n}/v(lx), Ypoy (RF ') (2) = Po{opy < n}/v(lx);
TR (2) = Pp{ogy < oo} /v(1x);
o ur(1a) =v(1x) S Po{ Xy € A, oq1y > n}, pr(lx) = v(1x)Eslo(]
1r(¥) = Py{ogy < oo}

e Formula (17). For any n > 1, let L, := min{k = 0,...,n — 1 : Y,,_ = 1}, be the
time elapsed since the last visit of (Y;,)n>0 to 1 before time n. Then {0y < n} =
L —3{Ly, = k} and Formula (17) has the following probabilistic meaning

Po{X, € A} = Po{Xp€Ao0y>nt+ S g Pe{Xn €A L, =k} .
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B Proof of Theorem 4.12

From the definition of d in (42), there exists an integer £y > 1 such that the power series
p(2) =32 V(R 1) 2™ writes as

+oo
VzeD, p(z):= Z v(RFI 1) 2k, (133)
k=/{g

The proof of Theorem 4.12 is based on the two following lemmas.

Lemma B.1 Let P satisfy Condition (M, ;) with uz(1x) < co. Then

dn kd kd—1
Jdim Pty =g, kZOR v with mg: —l;;kuR Y) < 0o. (134)
0

Proof. Using the definition of the integer d, the arguments here are close to those used in the
proof of the direct implication in Lemma 4.9. Note that Z del/) is a bounded function
on X from Proposition 3.4, and that my < co from Remark 4. 10 Now define

+oo
VzeD, Pqlz Zz"Pd"w, Ra(z Zz“Rdw, pa(z) ==Y v(R* ) 2~
n=0 k={g

with D = {z € C : |z| < 1}. Note that the power series p in (133) satisfies p(z) = pg(z?).
Thus pg(z) is not a power series in z¢ for any integer ¢ > 2: Indeed, otherwise we would have
pa(2) =3/ o v(R¥4=19)) 29° for some integers £ > 1 and ¢ > 2, thus

+o00

ple) = 3 (BRI Ty) 2,

=t

which contradicts the definition (42) of d. Moreover observe that |ps(z)| < 1 for every z € D
since pp(v) = 3755 25, V(RFI=14p) = 1 from Theorem 3.6. Now using (17) applied to ¢ and
the definition of d (see (133)) it follows that P9 = R for every n € {0,...,£y — 1} and
that

¥n >y, Pp=R"p+ ) p(R* ) PRy,
k=¢o

Considering the associated power series and interchanging sums for the last term, we easily

obtain that 1

1—pa(2)
Next, we deduce from the Erdos-Feller-Pollard renewal theorem | | that the coefficients
uq of the power series Uy(z) = Z;ﬁg ud’kzk in (135) satisfy: limjuqr = 1/mg. Then,
identifying the coefficients in Equation (135) (Cauchy product), we obtain that P9 =
S r_oUdn—kR¥1p for every n > 0. Since Y ;720 R%y < oo from Proposition 3.4, Prop-
erty (134) follows from Lebesgue theorem w.r.t. discrete measure. i

Vze D, Pulz)=Ralz)Us(z) with Ui(z):= (135)
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Lemma B.2 Let P satisfy Condition (M, ) with pr(1lx) < oo and hyy = 0. Then there
exists a sequence (e4)n € BY such that lim, €, = 0 (point-wise convergence) and

VheB, ||hlly, <1, 3¢n € B, |P"h—&| <ep.

Proof. Here, using the definition of the integer d, the arguments are close to those used
in the proof of Lemma 4.11. For r = 0,...,d — 1 set (. := P"(y with (y given in (134).
Note that (., € B, and that lim,, pantryy = Gy (point-wise convergence) from Lebesgue’s
theorem w.r.t. P"(x,dy) for each z € X. Now for every h € B define &, € B by

d—1 ,+oo .
&= (Z u(Rdﬂ“h>><r,¢. (136)

r=0 j=1

Then using again (17) and observing that every integer k = 1,...,dn writes as k = dj — r for
r=0,...,d—1and j=1,...,n, we obtain that for every n > 1

d—1 n d—1 400
Pdnh _ gh — Rdnh + Z Z V(Rdj—’r‘—lh) (Pd(N—j)'i‘Tw _ Cr,lb) _ Z < Z V(Rd]—r—lh)> an'
r=0 j=1 r=0 *j=n+l

Thus, if ||A[j1, <1 (ie. |h| < 1x), then we have |P¥"h — &,| < e, with &, € B defined by

d—-1 n +o00
en = Ry + 3 y(RUT 1) | Pty — cmmz Gyl Y (R ).
r=0 j=1 j=n+1

We have lim,, €, = 0 (point-wise convergence). Indeed, the last term converges to zero when
n— o0 since 20 v(R¥1x) = pr(lx) < 0o; The second sum above converges to zero when
n — +oo from Lebesgue’s theorem w.r.t. discrete measure recalling that lim,, P4 +7) = Craps
Finally lim,, R¥1x = 0 from hy = 0.

O

Proof of Theorem 4.12. Let g € B be such that |g| < 1x. Note that for r =0,...,d — 1 we
have |P"g| < P"|g| < P"1x = 1x. Thus for r = 0,...,d — 1 we can Consider frg = Epryg,
where {pr, is the function of Lemma B.2 associated to h = P"g. Let v, = 3 ZT o &rg- Then

d
d+ d
—fZP” 9 Sdig\&g—P" (Prg)| < e (137)
from Lemma B.2. Thus we have v, = lim,, J Zd L P g (point-wise convergence). From

Lebesgue’s theorem w.r.t. P(x,dy) for each z € X, we then obtain that

d
1
Py = lim d Pty =1, (138)

n — 400
r=1

the last equality being obviously deduced from lim,, s 100 P g = lim,, _, 100 P"%g. Thus

¢ is a P—harmonic function, so that v, = c41x for some constant ¢, from Theorem 4.1.
Moreover, using the second equality of (138) and applying Lebesgue’s theorem w.r.t. the
P—invariant probability measure 7, we obtain that mz(g9) = 7&(7v), s0 79 = mr(9)1x.
Finally, applying the function inequality (137) to any fixed x € X and taking the supremum
on all the functions g € B such that |g| < 1x, we obtain the desired total variation convergence
of Theorem 4.12 since lim,, &, (x) = 0 from Lemma B.2. O
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C Proof of Lemmas 7.6, 7.10 and 7.11
Proof of Lemma 7.6. We deduce from the definitions of ﬁk and 7, that

¥y € BiY, Y Pulw,y) Ae({x}) = 0= Fe({y}).
€N

Using successively the above equality, the definitions of 7y and ﬁk, the P,—invariance of 7y,
and again the definition of 7, we obtain

¥y € By, Y Puwy)Fe{x}) = D Pilw,y) Fel{x})

z€eN rE€By,

= Z Py(z,y) me({x}) = m({y}) = 7({y}).

€ By,

Thus 7 is a ﬁk—invariant probability measure. To prove the uniqueness, consider any
P,—invariant probability measure 7 = (7({x}))zen. Then

vy € B, i{y}) = Prlx,y)i({z}) =0
€N

from the definition of ﬁk Thus

Vy € By, n({y}) = Zpkﬂfy ({z}) = ZPIMUZ/ ({2}) = > Plw,y) 7({z})

z€eN rEBy rEB

from the definition of P,. Thus 1 := (H({z}))sc B, is a Pp—invariant probability measure on
By.. This proves that n = 7. O
Proof of Lemma 7.10. Recall that by := 1x,c and F}, is the finite-dimensional space with
basis Cj, := {1x,,, i € Iy} U{bx}. The N x Np—matrix By is defined as the matrix of Py
with respect to Cj with Ny := dim Fy = Card (I) + 1. Note that

Pybi = Peby, = Qrby + br(0)ih = 0. (139)

Since g € Fj writes in the basis Cy as g = Zielk 9(zi 1) + g(Tk)by, where z; 5, € X, and
) € X\ X}, we can write for every j € I

Pklxm
= ﬁk;lXj,k = Z(ﬁklxj,k)(xi,k) 1Xi,k + (ﬁklxj’k)(fk) by, (since Pklxj7k S fk)
i€l
= > [(@klx, ) (@in) + 1x, , (wo) Yi(win)] 1x,, + [(Qulx,, ) (@k) + Lx, , (w0) Yi(@r)] br
i€},
= > [(@klx, ) (@in) + 1x,, (@0) Yi(@in)] 1x, , + Lx, . (o) bi-
i€l

The previous equalities show that By is a non-negative matrix. Moreover Equality Prlx = 1x
reads as matrix equality By -1 = 1 where 1, is the coordinate vector of 1x in the basis Cg.
Thus B}, is a stochastic matrix. O
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Proof of Lemma 7.11. Recall that by is defined by b = 1x — Zielk Ix,,. From ¢y :=
1x — Qrlx it follows that vy = by + Y;c;, 1x,, — Qelx. Define
teX; i

mi(f) = . fly) inf p(t,y)du(y)

and observe that Q,f = 3 m; k(f) 1x, - Then we deduce from (98) and (99) that

icly
Pof = (Quf) + f(zo) o, = Z mi e (f) 1x,, + fzo) (b + Z I, , — Qrlx)
icly icly
= Z [mix(f) + f(w0) — fzo) mik(lx)] 1x, , + f(z0)bk,
icly

so that (101) and >, i = 1 give

() = Y mik mak(f) + f(xo) — f (o) mig(1x)]

i€y,
= Y mamial) + 1o (1= 3 maminin)). (140)
i€}, 1€l

This proves Formula (102a). Now we prove that 7 defines a Py-invariant probability measure
n (X, X). Note that

Vie Iy, mip(lx) < /p(wz',k,y) dp(y) = (Plx)(zix) = 1,
X

thus

/sz )du(y) = migmir(lx) < 1.

i€l

It follows from this remark and from (140) that 7 Ty s a probability measure on X. Finally
By, - Fk is the coordinate vector of Pk f in Cy, since Pk f € Fp and Fy, is the coordinate vector
of P,f in C;. Consequently we deduce from (101) and (100) that

7u(Prf) = 7 By, Fy = m Fy, = 7 (f)-

Thus 7, is Pj-invariant.

D Proof of Theorem 8.1 and Proposition 8.3

Here we assume that P satisfy Condition (M, ) with hyy = 0 and pr(1x) < oo, and that
P € L(®B) where (B, || - ||) is a Banach space satisfying Assumptions (B). The properties of
Lemma 8.2 are repeatedly used below, that is: R € L£(8), the radius of convergence of the
power series p(z) := > v(R"14) 2" is larger than 1/ry where 75 denotes the spectral
radius of R on 93, and finally the series g, := le:of) z~ (k1) Rk g absolutely converges in 9B for
every z € C such that |z| > ry and for every g € B.
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Lemma D.1 Ifry < 1, then the following assertions hold for every z € C such that |z| > ryg.
The operator zI — P is invertible on B if, and only if, we have p(z~1) # 1. Moreover, if
[/)V(z_l) =1, then z is an eigenvalue of P on B, and £, :== {g € B : Pg = zg} =C- {EZ with
P, =S40 2=V REY being non zero in B and satisfying v(1,) = 1.

Proof. Let z € C be such that |z| > rs. Assume that zI — P is not one-to-one on ‘B, that
is: 39 € B, g # 0, Pg = zg. Note that lim, |z|7"||R"g|| = 0 using the definition of ry and
|z| > rg (use (116) with v € (7w, ]|2])). Since R € L(*B), Equality (44) of Lemma 4.15 can be
proved similarly, that is we have:

Y, > 0, I/(g) Z z—(k’-i-l)Rk’w =g— Z_(n+1)Rn+1g.
k=0

Then the following equality holds in %5

—+00

g=v(g) > =TV Rky

k=0

and v(g) # 0 since g is assumed to be non-zero. Note that g — v(g) is a continuous linear
map from B to C due to (115). Thus, integrating the previous equality w.r.t. v, we obtain
that v(g) = v(g9)p(z~1), thus p(2~!) = 1. We have proved by contrapositive that |z| > 74
and p(z~!) # 1 imply that 2I — P is one-to-one. Now prove that |z| > ry and p(z71) # 1
imply that zI — P is surjective on B. Let z € C be such that |z| > ry, let g € B and define

n
Yn>1, gn.:= Zz_(k+l)ng.
k=0

Using P = R + ¥ ® v we obtain that
ZGnz = Pgnz = 290z = Rine = v(Gn2 )0 = 9 — 2~ "R g — (g ). (141)

Next the following convergences hold, in B for the first two, in C for the last one

+o00
lim gn,z = gz = Z Z_(k+1)nga hyrln Pgn,z = sz, ngI-lr—loo V(an,z) = V(gz) (142)

n — +00
k=0

from Lemma 8.2 (use P € L(B) for the second one). Then, passing to the limit when n — +o0
in (141) provides the following equality in B:

(21 = P)gz = g — v(g:) (143)

In particular, with g = v, we obtain that
(2 = P)g. = (1—p(z7 ")) with ¢, :=> 2z FTDRRy,
k=0

since v(1,) = p(z~1). Consequently, if p(z~1) # 1, then

(21 = P) (ﬁz + V@)Jz> =9,



from which we deduce that zI — P is surjective since g, and Jz belong to B.

We have proved that, if z € C is such that |z| > ry, then p(z~!) # 1 implies that zI — P
is invertible on 8. Conversely let z € C be such that |z| > ry and p(z71) = 1. Let us prove
that zI — P is not invertible on B. Recall that the series ¢, := Z,Jgfa z~(k+1) RE4) absolutely
converges in B and that y({/;z) = p(z71) = 1 from Lemma 8.2. Moreover we have {/;Z # 0 in
%. This is obvious from I/(QZZ) # 0 if B is a space composed of functions. This is also true if
% is a space composed of classes of functions modulo 7 : Indeed ¥, = 0 in B would imply
that {EZ = 0 mr—a.s., which is impossible since V({bvz) # 0 and v is absolutely continuous
w.r.t. Tz from the inequality v < 75 (1)) " !7x derived from the minorization condition (M, )
and the P—invariance of 7y with (1) > 0. Next the equalities in (45) can be applied to
prove Equality Py, = 21, in 6. Thus zI — P is not one-to-one on ‘B, thus is not invertible

on *B. Finally, the fact that E, = C - v, follows from the first part of the proof. O
Now let By := {g € B : mx(g9) = 0}. Note that By is a closed subspace of B since the
linear form g — mx(g) is continuous from B to C from Condition (112). Thus (Bo, | - ||) is

a Banach space. Moreover By is P—stable (i.e. P(Bg) C By) from the P—invariance of mp.
Let Py denote the restriction of P to By.

Lemma D.2 Ifry <1, then I — Py is invertible on (Bo, || - ||)-

Proof. From (143) applied to z = 1, we obtain that

+o0o
VgeB, (I—P)g=g—pr(Ix)mr(g)y with gy := Zng c‘B
k=0

since v(g1) = pr(9) = pr(lx)mr(g) from (26). Hence, if mz(g) = 0, then g; is solution to
Poisson equation (I — P)g; = g. Moreover we know from Lemma D.1 that F; := {g € B :
Pg = g} has dimension one, i.e. £} = C- 1x. Hence two solutions to Poisson’s equation in 8B
differ from an additive constant. Consequently g1 := g1 —mz(g1)1x is the unique 7 —centered
solution in B to Poisson’s equation (I — P)g = g. This proves the claimed statement. O

Proof of Theorem 8.1. Let z € C be such that |z| > ry, 2 # 1, and p(27!) # 1. Then zI — P
is invertible on B from Lemma D.1. Thus zI — P, is also one-to-one on By. Now, let g € By.
From Lemma D.1 there exists h € B such that (zI — P)h = g, thus (z — 1)7z(h) = 7r(g) =0
from the P—invariance of 7. Hence mz(h) = 0 (i.e. h € Bg) since z # 1, and consequently
zI — Py is surjective on By. We have proved that, for any z € C such that |z| > rg, z # 1,
and p(z_l) # 1, the operator zI — Py is invertible on 9By. Moreover we know that I — Py is
invertible on B from Lemma D.2.

Now recall that p(z~1) # 1 for every z € C such that |2| = 1, z # 1, from the aperiodicity

condition (39) (i.e. z = 1 is the only complex number of modulus one solution to p(z~1) = 1).
Moreover, if z € C is such that |z| > 1, then p(z71) # 1 since

+00 oo
P < S r B [ < S o (R = () = 1.
n=1 n=1

Let 09 denote the spectral radius of Py on Bg, and recall that the prerequisites in spectral
theory are given by (S1)-(S3) in Subsection 6.2. From the above we then obtain that gy < 1
and that the following alternative holds:
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(a’) If Equation p(z~1) = 1 has no solution z € C such that ro < |z| < 1, then zI — Py is
invertible on B for every z € C such that |z| > rg. Thus gg < 7.

(b”) Otherwise, we have g = max {|z|: 2 € C, p(z7!) =1, ry < |2| < 1}.

Moreover recall that gy = limy, (|| P}|lo)"/" from Gelfand’s formula, where || - ||o denotes the
operator norm on By. Let p € (gg,1). Then there exists a positive constant ¢, such that:
| P5llo < cpp™. Thus

Vn>1,Vge®B, |[P'g—mp(g)lxl] = [P"(9—7mr(9)lx)] (from P"1x = Ix)

1P (9 — mr(9)1x)[|  (since g — mr(g)1x € Bo)
cop"llg — mr(9)1xll  (from [|F7 o < cpp™)
co(L+cllixl)p™llgll  (from (112)).

IN A

Using the definition (114) of oy, we then obtain that gy < go since p is any real number
in (0g,1). Hence Case (a) of Theorem 8.1 which corresponds to Case (a’) is proved. To
prove Case (b) of Theorem 8.1 which corresponds to the above case (V'), consider z € C such
that ro < |2| < 1, p(27!) = 1 and |z| = go. Then z is an eigenvalue of P from Lemma D.1,
ie.dg € B, g # 0, Pg = zg. Moreover, from the P—invariance of 7, we have 7z(g) = 27x(g),
thus 7x(g) = 0 since z # 1. Hence we have: Vn > 1, |[P"g — mr(g)1x|| = ||P"g|| = o'llg||. 1t
then follows from the definition of gy that ps > 09. Thus gy = gp in Case (b). Theorem 8.1
is proved. 0
Proof of Proposition 8.3. In case (b) we know that, for r € (rg, 1) sufficiently close to ry,
the set S, := {z € C, p(z71) =1, r < |z| < 1} is non-empty. Moreover S, is finite from
the analyticity of the power series p(-). The last assertion of Proposition 8.3 is proved in
Lemma D.1. O

E Proof of Lemma 8.11

Using P = R+ T it follows from Lemma 8.10 that P = P* = Ry + U; with R; = R* and
Uy = T* defined by: Vg € L%(7z), Urg = r(g)¢. Now for n > 2 set U, := P" — R}*. Note
that Property (125) is equivalent to

Vn > 1, Vg € L?(ms), Ung=>» malg- RFy)P"h¢. (144)
k=1
Property (144) is obvious for n = 1 from the definition of U; and R;. Next we have
Vn>2, P"—U,=R]=R"'R = (P" ' ~U,1)(P-U),

so that
Vn>2, U,=P" Uy +U,1R = P" U, + U,_1R". (145)

Now, if for some n > 2 we have

n—1

Vg € L2(7TR), U,_19 = Z 7TR(9 . Rk—lw)Pn—l—kc,
k=1
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then we deduce from (145) that

n—1
Vg € LQ(WR)a Ung = WR(?/)Q)PR_IC + ZWR(R*Q . Rk_ld))P"_l_k(
k=1

n—1

= WR(wg)P"_lc + Zﬂ'R(g . Rk?b)Pn_l_kC

k=1

= > malg- R PrRC
k=1

Property (144) is proved by induction.
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