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Abstract

Let {Xn}n∈N be an X-valued iterated function system (IFS) of Lipschitz maps de-
fined as: X0 ∈ X and for n ≥ 1, Xn := F (Xn−1, ϑn), where {ϑn}n≥1 are independent and
identically distributed random variables with common probability distribution ν, F (·, ·)
is Lipschitz continuous in the first variable and X0 is independent of {ϑn}n≥1. Under
parametric perturbation of both F and ν, we are interested in the robustness of the
V -geometrical ergodicity property of {Xn}n∈N, of its invariant probability measure and
finally of the probability distribution of Xn. Specifically, we propose a pattern of assump-
tions for studying such robustness properties for an IFS. This pattern is implemented for
the autoregressive processes with autoregressive conditional heteroscedastic errors, and
for IFS under roundoff error or under thresholding/truncation. Moreover, we provide a
general set of assumptions covering the classical Feller-type hypotheses, for an IFS to be
a V -geometrical ergodic process. An accurate bound for the rate of convergence is also
provided.

AMS subject classification : 60J05, 47B07, 62F99

Keywords : Markov chain, Geometric ergodicity, Perturbation, Non-linear stochastic
recursion, Autoregressive process.

1 Introduction

Let (X, d) be a Polish space equipped with its Borel σ-algebra X . The random variables
(r.v.) are assumed to be defined on a probability space (Ω,F ,P), and “i.i.d.” is the short-hand
for “independent and identically distributed”. Throughout the paper we are concerned with
iterated function systems of Lipschitz maps according to the following definition.

Definition 1.1 (IFS of Lipschitz maps) Let (V,V) be a measurable space, and let {ϑn}n≥1

be a sequence of V-valued i.i.d. random variables, with common distribution denoted by ν. Let
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X0 be a X-valued r.v. which is assumed to be independent of the sequence {ϑn}n≥1. Finally
let F : (X × V,X ⊗ V)→(X,X ) be jointly measurable and Lipschitz continuous in the first
variable. The associated iterated function system (IFS) is the sequence of random variables
{Xn}n∈N which, starting from X0, is recursively defined as follows:

∀n ≥ 1, Xn := F (Xn−1, ϑn). (1)

Let x0 ∈ X be fixed. For any a ∈ [0,+∞), we set Va(x) := (1 + d(x, x0))
a, and we denote by

(Ba, | · |a) the weighted-supremum Banach space associated with Va(·), that is

Ba :=

{
f : X→C measurable such that |f |a := sup

x∈X

|f(x)|
Va(x)

<∞
}
. (2)

Note that (B0, | · |0) corresponds to the Banach space of complex-valued bounded measurable
functions on X equipped with the supremum norm. The total variation distance between two
probability distributions (p.d.) µ0 and µ1 on X is defined by

∥µ0 − µ1∥TV := sup
|f |0≤1

|µ0(f)− µ1(f)|

where µi(f) :=
∫
X f(x) dµi(x), i = 0, 1. Let {Xn}n∈N be an IFS of Lipschitz maps. This is a

Markov chain on X with transition kernel P given by:

∀x ∈ X, ∀A ∈ X , P (x,A) = E
[
1A(F (x, ϑ1))

]
=

∫
V
1A(F (x, v)) dν(v). (3)

Recall that {Xn}n∈N is Va-geometrically ergodic if P has an invariant probability measure π
such that π(Va) <∞ and if there exists ρa ∈ (0, 1) and Ca ∈ (0,+∞) such that

∀n ≥ 1, ∀f ∈ Ba, |Pnf − π(f)1X|a ≤ Ca ρ
n
a |f |a. (4)

The Va-geometric ergodicity of IFS has been extensively studied (see e.g.[MT93, Als03, GHL11,
Wu04, DMPS18] and references therein). The common starting point in most of these works
is that P satisfies the so-called drift condition under the moment/contractive Condition (Ca)
below (e.g. see [Duf97]), for which we introduce the following notations. If ψ : (X, d)→(X, d)
is a Lipschitz continuous function, we define

L(ψ) := sup

{
d
(
ψ(x), ψ(y)

)
d(x, y)

, (x, y) ∈ X2, x ̸= y

}
. (5)

For all v ∈ V, set LF (v) := L
(
F (·, v)

)
to simplify. That F is Lipschitz continuous in the first

variable in Definition 1.1 reads as LF (v) < ∞ for any v ∈ V. Then, for every a ∈ [1,+∞),
Condition (Ca) writes as follows.

Condition (Ca). The function F (·, ·) and the sequence {ϑn}n≥1 satisfy:

E
[
d
(
x0, F (x0, ϑ1)

)a]
<∞ (6a)

E [LF (ϑ1)
a] < 1. (6b)

The condition a ≥ 1 in Condition (Ca) is just a technical assumption for applying Hölder
inequality for instance. In fact Condition (Ca) can be considered with a > 0 by replacing the
initial distance d with dα for some α ∈ (0, 1). Let us specify Condition (Ca) for the so-called
vector autoregressive models.
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Example 1.1 (Vector AutoRegressive model (VAR)) Assume that X := Rq for some
q ≥ 1. Let ∥ · ∥ be any norm of Rq, and define d(x, y) := ∥x − y∥ the associated distance.
Consider Va(x) := (1 + ∥x∥)a with a ∈ [1,+∞) (here x0 := 0), and let {Xn}n∈N be the
following IFS

X0 ∈ Rq, ∀n ≥ 1, Xn := AXn−1 + ϑn. (7)

Here F (x, v) := Ax + v where A = (aij) is a fixed real q × q-matrix. This is called a vector
or multivariate autoregressive model. We have LF (v) = ∥A∥ where ∥A∥ denotes the induced
norm of A corresponding to ∥·∥, and d

(
0, F (0, v)

)
= ∥v∥. Consequently, Condition (Ca) holds

for some a ∈ [1,+∞) provided that

E
[
∥ϑ1∥a

]
<∞ and ∥A∥ < 1. (8)

Moreover, if ϑ1 has a probability density function (p.d.f.) on Rq, then P is Va-geometrically
ergodic. More precisely Inequality (4) holds for any ρa ∈ (∥A∥, 1), see Remark 4.2.

The aim of this work is to use the results of [FHL13, HL14a, RS18] to investigate the
robustness first of the Va-geometrical ergodicity property (4), second of the stationary dis-
tribution π, third of the probability distribution of Xn. This study is made with respect to
parametric variations of both the function F and the p.d. of the noise r.v. ϑn in (1). For this
purpose, let us introduce the following definition.

Definition 1.2 (Parametric perturbation of IFS) Let us introduce the parameter θ :=
(ξ, γ) taking values in a subset Θ of some metric space. Let Fξ : (X×V,X ⊗V)→(X,X ) and
let {ϑ(γ)n }n≥1 be a sequence of V-valued r.v. both satisfying the assumptions of Definition 1.1.
The common parametric p.d. of {ϑ(γ)n }n≥1 is denoted by νγ. For any θ ∈ Θ, the process
{X(θ)

n }n∈N is the X−valued IFS of Lipschitz maps given by

X
(θ)
0 ∈ X, ∀n ≥ 1, X(θ)

n := Fξ(X
(θ)
n−1, ϑ

(γ)
n ). (9)

The transition kernel of the Markov chain {X(θ)
n }n∈N is denoted by Pθ, and µθ is the p.d. of X(θ)

0 .

The Markov chain {X(θ)
n }n∈N must be thought of as a perturbed model of some ideal model

{X(θ0)
n }n∈N with θ0 ∈ Θ̊, where Θ̊ denotes the interior of Θ. Next, pick θ0 ∈ Θ̊ and let us

introduce the following assumptions:

(H1) There exists a ≥ 1 such that Pθ0 is Va-geometrically ergodic with stationary distribution
denoted by πθ0 , that is Pθ0 satisfies (4) for some ρa ∈ (0, 1) and Ca > 0.

(H2) Ma := supθ∈Θ E
[
d
(
x0, Fξ

(
x0, ϑ

(γ)
1

))a]1/a
<∞.

(H3) κa := supθ∈Θ E
[
LFξ

(
ϑ
(γ)
1

)a]1/a
< 1.

(H4) ∆θ := ∥Pθ − Pθ0∥0,a −−−−→
θ→ θ0

0, where ∥Pθ − Pθ0∥0,a := sup
f∈B0, |f |0≤1

|Pθf − Pθ0f |a.

3



Assumption (H1) is the natural starting point for our perturbation issues. Note that
the assumptions (H2)–(H3) are nothing else but the uniform version with respect to θ of
Condition (Ca). As a by-product it follows from (H2)–(H3) that each Pθ satisfies a drift
condition with respect to the function Va. More precisely, let κ ∈ (κa, 1). Then the following
uniform in θ ∈ Θ drift condition holds true (see Appendix A):

∀θ ∈ Θ, PθVa ≤ δaVa +Ka with δa := κa and Ka :=
(1 + κa +Ma)

a(1 +Ma)
a

(κ− κa)a
. (10)

This implies that, for every θ ∈ Θ, Pθ admits an invariant probability measure denoted by
πθ. The following natural questions are much more difficult to address: Is the map θ 7→ πθ
continuous with respect to the total variation distance? Under Assumption (H1), do the
perturbed transition kernels Pθ satisfy the Va-geometrical ergodicity when θ is close to θ0? In
our context of parametric perturbation of IFS, these questions are addressed in the following
theorem using the results of [FHL13, HL14a, RS18].

Theorem 1.1 Under the assumptions (H1)–(H4), the following properties hold.

(P1) For every ρ ∈ (ρa, 1) there exist an open neighbourhood Vθ0 of θ0 and a positive constant
R such that

∀θ ∈ Vθ0 , ∀n ≥ 1, ∀f ∈ Ba, |Pn
θ f − πθ(f)1X|a ≤ Rρn |f |a.

(P2) lim
θ→ θ0

∥πθ − πθ0∥TV = 0. More precisely:

∀θ ∈ Θ, ∥πθ − πθ0∥TV ≤ exp(1)KaD
[ln(∆−1

θ )]−1

a

(1− δa)(1− ρa)
∆θ ln(∆−1

θ ) (11)

provided that ∆θ ∈ (0, exp(−1)), where the constants ρa, Ca, δa and Ka are given in
(H1) and (10), and Da = 2Ca(Ka + 1).

(P3) We have for every n ≥ 1 and for every θ ∈ Θ

∥∥µθPθ
n−µθ0Pθ0

n
∥∥
TV

≤ Ca ρa
n sup
|f |≤V

∣∣µθ(f)−µθ0(f)∣∣+exp(1)GaD
[ln(∆−1

θ )]−1

a

1− ρa
∆θ ln(∆−1

θ )

provided that ∆θ ∈ (0, exp(−1)), with Ga := max
{
Ka/(1−δa) , µθ0(Va)

}
. In particular,

if X(θ)
0 and X(θ0)

0 have the same p.d. µ then: lim
θ→ θ0

∥µPθ
n − µPθ0

n∥TV = 0.

In the general framework of V -geometrically ergodic Markov chains, Property (P1) and the
first statement in (P2) are proved in [FHL13, Th. 1] by using the Keller-Liverani perturbation
theorem [KL99]1. Inequality (11) in (P2) follows from [HL14a, Prop. 2.1] or [RS18, (3.19)].
The formulation [RS18, (3.19)] has been preferred to that in [HL14a, Prop. 2.1] in connection
with Property (P3). Property (P3) is proved in [RS18, Th. 3.2] by using the Wasserstein

1the real-valued parameter ε in [FHL13] may be replaced with the Θ-valued parameter θ.
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distance associated with a suitable metric on X defined from the Lyapunov function V , as
introduced in [HM11]. The goal of this work is to present various applications when both the
function F and the p.d. ν of the noise in Definition 1.1 are perturbed, and to show that the
weak continuity Assumption (H4) is well suited to such a case. This last claim is highlighted
by the following first simple application, where only the p.d. of the noise is perturbed.

Example 1.2 (IFS with perturbed noise) Consider the generic IFS introduced in Defi-
nition 1.1 with noise p.d. ν0. Its transition kernel Pν0 is given by

∀f ∈ B0, (Pν0f)(x) =

∫
f(F (x, y)) dν0(y).

Let us consider the specific perturbation scheme

X
(θ)
0 ∈ X, ∀n ≥ 1, X(θ)

n := F (X
(θ)
n−1, ϑ

(γ)
n ),

where {ϑ(γ)n }n≥1 is a sequence of V-valued i.i.d. r.v, with common parametric p.d. denoted by
νγ. That is, we consider an IFS with perturbed noise but fixed function F (e.g. the matrix A
is fixed in the VAR model introduced in Example 1.1). For any f ∈ B0 such that |f |0 ≤ 1, we
have

∀x ∈ X,
∣∣(Pνγf)(x)− (Pν0f)(x)

∣∣ ≤ ∥νγ − ν0∥TV . (12)

It follows that

∥Pνγ − Pν0∥0,a ≤ ∥Pνγ − Pν0∥0,0 := sup
f∈B0, |f |0≤1

|Pνγf − Pν0f |0 ≤ ∥νγ − ν0∥TV .

Hence (H4) is satisfied provided that lim ∥νγ − ν0∥TV = 0.

In Section 2, a second application of Theorem 1.1, which again illustrates the interest of
(H4), is provided for the real-valued Markov chain Xn := αXn−1 + σ(Xn−1)ϑn, for which
all the data α, σ(·) and the p.d. of the noise ϑ1 are perturbed. This Markov chain is called
an AutoRegressive process of order 1 with AutoRegressive Conditional Heteroscedastic errors
of order 1 (AR(1)-ARCH(1)). Such autoregressive models with conditional heteroscedastic
errors were introduced to allow the conditional variance of a time series models to depend
on past information. It turns out that such processes fit very well to many types of econo-
metrics and financial data where stochastic volatility must be taken into account (e.g. see
[Tsa10]). Note that the perturbation results of Section 2 can be extended to multivariate
AR(p)-ARCH(q) processes with any order (p, q) (see [MS10]) thanks to the material provided
in Section 5. In Section 3, a third application is presented in the framework of roundoff
errors. In applied mathematics, any analytic material must be run on computer to get prac-
tical answers. This concerns simulation, approximation, numerical schemes and so on. Thus,
when a Markov model is implemented on computer, the original transition kernel P is re-
placed with a perturbed one, say P̃ , and their difference may have a great impact on the
results. Such changes in computer simulations induced by floating point roundoff error were
discussed in [RRS98, BRR01]. In this case, the perturbed transition kernel takes the form
P̃ (x,A) := P (x, h−1(A)), where P is the transition kernel of a fixed IFS and where h : X→X
is close to the identity map. The weak continuity assumption (H4) is still proved to be well
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adapted as illustrated in Proposition 3.1 for VAR models defined in Example 1.1. Note that
the function Fξ in (9) is fixed in Example 1.2, so that we did not have to divide by V (x) to
prove (H4). Indeed the inequality ∥Pνγ − Pν0∥0,0 ≤ ∥νγ − ν0∥TV in Example 1.2 is directly
obtained and it automatically gives (H4). When Fξ in (9) is not fixed as in Sections 2-3, the
division by V (x) in the definition ∥ · ∥0,a must be done to investigate (H4). In Section 4 we
propose a new approach to prove the Va-geometrical ergodicity of IFS of Lipschitz maps under
Condition (Ca), together with a bound on the spectral gap of P (i.e. the infimum bound of
the positive real numbers ρa satisfying (4)). In Section 5 further applications of Theorem 1.1
are presented. The goal of Subsection 5.1 is to show that the arguments developed in Sec-
tions 2 and 3 for specific IFS of Lipschitz maps naturally extend to more general IFS. In
Subsection 5.2 we apply Theorem 1.1 to the case where the function F and the p.d.f. ν of
{ϑn}n≥1 in (1) are perturbed by thresholding and by truncation respectively.

The perturbation theory for Markov chains is a natural issue which has been widely de-
veloped in the last decades. As mentioned in [SS00, p. 1126] (see also [FHL13]), the strong
continuity assumption introduced in [Kar86], which involves the iterates of both perturbed
and unperturbed transition kernels, does not hold in general for V -geometrically ergodic
Markov chains, excepted for particular perturbed transition kernels (e.g. when Pθ = P0+ θD,
see [AANQ04]) and for uniformly ergodic Markov chains (i.e. when (4) holds with a = 0),
see [Mit05, MA10, AFEB16, JMMD]. Similar questions arise for dynamical systems, and
[Kel82, p. 316] seems to be the first work which introduced a weaker continuity assumption
using two norms as in (H4) (instead of a single one in the standard theory). Then, the
Keller-Liverani perturbation theorem [KL99, Bal00, Liv04] has proved to be very powerful for
studying the behaviour of the Sinai-Ruelle-Bowen measures of certain perturbed dynamical
systems (e.g. see [Bal00, Th. 2.10] and [GL06, Th. 2.8]). In the context of V -geometrically
ergodic Markov chains, Keller’s approach is used in [SS00] and the Keller-Liverani theorem
is applied in [FHL13, HL14a]. The recent works [RS18, MARS20, and references therein]
combine Keller’s approach and the elegant idea of [HM11] using the Wasserstein distance
associated with a suitable metric on X defined from the Lyapunov function V . Perturbation
issues have been also investigated in the framework of roundoff errors [RRS98, BRR01] (see
Section 3) and in the special case of reversible transition kernels as in Markov Chain Monte
Carlo methods, e.g. see [MALR16, NR] and the references therein. The purpose of this paper
is to show that the material developed in [FHL13, HL14a, RS18] is very well suited to the
perturbation of general IFS. In the IFS context, Assumption (H4) has so far only been investi-
gated in [FHL13, RS18] for the perturbation of univariate AR(1) processes Xn := αXn−1+ϑn
with respect to the contracting coefficient α. Our work shows that Assumption (H4) allows
us to deal with perturbation schemes of the general IFS (1) with respect to both function F
and p.d. of ϑ1.

Let us mention that this paper does not address the statistical issues when the model
is misspecified. Indeed, we do not study the convergence properties of estimators of the
parameters of the Markov model when the data are generated under the “wrong” model and
the size n of the data growths is large (e.g. see [GW98, DM12] in the Markov context).
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2 Robustness of AR(1) with ARCH(1) errors

According to Definition 1.2, we consider the following perturbed AR(1)-ARCH(1) real-valued
{X(θ)

n }n∈N defined by: X(θ)
0 is a given real-valued r.v. and

∀n ≥ 1, X(θ)
n := Fξ(X

(θ)
n−1, ϑ

(γ)
n ) (13)

where Fξ(x, v) = αx + v (β + λx2)1/2 with constants α ∈ R, β > 0, λ > 0, {ϑ(γ)n }n∈N has
common p.d.f. νγ and is independent of X(θ)

0 . Therefore, we have θ = (ξ, γ) with ξ :=
(α, β, λ) ∈ R× (0,+∞)2 and γ ∈ Γ where Γ is some metric space (typically Γ ⊂ R). Thus Θ
is a subset of R×(0,+∞)2×Γ. Here d(x;x0) = |x−x0| and x0 := 0 so that Va(x) = (1+ |x|)a.
The Markov kernel Pθ of {X(θ)

n }n∈N is given by Pθ(x,A) :=
∫
R 1A(y) pθ(x, y) dy (A ∈ X ) with

pθ(x, y) :=
(
β + λx2

)−1/2
νγ

(
y − αx(

β + λx2
)1/2). (14)

Next, let us report the following observations with respect to basic quantities required in the
assumptions (H2) and (H3) .

1. It can be checked (see Lemma B.1) that

LFξ
(ϑ1) = max

(
|α−

√
λϑ1|; |α+

√
λϑ1|

)
. (15)

Hence, the real number κa in (H3) is

κa = sup
θ∈Θ

(∫
R
max

(
|α−

√
λv|; |α+

√
λv|
)a
νγ(v)dv

)1/a

. (16)

2. The real number Ma in (H2) is given by

Ma := sup
θ∈Θ

√
β E

[∣∣ϑ(γ)1

∣∣a]1/a = sup
θ∈Θ

√
β

(∫
R
|v|aνγ(v)dv

)1/a

. (17)

Note that, if β lies in a compact set, then Ma <∞ under the following uniform moment
condition for the p.d.f. of ϑ(γ)1 : supγ∈Γ

∫
R |v|aνγ(v)dv <∞.

Let us formulate the assumptions under which the conclusions of Theorem 1.1 hold true
for {X(θ)

n }n∈N. Let θ0 = (α0, β0, λ0, γ0) ∈ Θ̊. We denote by L1(R) the usual Lebesgue space
and by ∥ · ∥L1(R) its norm.

(H’123) There exists a ≥ 1 such that

(a) For every r > 0, the function

y 7→ gθ0,r(y) := inf
x∈[−r,r]

pθ0(x, y) = inf
x∈[−r,r]

(
β0 + λ0x

2
)−1/2

νγ0

(
y − α0x(

β0 + λ0x2
)1/2)

is positive on a subset of [−r, r] which has a positive Lebesgue’s measure.
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(b) Ma <∞, where Ma is given in (17).

(c) κa < 1, where κa is given in (16).

(H’4) limγ→ γ0 ∥νγ − νγ0∥L1(R)=0.

Proposition 2.1 Under the conditions (H’123)–(H’4) for the AR(1)-ARCH(1) processes given
in (13), the assertions (P1)-(P2)-(P3) of Theorem 1.1 hold.

Proof. Let θ0 = (α0, β0, λ0, γ0) ∈ Θ̊ and let a ≥ 1 provided by (H’123). As already discussed
the conditions (H’123)-(b)-(c) imply that the assumptions (H2) and (H3) of Theorem 1.1 hold.
Moreover, use (47) to state that there exist δa < 1, Ka > 0 and ra > 0 such that

Pθ0Va ≤ δaVa +Ka1[−ra,ra].

Next, Condition (H’123)-(a) ensures that

∀x ∈ [−ra, ra], ∀A ∈ X , Pθ0(x,A) ≥ φra,θ0(A)

with the positive measure φr,θ0(dy) = gθ,r(y) dy. In others words, S = [−ra, ra] is a small
set for Pθ0 . Moreover φr,θ0(S) > 0 from (H’123)-(a). Then Assumption (H1) holds true, see
[MT93][Bax05, Th 1.1]. The following lemma asserts that Assumption (H4) holds true under
Condition (H’4), so that the proof is complete. □

Lemma 2.1 If limγ→ γ0 ∥νγ − νγ0∥L1(R) = 0 then

lim
θ→ θ0

∥Pθ − Pθ0∥0,a = 0.

Proof. Let f ∈ B0 be such that |f |0 ≤ 1. We have

∀x ∈ X,
|(Pθf)(x)− (Pθ0f)(x)|

Va(x)
=

|
∫
R
(
pθ(x, y)− pθ0(x, y)

)
f(y)dy|

Va(x)

≤
∫
R
∣∣pθ(x, y)− pθ0(x, y)

∣∣dy
Va(x)

.

Let ε > 0. Since the last term is bounded from above by 2/Va(x) and limx→+∞ Va(x) = +∞,
there exists B > 0 such that

|x| > B =⇒ ∀θ ∈ Θ,
|(Pθf)(x)− (Pθ0)f(x)|

Va(x)
<
ε

2
. (18)

It follows that the conclusion of the lemma holds true provided that, under the condition
limγ→ γ0 ∥νγ − νγ0∥L1(R) = 0, we have

∀A > 0, lim
θ→ θ0

sup
|x|≤A

∫
R |pθ(x, y)− pθ0(x, y)|dy

Va(x)
= 0. (19)
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Indeed, (18) and (19) with A = B ensure that ∥Pθ − Pθ0∥0,a < ε when θ is sufficiently close
to θ0. Let us prove (19). It follows from (14) that∫

R
|pθ(x, y)− pθ0(x, y))|dy

=

∫
R

∣∣∣∣∣(β + λx2
)−1/2

νγ

(
y − αx(

β + λx2
)1/2

)
−
(
β0 + λ0x

2
)−1/2

νγ0

(
y − α0x(

β0 + λ0x2
)1/2

)∣∣∣∣∣ dy
≤

∫
R

(
β + λx2

)−1/2

∣∣∣∣∣νγ
(

y − αx(
β + λx2

)1/2
)

− νγ0

(
y − α0x(

β0 + λ0x2
)1/2

)∣∣∣∣∣ dy (20)

+

∫
R
νγ0

(
y − α0x(

β0 + λ0x2
)1/2

)∣∣∣(β + λx2
)−1/2 −

(
β0 + λ0x

2
)−1/2

∣∣∣ dy. (21)

First, using the change of variables z = (y − αx)/(β + λx2)1/2 in the integral (20) and the
triangle inequality we obtain

(20) =

∫
R

∣∣∣∣∣νγ(z)− νγ0

((
β + λx2

β0 + λ0x2

)1/2

z + x
α− α0

(β0 + λ0x2)1/2

)∣∣∣∣∣ dz
≤
∫
R
|νγ(z)− νγ0(z)| dz +

∫
R

∣∣νγ0(z)− νγ0
(
bβ,λ(x)z + aα(x)

)∣∣ dz (22)

where

bβ,λ(x) :=

(
β + λx2

β0 + λ0x2

)1/2

and aα(x) := x
α− α0

(β0 + λ0x2)1/2
.

The first integral in (22) does not depend on x and is equal to ∥νγ−νγ0∥L1(R) which converges
to 0 when γ→ γ0 from the assumption. Now let A > 0 be fixed. It follows from Lemma B.2
that lim(β,λ)→(β0,λ0) sup|x|≤A |bβ,λ(x) − 1| = 0 and limα→α0 sup|x|≤A aα(x) = 0. Then under
Condition (H’4), Lemma B.3 allows us to conclude that the second integral in (22) is such
that

lim
(α,β,λ)→(α0,β0,λ0)

sup
|x|≤A

∫
R

∣∣νγ0(z)− νγ0
(
bβ,λ(x)z + aα(x)

)∣∣ dz = 0.

Second, let us consider the integral (21). We must show that the supremum of this integral
on x ∈ [−A,A] converges to 0 when (β, λ)→(β0, λ0). We obtain for any x ∈ R such that
|x| ≤ A:

(21) =
∣∣∣(β + λx2

)−1/2 −
(
β0 + λ0x

2
)−1/2

∣∣∣× ∫
R
νγ0

(
y − α0x(

β0 + λ0x2
)1/2

)
dy

=
(
β0 + λ0x

2
)−1/2

∣∣∣∣ 1

bβ,λ(x)
− 1

∣∣∣∣× ∫
R
νγ0

(
y − α0x(

β0 + λ0x2
)1/2

)
dy

=

∣∣∣∣1− bβ,λ(x)

bβ,λ(x)

∣∣∣∣ ∫
R
νγ0(z) dy (change of variables z = (y − α0x)/

(
β0 + λ0x

2
)1/2)

≤
|1− bβ,λ(x)|

bβ(A)
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with bβ(A) :=
(
β/(β0 + λ0A

2)
)1/2 ≤ min|x|≤A bβ,λ(x) and

∫
R νγ0(z)dz = 1. We know that

lim(β,λ)→(β0,λ0) sup|x|≤A |bβ,λ(x)− 1| = 0 from Lemma B.2, so that the expected convergence
holds. □

Remark 2.1 If the p.d.f. νγ0 of the noise of the unperturbed AR(1)-ARCH(1) process is
continuous on R, then Condition (H’123)-(a) (stated to prove (H1)) can be omitted in Propo-
sition 2.1. Actually, under the condition

∫
R LFξ0

(v)a νγ0(v) dv < 1 which is contained in
(H’123)-(c), Assumption (H1) holds with any real number ρa (and the associated constant Ca)
such that (∫

R
LFξ0

(v)a νγ0(v) dv

)1/a

< ρa < 1.

Indeed the kernel pθ0(x, y) given by (14) is continuous, so that Remark 4.3 and Proposition 4.2
ensure that, under the conditions (H’123)-(b) and (H’123)-(c), Pθ0 satisfies (4) for any ρa
satisfying the above condition. In other words, if the p.d.f. νγ0 is continuous on R, then only
the conditions (H’123)-(b) and (H’123)-(c) with Θ = {θ0} are useful to obtain (H1).

Remark 2.2 It is well-known from Scheffé’s lemma [Sch47] that the almost everywhere point-
wise convergence of the p.d.f. νγ to the p.d.f. νγ0 when γ→ γ0 provides the L1(R)-convergence
required in (H’4).

3 Robustness of IFS under roundoff error

From [RRS98, BRR01], the effect of roundoff errors using a Markov chain with transition
kernel P yields to consider a Markov chain with perturbed transition kernel of the form
P̃ (x,A) := P (x, h−1(A)), where h : X→X is such that h(x) is close to x. Let us consider an
X-valued IFS as defined in Definition 1.1. Let (hθ)θ∈Θ be a family of functions on X such that
hθ → id when θ→ θ0 in a sense to be specified later, where id denotes the identity map on X,
Θ is a subset of a metric space and θ0 ∈ Θ̊. Then the associated roundoff IFS {X(θ)

n }n∈N is
defined by

X
(θ)
0 ∈ X, ∀n ≥ 1, X(θ)

n = Fθ(X
(θ)
n−1, ϑn)

where Fθ(x, v) := hθ(F (x, v)) and Fθ0(x, v) = id(F (x, v)) = F (x, v). The perturbed/roundoff
transition kernels associated with {X(θ)

n }n∈N (or (hθ)θ∈Θ) are given by

∀f ∈ B0, ∀x ∈ X, (Pθf)(x) = P (f ◦ hθ)(x) =
∫
V
f
(
(hθ ◦ F )(x, v)

)
dν(v). (23)

When the Markov kernel Pθ0 is assumed to be V -geometrically ergodic, the first natural
question is to know whether Pθ remains V -geometrically ergodic for θ close to θ0. The
simplest way used in [RRS98] to study this question is to assume that hθ → id uniformly
on Rq when θ→ θ0 (i.e. ∀x ∈ Rq, ∥h(x) − x∥ ≤ ε(θ) with limθ→ θ0 ε(θ) = 0). However, as
mentioned in [BRR01], this assumption is too restrictive in practice since the roundoff errors
for some x ∈ Rq is obviously proportional to x. In [BRR01], the authors introduced the
following weaker assumption ∥h(x) − x∥ ≤ ε(θ)∥x∥ with limθ→ θ0 ε(θ) = 0, and proved that
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the V -geometric ergodicity property is stable for the roundoff Markov kernels under some mild
assumptions on the function V . Below, as a by-product of Theorem 1.1, we find again this
result in the specific instance of the roundoff process associated with a VAR model {Xn}n∈N,
but more importantly the sensitivity of the p.d. of X(θ)

n and of the stationary distribution of
{X(θ)

n }n∈N when θ→ θ0 is addressed too. These two issues are not investigated in [BRR01].

Let {Xn}n∈N be a Rq-valued VAR model as defined in Example 1.1. To simplify we assume
that, for some p ≥ 1, Θ is an open subset of Rp containing θ0 := 0 (the null vector of Rp), and
we consider a family (hθ)θ∈Θ of functions on X := Rq such that h0 = id. Thus the roundoff
process {X(θ)

n }n∈N associated with Fθ(x, y) := hθ(Ax+v) is the Markov chain with transition
kernel Pθ (see (23))

∀f ∈ B0, ∀x ∈ X, (Pθf)(x) =

∫
Rq

f
(
hθ(Ax+ v)

)
dν(v). (24)

If g : Rq →Rq is differentiable and if z ∈ Rq, we denote by ∇g(z) the Jacobian matrix of g at
z, and we set ∥∇g∥∞ := supz∈Rq ∥∇g(z)∥, where ∥ · ∥ here denotes the induced matrix-norm
of Example 1.1. For the sake of simplicity the norms chosen on Rq and Rp are both denoted
by ∥ · ∥. We introduce the following assumptions in order to apply Theorem 1.1 to {X(θ)

n }n∈N:

(H”1) ∥A∥ < 1 and there exists a ≥ 1 such that E
[
∥ϑ1∥a

]
<∞.

(H”2) supθ∈Θ
∫
Rq ∥hθ(v)∥a ν(v) dv <∞.

(H”3) For every θ ∈ Θ, hθ is differentiable on Rq with supθ∈Θ ∥∇hθ∥∞ < ∥A∥−1.

(H”4) (a) The p.d. of ϑ1 admits a bounded continuous p.d.f. ν satisfying the following
monotonicity-type condition: There exists M > 0 such that for every z1, z2 ∈ Rq

M ≤ ∥z1∥ ≤ ∥z2∥ =⇒ ν(z2) ≤ ν(z1).

(b) For every θ ∈ Θ, the map hθ is a C1-diffeomorphism on Rq with inverse function
denoted by gθ, and the following conditions hold:

i. ∃c ∈ (0, 1), ∀θ ∈ Θ, ∀z ∈ Rq, ∥gθ(z)− z∥ ≤ c∥z∥.
ii. ∀z ∈ Rq, lim

θ→ 0
gθ(z) = z.

iii. supθ∈Θ ∥∇gθ∥∞ <∞, and lim
θ→ 0

∇gθ = id uniformly on each balls of Rq centred
at 0, that is:

∀A > 0, ∀η > 0, ∃α > 0, ∀θ ∈ Θ, ∥θ∥ < α, sup
∥z∥≤A

∥∇gθ(z)− id∥ < η.

Proposition 3.1 Under the conditions (H”1)–(H”4) for a VAR process as defined in Exam-
ple 1.1, the assertions (P1)–(P3) of Theorem 1.1 hold for every real number ρa ∈ (∥A∥, 1)
(and associated constant Ca).

Remark 3.1 Condition (H”4)-(b) focuses on the inverse function gθ of hθ because gθ natu-
rally occurs in the proof after a change of variable. Note that, as in [BRR01], the uniform

11



convergence limθ→ 0 gθ = id (or limθ→ 0 hθ = id) is not required on the whole space Rq in the
above assumptions. For instance the roundoff functions hθ(x) = x + θx (simple perturbation
of id on R) satisfy the above assumptions, but neither the convergence limθ→ 0 gθ = id, nor
the convergence limθ→ 0 hθ = id, are uniform on R.

Proof. Recall that θ0 = 0 here. We know that Assumption (H1) holds, see Remark 4.2. Next,
for any θ ∈ Θ and z ∈ Rq, set Γθ(z) = |det∇gθ(z)|. Then, using (24), Pθ has the form

∀f ∈ B0, ∀x ∈ Rq, (Pθf)(x) =

∫
Rq

f(z) ν
(
gθ(z)−Ax

)
Γθ(z) dz (25)

from the change of variable z = hθ(Ax + v). Recall that Pθ is the transition kernel of the
Rq-valued IFS {X(θ)

n }n∈N associated with Fθ(x, v) := hθ(Ax+ v). Then (H”2) is nothing else
but (H2) (here x0 = 0), while (H3) is implied by (H”3) from Taylor’s inequality applied to hθ.

Next we prove (H4). For every r > 0, let B(0, r) = {z ∈ Rq : ∥z∥ ≤ r}. Let f ∈ B0

be such that |f |0 ≤ 1, and let x ∈ Rq. Fix ε > 0. First let K ≡ K(ε) > 0 be such that
(1 +K)−a < ε/2. Then

∀x ∈ Rq \B(0,K),

∣∣(Pθf)(x)− (P0f)(x)
∣∣

V (x)
≤ 2

V (x)
< ε. (26)

Now we assume that x ∈ B(0,K). Note that∣∣(Pθf)(x)− (P0f)(x)
∣∣ ≤ ∫

Rq

∣∣ν(gθ(z)−Ax
)
Γθ(z) − ν(z −Ax)

∣∣ dz (27)

since g0 = id. Set d := 2/(1 − c) where c is given in (H”4)-(b)-i. Note that ∥Ax∥ ≤ K and
that (H”4)-(b)-i provides: ∀z ∈ Rq, ∥gθ(z)∥ ≥ (1 − c)∥z∥. Then we have for every z ∈ Rq

such that ∥z∥ ≥ dK

∥gθ(z)−Ax∥ ≥ ∥gθ(z)∥ − ∥Ax∥ ≥ (1− c)∥z∥ −K ≥ (1− c)∥z∥ − 1

d
∥z∥ ≥ 1− c

2
∥z∥.

It follows from (H”4)-(a) that we have for every θ ∈ Θ

∥z∥ ≥ B ≡ B(ε) := max (dM, dK) =⇒ ν
(
gθ(z)−Ax

)
≤ ν

(
d−1z

)
.

Since the function z 7→ ν(d−1z) is Lebesgue-integrable on Rq, we can choose C ≡ C(ε) > 0
such that

∫
∥z∥≥C ν(d

−1z) dz ≤ ε/2(γ + 1) where

γ := sup
θ∈Θ

sup
z∈Rq

Γθ(z).

Note that γ < ∞ from the first condition of (H”4)-(b)-iii and from the continuity of det(·).
Set D = max(B,C). We deduce from the triangular inequality that for every θ ∈ Θ∫

∥z∥≥D

∣∣ν(gθ(z)−Ax
)
Γθ(z) − ν(z −Ax)

∣∣ dz ≤ (γ + 1)

∫
∥z∥≥C

ν(d−1z) dz ≤ ε

2
. (28)
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Now we investigate the integrand in (27) for z ∈ B(0, D) (recall that x ∈ B(0,K)). First,
setting m := supu∈Rq ν(u), we have for every z ∈ B(0, D) and for every x ∈ B(0,K)∣∣ν(gθ(z)−Ax

)
Γθ(z) − ν(z −Ax)

∣∣ ≤ γ
∣∣ν(gθ(z)−Ax

)
− ν(z −Ax)

∣∣+m
∣∣Γθ(z)− 1

∣∣. (29)

We have: ∀z ∈ B(0, D), ∥gθ(z)∥ ≤ (1 + c)D (use (H”4)-(b)-i). From the standard statement
for uniform convergence of differentiable functions, we deduce from the conditions (H”4)-(b)-ii
and (H”4)-(b)-iii that limθ→ 0 gθ = id uniformly on B(0, D). Let ℓD denote the volume of
B(0, D) with respect to Lebesgue’s measure on Rq. From the previous uniform convergence
and from the uniform continuity of ν on B(0, (1+c)D+K), there exists an open neighbourhood
V0 of θ = 0 in Rp such that

∀θ ∈ V0, ∀z ∈ B(0, D), ∀x ∈ B(0,K),
∣∣ν(gθ(z)−Ax

)
− ν(z −Ax)

∣∣ < ε

4γℓD
.

Moreover there exists an open neighbourhood V ′
0 ⊂ V0 of θ = 0 in Rp such that

∀θ ∈ V ′
0, ∀z ∈ B(0, D),

∣∣Γθ(z)− 1
∣∣ < ε

4mℓD

from (H”4)-(b)-iii and from the uniform continuity of the function det(·) on every compact
subset of the set Mq(R) of real q × q−matrices. Then it follows from (29) that

∀θ ∈ V ′
0, ∀z ∈ B(0, D), ∀x ∈ B(0,K),

∣∣ν(gθ(z)−Ax
)
Γθ(z) − ν(z −Ax)

∣∣ ≤ ε

2ℓD
.

Integrating this inequality on B(0, D) gives

∀θ ∈ V ′
0, ∀x ∈ B(0,K),

∫
∥z∥≤D

∣∣ν(gθ(z)−Ax
)
Γθ(z) − ν(z −Ax)

∣∣ dz ≤ ε

2
. (30)

We deduce from (27), (28) and (30) that

∀θ ∈ V ′
0, ∀x ∈ B(0,K),

∣∣(Pθf)(x)− (P0f)(x)
∣∣

V (x)
≤
∣∣(Pθf)(x)− (P0f)(x)

∣∣ ≤ ε

This inequality combined with (26) gives (H4). □

4 Va-geometric ergodicity of IFS

For a ≥ 1, define for any x ∈ X, p(x) := 1 + d(x, x0), so that Va(x) := p(x)a, and let us
introduce the following space La:

La :=

{
f : X→C : ma(f) := sup

{
|f(x)− f(y)|

d(x, y) (p(x) + p(y))a−1
, (x, y) ∈ X2, x ̸= y

}
< ∞

}
.

(31)
Such Lipschitz-weighted spaces have been introduced in [LP83] to obtain the quasi-compactness
of Lipschitz kernels (see also [MR89, Hen93, Duf97, Ben98, HH01]). Note that, for f ∈ La,
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we have for all x ∈ X: |f(x)| ≤ |f(x0)|+ 2a−1ma(f)Va(x) so that |f |a < ∞ for any f ∈ La.
Hence La ⊂ Ba. Moreover La is a Banach space when equipped with the norm

∀f ∈ La, ∥f∥a := ma(f) + |f |a. (32)

Let {Xn}n∈N be an IFS of Lipschitz maps as in Definition 1.1. For all x ∈ X and v ∈ V, we
set Fvx := F (x, v). Recall that we have set LF (v) := L(Fv) in Section 1. Since F is fixed in
this section, we simply write L(v) for LF (v). Similarly, for every (v1, . . . , vn) ∈ Vn (n ∈ N∗),
define:

Fvn:v1 := Fvn ◦ · · · ◦ Fv1 and L(vn : v1) := L(Fvn:v1). (33)

By hypothesis we have L(v) <∞, thus L(vn : v1) <∞. Note that, for each a ≥ 1, the limit

κ̂a := lim
n→+∞

E [L(ϑn : ϑ1)
a]

1
na

exists in [0,+∞], since the sequence (E[L(ϑn : ϑ1)
a])n∈N∗ is sub-multiplicative. In this sec-

tion we first present standard contraction/moment Condition (Ĉa) (counterpart of (Ca) in
Section 1) for P given in (3) to have a geometric rate of convergence on La (see Proposi-
tion 4.1). Then the passage to the Va-geometric ergodicity is addressed in Proposition 4.2.

Condition (Ĉa). For some a ∈ [1,+∞):

E
[
d
(
x0, F (x0, ϑ1)

a
)]
<∞ (34a)

κ̂a < 1. (34b)

Note that Condition (34b) is equivalent to the following one

∃N ∈ N∗, E [L(ϑN : ϑ1)
a] < 1 (35)

and Condition (Ca) in Section 1 corresponds to (34a) and to (35) with N = 1.

The properties of the next proposition can be derived from the results of [Duf97, Chapter 6],
also see [Ben98] for the existence and uniqueness of the invariant distribution. For convenience,
in Appendix C, the properties (36a) and (36b) are proved with explicit constants under the
assumptions (34a) and (35) with N = 1 (i.e. E[L(ϑ1)a] < 1).

Proposition 4.1 ([Duf97, Chapter 6]) Under Condition (Ĉa), P has a unique invariant
distribution on (X,X ), denoted by π, and we have π(d(x0, ·)a) < ∞. Moreover the Markov
kernel P continuously acts on La, and for any κ ∈ (κ̂a, 1), there exists positive constants
c ≡ cκ and c′ ≡ c′κ such that:

∀f ∈ La, ∀n ≥ 1, |Pnf − π(f)1X|a ≤ c κnma(f) (36a)
∀f ∈ La, ∀n ≥ 1, ∥Pnf − π(f)1X∥a ≤ c′ κn ∥f∥a. (36b)

In particular, if κ1,a := E[L(ϑ1)a]1/a < 1, then

∀f ∈ La, ∀n ≥ 1, |Pnf − π(f)1X|a ≤ c1 κ1,a
nma(f), (37)

where the constant c1 is defined by c1 := ξ(a−1)/a ∥π∥1
(
1 + ∥π∥a

)a−1, with

ξ := sup
n≥1

sup
x∈X

(PnVa)(x)

Va(x)
<∞ and ∥π∥b :=

(∫
X
Vb(y) dπ(y)

) 1
b

for b := 1, a.
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Under Condition (Ĉa), Property (36a) with f := Va and n := 1 gives PVa ≤ ξ1 Va for some
ξ1 ∈ (0,+∞), so that P continuously acts on Ba. But it is worth noticing that Property (36a)
(or (37)) does not provide the Va-geometric ergodicity (4) since (36a) (or (37)) is only es-
tablished for f ∈ La. Under Condition (Ĉa) Alsmeyer proved in [Als03, Prop. 5.2] that, if
{Xn}n∈N is Harris recurrent and the support of π has a non-empty interior, then {Xn}n∈N is
Va-geometrically ergodic. Under Condition (Ĉa), the Markov chain {Xn}n∈N is shown to be
Va-geometrically ergodic in [Wu04, Prop. 7.2] provided that P and PN for some N ≥ 1 are
Feller and strongly Feller respectively. An alternative approach is proposed in Proposition 4.2
below. The bound (38) is the same as in [Wu04, Prop. 7.2], but the Feller-type assumptions
of [Wu04] are replaced with the following one: P ℓ : B0→Ba for some ℓ ≥ 1 is compact (see
Remark 4.2 for comparisons).

Proposition 4.2 Let us assume that Condition (Ĉa) holds true and that P ℓ : B0→Ba for
some ℓ ≥ 1 is compact. Then P is Va-geometrically ergodic, and the spectral gap ρVa(P ) of
P on Ba (i.e. the infimum bound of the positive real numbers ρa such that Property (4) holds
true) satisfies the following bound:

ρVa(P ) ≤ κ̂a. (38)

Proof. To avoid confusion, we simply denote by P the action of P (x, dy) on Ba, and we
denote by P|La

the restriction to P on La. Let δ and κ be such that κ̂a < κ < δ < 1. Then
there exists N ∈ N∗ such that c κNma(Va) ≤ δN , where c ≡ cκ is defined in (36a). Then
Property (36a) applied to f := Va gives: PNVa ≤ δNVa + π(Va). We deduce from [HL14a,
Prop. 5.4 and Rk. 5.5] that P is a power bounded quasi-compact operator on Ba and that its
essential spectral radius ress(P ) satisfies ress(P ) ≤ κ̂a since δ is arbitrarily close to κ̂a (e.g. see
[Hen93] for the definition of the quasi-compactness and of the essential spectral radius of a
bounded linear operator). From these properties it follows that the adjoint operator P ∗ of P
is quasi-compact on the dual space B′

a of Ba and that ress(P ∗) ≤ κ̂a.

Next, let us establish that P is Va-geometrically ergodic from [HL14b, Prop. 2.1]. Let
r0 ∈ (κ̂a, 1). Prove that λ := 1 is the only eigenvalue of P on Ba such that r0 ≤ |λ| ≤ 1. Let
λ ∈ C be such an eigenvalue. Then λ is also an eigenvalue of P ∗ since P and P ∗ have the
same spectrum and ress(P

∗) ≤ κ̂a < |λ|. Thus there exists f ′ ∈ B′
a such that f ′ ◦ P = λf ′.

But f ′ is also in L′
a since we have: ∀f ∈ La, |⟨f ′, f⟩| ≤ ∥f ′∥B′

a
|f |a ≤ ∥f ′∥B′

a
∥f∥a. This

proves that λ is an eigenvalue of the adjoint of P|La
. Hence λ is a spectral value of P|La

.
More precisely λ is an eigenvalue of P|La

since, from (36b), P|La
is quasi-compact on La and

ress(P|La
) ≤ κ̂a < r0 ≤ |λ|. Finally we have λ = 1. Indeed, if λ ̸= 1, then any f ∈ La

satisfying Pf = λf is such that π(f) = 0, thus f = 0 from (36b) (pick κ ∈ (κ̂a, r0)).

Now prove that 1 is a simple eigenvalue of P on Ba. Using the previous property and the fact
that P is power bounded and quasi-compact on Ba, we know that Pn→Π with respect to the
operator norm on Ba, where Π is the finite rank eigen-projection on Ker(P−I) = Ker(P−I)2.
The last equality holds since P is power bounded on Ba. Set m := dimKer(P − I). From
[Wu04, Prop. 4.6] (see also [Her08, Th. 1]), there exist m linearly independent nonnegative
functions f1, . . . , fm ∈ Ker(P − I) and probability measures µ1, . . . , µm ∈ Ker(P ∗ − I) satis-
fying µk(Va) <∞ such that: ∀f ∈ Ba, Πf =

∑m
k=1 µk(f) fk. That 1 is a simple eigenvalue of

P on Ba then follows from the first assertion of Proposition 4.1.
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From [HL14b, Prop. 2.1] and the previous results, we have proved that, for any r0 ∈ (κ̂a, 1),
we have ρVa(P ) ≤ r0. Thus ρVa(P ) ≤ κ̂a. □

Remark 4.1 Inequality (38) means that, for any real number ρ ∈ (κ̂a, 1), there exists a
constant C ≡ Cρ such that

∀n ≥ 1, ∀f ∈ Ba, |Pnf − π(f) 1X|a ≤ C ρn |f |a.

Unfortunately neither the proof of Proposition 4.1, nor that of [Wu04, Prop. 7.2], give any
information on the constant C. Computing such an explicit constant C is an intricate issue
which is not addressed in this work (e.g. see [MT94, LT96, Bax05, HL14a, HL14b] and the
reference therein). It is worth mentioning that explicit bounds on ρ and C are also provided
in [GP14] for a parametrized family of transition kernels.

Remark 4.2 Assume that every closed ball of X is compact. Let {Xn}n∈N be a Markov
chain such that its transition kernel P satisfies the following hypothesis: There exist a positive
measure η on (X,X ) and a measurable function K : X2→[0,+∞) such that:

∀x ∈ X, P (x, dy) = K(x, y) dη(y). (39)

If P ℓ is strongly Feller for some ℓ ≥ 1, then P 2ℓ is compact from B0 to Ba (e.g. see[GHL11,
Lemma 3]). Hence, if P admits a kernel as in (39), then assuming that PN is strongly
Feller for some N in [Wu04, Prop. 7.2] is more restrictive than the compactness hypothesis
of Proposition 4.2. A detailed comparison with the approach [Wu04, Prop. 7.2] is provided in
[GHL11] for general Markov kernels. Finally, note that the transition kernel P of an VAR
process (see Example 1.1) is always strongly Feller. Indeed, let f ∈ B0 such that ∥f∥0 ≤ 1.
Then we have

∀(x, x′) ∈ Rq × Rq,
∣∣(Pf)(x′)− (Pf)(x)

∣∣ ≤ ∫
Rq

∣∣ν(y −A(x′ − x))− ν(y)
∣∣ dy.

Since t 7→ ν(· − t) is continuous from Rq to the Lebesgue space L1(Rq), it follows that P
is strongly Feller. Thus the Va-geometric ergodicity of P claimed in Example 1.1 follows
from Proposition 4.2. See also [Wu04, Sect. 8].

Remark 4.3 If {Xn}n∈N is an IFS of Lipschitz maps as in Definition 1.1 such that its tran-
sition kernel P satisfies Assumption (39) with K continuous in the first variable, then P is
strongly Feller, thus P 2 is compact from B0 to Ba, so that the conclusions of Proposition 4.2
hold true under Condition (Ĉa). Indeed we have for all (x, x′) ∈ X2 and for any f ∈ B0∣∣(Pf)(x′)− (Pf)(x)

∣∣ ≤ ∫
X

∣∣K(x′, y)−K(x, y)
∣∣ dη(y).

Since K(·, ·) ≥ 0,
∫
K(·, y)dη(y) = 1, and limx′ →xK(x′, y) = K(x, y), we deduce from

Scheffé’s theorem that limx′ →x

∫
X |K(x′, y) − K(x, y)| dη(y) = 0. This proves the desired

statement. Note that the previous argument even shows that {Pf, |f |0 ≤ 1} is equicontinuous,
so that the compactness of P : B0→B1 can be directly proved from Ascoli’s theorem.
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Remark 4.4 In the proof of Proposition 4.2 the drift inequality PNVa ≤ δNVa + π(Va) has
been written with any δ ∈ (κ̂a, 1) by using Property (36a) of Proposition 4.1 in order to deduce
the bound ress(P ) ≤ κ̂a on the essential spectral radius of P (acting on Ba). This bound was
sufficient since the remainder of the proof of Proposition 4.2 is based on Property (36b) from
which we deduce the bound ress(P|La

) ≤ κ̂a. Actually, for any δ ∈ (κ̂ a
a , 1), the drift inequality

PNVa ≤ δNVa + K with some N ≥ 1 and K > 0 can be derived from Condition (Ĉa)
by adapting the proof in Appendix B (with here Pθ0 = P and Θ = {θ0}). Then the more
accurate bound ress(P ) ≤ κ̂ a

a can be derived from [HL14a, Prop. 5.4 and Rem. 5.5] under the
compactness assumption of Proposition 4.2. See also [Wu04, Prop. 7.2] which provides the
same bound under Feller-type assumptions.

5 Further applications

Theorem 1.1 has been applied in Section 2 for the real-valued AR(1) with ARCH(1) errors
models (see Proposition 2.1), and in Section 3 for roundoff errors of an VAR model (see
Proposition 3.1). Although these applications have been presented for specific IFS, it is worth
noticing that they give a general road map to investigate the issues (P1)-(P2)-(P3) of Section 1
for other instances of Rq-valued IFS, provided that the p.d. of the noise νγ in Definition 1.2
admits an p.d.f. with respect to Lebesgue’s measure on V = Rq and that the change of variable
v 7→ z = Fξ(x, v) is feasible for every x ∈ Rq, where Fξ(·, ·) is the perturbed function involved
in Definition 1.2. In Subsection 5.1 we propose two examples to support this claim. Finally
in Subsection 5.2 we discuss the robustness of IFS of Lipschitz maps under perturbation by
some thresholding and truncation.

5.1 A general non-linear time series model

Denoting by GLq(R) the set of invertible real q × q−matrices, consider an IFS {Xn}n∈N of
the form

∀n ≥ 1, Xn = ψ(Xn−1) +B(Xn−1)ϑn (40)

where ψ : Rq →Rq, B : Rq →GLq(R) and where the random variables {ϑn}n≥1 have common
p.d.f. ν. If B(x) = Iq for any x ∈ Rq where Iq is the identity q × q-matrix, this Markov
chain is called a functional-coefficient AR model. The Markov model (40) encompasses a
very large class of non-linear time series models (e.g. see [MT93, Chap. 2], [Tsa10, Chap. 4]),
[CP02, Cli07a, Cli07b, Cli07a, MS10, and references therein].

As a generalization of Section 2, consider the following general parametric perturbation of
the Rq−valued IFS {Xn}n∈N defined in (40):

∀n ≥ 1, X(θ)
n = ψξ(X

(θ)
n−1) +Bξ(X

(θ)
n−1)ϑ

(γ)
n

with some parametrized maps ψξ : Rq →Rq and Bξ : Rq →GLq(R), and with an i.i.d. sequence
{ϑ(γ)n }n≥1 of Rq-valued r.v. with common parametric p.d.f. denoted by νγ (hence θ = (ξ, γ)).
Then, noticing that for every x ∈ Rq the change of variable v 7→ z := ψξ(x) +Bξ(x) v is valid
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and leads to Pθ(x,A) :=
∫
R 1A(z) pθ(x, z) dz (A ∈ X ) with

pθ(x, z) :=
∣∣ detBξ(x)

∣∣−1
νγ
(
Bξ(x)

−1(z − ψξ(x))
)

(41)

the following remarks are relevant to investigate the assumptions (H1)–(H4) of Theorem 1.1.

(R1) If the p.d.f. νγ0 of the unperturbed IFS (corresponding to some θ0 = (ξ0, γ0)), as well as
the functions ψξ0 and Bξ0 , are continuous on Rq, then it follows from Remark 4.3 and
Proposition 4.2 that Pθ0 is Va−geometrically ergodic provided that the unperturbed IFS
satisfies Condition (Ca). More precisely, in this case, Assumption (H1) holds with any
real number ρa (and the associated constant Ca) such that

E
[
LFξ0

(
ϑ
(γ0)
1

)a]1/a
< ρa < 1 where Fξ0(x, v) = ψξ0(x) +Bξ0(x) v.

(R2) The moment/contractive conditions (6a) and (6b) related to θ0 = (ξ0, γ0) in (R1),
involve some expectations which depend on the above function Fξ0 and on the p.d.f. νγ0 .
Then the conditions (H2) and (H3) consist in assuming that these expectations are
respectively bounded and strictly less than 1 in a uniform way on the parameters θ :=
(ξ, γ) near θ0 = (ξ0, γ0) (reducing the set Θ if necessary).

(R3) Thanks to Formula (41), Condition (H4) holds provided that for every A > 0

lim
θ→ θ0

sup
∥x∥≤A

∫
Rq

∣∣pθ(x, z)− pθ0(x, z)
∣∣

(1 + ∥x∥)a
dz = 0

since the previous integral is less than 2/(1 + A)a for ∥x∥ > A. Moreover the above
integral on Rq can be decomposed on some ball of Rq and on its complementary in order
to use uniform continuity and decay properties of the kernel pθ(·, ·) (see the proof of
Proposition 5.1 in Appendix D).

Next, as a generalization of Section 3, consider the IFS defined by (40) under roundoff
error. If (hθ)θ∈Θ is the roundoff family with hθ close to h0 = id when θ→ 0, then the roundoff
transition kernel Pθ(x,A) = P (x, h−1

θ (A)) writes as Pθ(x,A) :=
∫
R 1A(z) pθ(x, z) dz with

pθ(x, z) := Γθ(z) ν
(
B(x)−1(gθ(z)− ψ(x))

)
(42)

from the change of variable v 7→ z := hθ(ψ(x)+B(x)v), where gθ denotes the inverse function
of hθ and Γθ(z) :=

∣∣ detBξ(x)
∣∣−1|det∇gθ(z)|. Using here the kernels in (42), the remarks

(R1)–(R3) then hold.

5.2 Robustness of IFS under thresholding/truncation

Here we consider X := Rd (d ≥ 1) equipped with the euclidean norm ∥·∥, and V := Rq (q ≥ 1)
equipped with some norm still denoted by ∥ · ∥ for the sake of simplicity. Let {Xn}n∈N be an
IFS of Lipschitz maps

X0 ∈ Rd, ∀n ≥ 1, Xn := F (Xn−1, ϑn) (43)
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with F : Rd × Rq →Rd and {ϑn}n≥1 satisfying the assumptions of Definition 1.1. Suppose
that the p.d. of ϑ1 is absolutely continuous with respect to Lebesgue’s measure on Rq, with
p.d.f. denoted by ν. Assume that {Xn}n∈N is V -geometrically ergodic. Then, a natural
question is: What happens if we consider a perturbation of the IFS (43) by some thresholding
and/or truncation? Such an issue may be raised as soon as a numerical implementation of the
model is considered. Thus, let us investigate the robustness of the IFS (43) when thresholding
the function F on the infinite set X and truncating the p.d.f. ν on Rq. More precisely, for any
ξ ∈ (0,+∞) let Φξ : Rd→Rd be the following thresholding function at level ξ:

∀x ∈ Rd, Φξ(x) = min
( ξ

∥x∥
, 1
)
x =

{
x if ∥x∥ ≤ ξ

ξ x
∥x∥ if ∥x∥ > ξ.

(44)

Moreover, for any γ ∈ (0,+∞), define the truncated p.d.f. νγ at level γ by:

∀v ∈ Rq, νγ(v) = cγ ν(v) 1B(0,γ)(v) with cγ :=

(∫
B(0,γ)

ν(v) dv

)−1

where B(0, γ) denotes the ball centred at 0 with radius γ in Rq. Then, according to Defini-
tion 1.2, we consider the following perturbed IFS {X(θ)

n }n∈N

X
(θ)
0 ∈ X, ∀n ≥ 1, X(θ)

n := Fξ(X
(θ)
n−1, ϑ

(γ)
n ) with Fξ(x, v) := Φξ

(
F (x, v)

)
(45)

where the sequence {ϑ(γ)n }n≥1 of Rq-valued i.i.d. r.v. is assumed to admit the common p.d.f. νγ .
Note that the stability of quantitative bounds for Markov chains via truncation rather than
thresholding is studied in [MARS20]. However it is worth mentioning that we cannot set
Φξ(x) = 0 for x ∈ Rd such that ∥x∥ > ξ as in [MARS20, Subsection 3.2, Th. 9]) since the
resulting perturbed process is no more an IFS of Lipschitz maps. Morevover, note that the
study of {X(θ)

n }n∈N does not fit to the framework of Section 3. Indeed, the family {Fξ, ξ > 0}
does not satisfy the assumptions of Section 3 since Φξ is neither bijective nor differentiable.
By contrast, each function Φξ is 1−Lipschitz (i.e. L(Φξ) = 1) and this property is well suited
to our perturbation approach. Therefore, the next Proposition 5.1 is stated in the general
framework of Definition 1.1 up to the slight condition of absolute continuity of the p.d. of
ϑ1 with respect to Lebesgue’s measure on Rq. The proof of Proposition 5.1 is postponed to
Appendix D.

Proposition 5.1 Assume that the unperturbed IFS {Xn}n∈N given in (43) satisfies Defini-
tion 1.1 with ϑ1 having an p.d.f. on Rq. Moreover suppose that Assumption (H1) holds for
some a ≥ 1 and that

M̃a := E
[
∥F
(
0, ϑ1

)
∥a
]1/a

<∞, κ̃a := E
[
LF

(
ϑ1
)a]1/a

< 1 and E[∥ϑ1∥a] <∞. (46)

Let κa ∈ (κ̃a, 1), and let Θ := (0,+∞)× (γ0,+∞) with γ0 > 0 defined by the condition:

∀γ > γ0, cγ ≤ (κa/κ̃a)
a .

Then the perturbed IFS {X(θ)
n }n∈N defined by (45) with θ ∈ Θ satisfies the assertions (P1)–(P3)

of Theorem 1.1 with
∆θ → 0 when ξ→+∞ and γ→+∞.
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More precisely, for every ε ∈ (0, 2) define Aε = 2aε−a − 1. Then we have ∆θ ≤ ε provided
that θ := (ξ, γ) ∈ Θ is such that

|cγ − 1|+
(
1 +

(
κa
κ̃a

)a)(E
[
∥ϑ1∥a

]
γa

+
(2Aεκ̃a)

a + (2M̃a)
a

ξa

)
≤ ε.

A Proof of (10)

Suppose that the assumptions (H2)-(H3) are fulfilled. Then we prove the drift inequality (10)
in Section 1. In fact, for any κ ∈ (κa, 1), we prove that the following strengthened inequality
holds:

∀θ ∈ Θ, PθVa ≤ δaVa +Ka1[−ra,ra] (47)

where the constants δa < 1 and Ka > 0 are given in (10), and where ra := (1 +Ma + κa −
κ)/(κ− κa). We have for any θ ∈ Θ and any x ∈ X(

(PθVa)(x)

Va(x)

)1/a

=

(
E

[(
1 + d(Fξ(x, ϑ

(γ)
1 );x0)

1 + d(x;x0)

)a])1/a

≤

(
E

[(
1 + d

(
Fξ(x, ϑ

(γ)
1 );Fξ(x0, ϑ

(γ)
1 )
)
+ d(Fξ(x0, ϑ

(γ)
1 );x0)

1 + d(x;x0)

)a])1/a

≤

(
E

[(
1

1 + d(x;x0)
+ LFξ

(ϑ
(γ)
1 ) +

d(Fξ(x0, ϑ
(γ)
1 );x0)

1 + d(x;x0)

)a])1/a

≤ 1

1 + d(x;x0)
+ E

[
LFξ

(ϑ
(γ)
1 )a

]1/a
+

E
[
d(Fξ(x0, ϑ

(γ)
1 );x0)

a
]1/a

1 + d(x;x0)
(Holder inequality).

It follows from the assumptions (H2)-(H3) that

∀θ ∈ Θ, ∀x ∈ X,
(
(PθVa)(x)

Va(x)

)1/a

≤ 1

1 + d(x;x0)
+ κa +

Ma

1 + d(x;x0)
. (48)

For any κ ∈ (κa, 1), set ra := (1 +Ma + κa − κ)/(κ− κa) > 0. Then we have for every x ∈ X
such that d(x;x0) > ra

1 +Ma

1 + d(x;x0)
≤ 1 +Ma

1 + ra
= κ− κa.

It follows that for every θ ∈ Θ and for every x ∈ X such that d(x;x0) > ra

(PθVa)(x) ≤ κa Va(x). (49)

Moreover, for every θ ∈ Θ and for every x ∈ X such that d(x;x0) ≤ ra, we deduce from (48)
that

(PθVa)(x) ≤ Fa Va(x) ≤ Fa(1 + ra)
a (50)

where Fa := (1 + κa +Ma)
a. Finally combining (49) and (50) provides (47), thus (10), with

δa := κa
a < 1 and Ka := Fa(1 + ra)

a > 0.
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B Complements on Proposition 2.1

First we prove Property (15).

Lemma B.1 Let (α, β, λ) ∈ R × (0,+∞)2 and: ∀(x, v) ∈ R2, F (x, v) := αx + v
√
β + λx2.

Then we have for every v ∈ R

L(v) := sup
(x,y)∈R2,x ̸=y

∣∣F (x, v)− F (y, v)
∣∣

|x− y|
= max

(
|α−

√
λv|; |α+

√
λv|
)
. (51)

Proof. Let v ∈ R be fixed, and define: ∀x ∈ R, Fv(x) := F (x, v). Then

∀x ∈ R, F ′
v(x) = α+

λxv

(β + λx2)1/2
and F ′′

v (x) =
λβv

(β + λx2)3/2
.

Property (51) is obvious if v = 0. Assume that v > 0. Then F ′
v is strictly increasing, so that

inf
x∈R

F ′
v(x) = lim

x→−∞
F ′
v(x) = α−

√
λv ≤ α+

√
λv = lim

x→+∞
F ′
v(x) = sup

x∈R
F ′
v(x).

Then L(v) ≤ max(|α−
√
λv|; |α+

√
λv|) follows from Taylor’s inequality. If v < 0, then F ′

v is
strictly decreasing, so that

inf
x∈R

F ′
v(x) = lim

x→+∞
F ′
v(x) = α+

√
λv ≤ α−

√
λv = lim

x→−∞
F ′
v(x) = sup

x∈R
F ′
v(x),

and the same conclusion holds. That L(v) ≥ max(|α −
√
λv|; |α +

√
λv|) follows from the

inequality L(v) ≥ |F ′
v(x)| for any x ∈ R, which is easily deduced from the definition of L(v)

in (51). Hence we obtain that L(v) ≥ limx±∞ |F ′
v(x)|. The proof of (51) is complete. □

Next, we prove the two following lemmas used in the proof of Proposition 2.1.

Lemma B.2 Let (α0, β0, λ0) ∈ R× (0,+∞)2. For any (α, β, λ) ∈ R× (0,+∞)2 and for any
x ∈ R, define

bβ,λ(x) :=

(
β + λx2

β0 + λ0x2

)1/2

and aα(x) := x
α− α0√
β0 + λ0x2

.

Then for any A > 0

lim
(β,λ)→(β0,λ0)

sup
|x|≤A

∣∣bβ,λ(x)− 1
∣∣ = 0 and lim

α→α0

sup
|x|≤A

aα(x) = 0.

Proof. Let A > 0. We have for any x ∈ R such that |x| ≤ A∣∣bβ,λ(x)2 − 1
∣∣ = ∣∣∣∣ β + λx2

β0 + λ0x2
− 1

∣∣∣∣ = ∣∣∣∣β − β0 + (λ− λ0)x
2

β0 + λ0x2

∣∣∣∣ ≤ 1

β0

[
|β − β0|+ |λ− λ0|A2

]
.

Therefore we have lim(β,λ)→(β0,λ0) sup|x|≤A |bβ,λ(x)2 − 1| = 0. Since 1 + bβ,λ(x) ≥ 1, we have
|bβ,λ(x) − 1| ≤ |bβ,λ(x)2 − 1|, so that the first convergence is proved. The second one holds
since sup|x|≤A

∣∣aα(x)∣∣ ≤ A |α− α0|/
√
β0. □
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The following lemma is an easy extension of the classical continuity property of the map
f 7→ f(·+ a) from R to L1(R).

Lemma B.3 For any f ∈ L1(R), we have

lim
(a,b)→(0,1)

∫
R
|f(a+ bz)− f(z)|dz = 0.

Proof. Let CK(R) be the set of continuous functions on R with compact support. First,
if g ∈ CK(R), then the desired convergence follows from Lebesgue’s theorem. Second, if
f ∈ L1(R), then we have for every g ∈ CK(R) and for every (a, b) ∈ R2 such that b ≥ 1/2∫

R

∣∣f(a+ bz)− f(z)
∣∣dz

≤
∫
R

∣∣f(a+ bz)− g(a+ bz)
∣∣dz + ∫

R

∣∣g(a+ bz)− g(z)
∣∣dz + ∫

R

∣∣g(z)− f(z)
∣∣dz

=
1

b

∫
R

∣∣f(y)− g(y)
∣∣dy + ∫

R

∣∣g(a+ bz)− g(z)
∣∣dz + ∫

R

∣∣g(z)− f(z)
∣∣dz

≤
∫
R

∣∣g(a+ bz)− g(z)
∣∣dz + 3∥f − g∥L1(R).

Then we conclude by using the density of CK(R) in L1(R). □

C Proof of (36a)–(36b) under the assumptions (34a) and (35)
with N = 1

Thoughout this section, the conditions (34a) and (35) with N = 1 are assumed to hold.
Note that (35) with N = 1 is κ1,a = E[L(ϑ1)a]1/a < 1. We prove the properties (36a) and
(36b) of Proposition 4.1 with explicit constants. Under the general assumption κ̂a < 1 of
Condition (Ĉa), the proof of (36a)-(36b) is similar (replace P with PN with N such that
E[L(ϑN : ϑ1)

a] < 1).

That the constant ξ in Proposition 4.1 is finite can be easily deduced from the drift in-
equality (47) which holds here with Pθ0 = P , Θ = {θ0}, and with κ1,a in place of κa. Now
let us introduce some notations. If µ is a probability measure on X and X0 ∼ µ, we make
a slight abuse of notation in writing {Xµ

n}n∈N for the associated IFS given in Definition 1.1.
We simply write {Xx

n}n∈N when µ := δx is the Dirac mass at some x ∈ X. We denote by Ma

the set of all the probability measures µ on X such that ∥µ∥a := (
∫
X Va(y) dµ(y))

1/a < ∞.
Finally, for n ∈ N and for any probability measures µ1 and µ2 on X, define:

∆n(µ1, µ2) := d
(
Xµ1

n , Xµ2
n

) (
p(Xµ1

n ) + p(Xµ2
n )
)a−1

.
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Lemma C.1 We have: ∀n ≥ 1, ∀(µ1, µ2) ∈ Ma ×Ma

E
[
∆n(µ1, µ2)

]
≤ ξ

a−1
a κn

1,a E[d(X
µ1
0 , Xµ2

0 )]
(
∥µ1∥a + ∥µ2∥a

)a−1
. (52)

Furthermore we have for all f ∈ La:

E
[
|f(Xµ1

n )− f(Xµ2
n )|

]
≤ ξ

a−1
a ma(f)κ

n
1,a E[d(X

µ1
0 , Xµ2

0 )]
(
∥µ1∥a + ∥µ2∥a

)a−1
. (53)

Proof. Note that Xµ
n = Fϑn:ϑ1X

µ
0 from Definition 1.1 and the notations introduced in (33).

If a := 1, then (52) follows from the independence of the ϑn’s and from the definition of L(v)
and κ1,a. Now assume that a ∈ (1,+∞). Without loss of generality, one can suppose that the
sequence {ϑn}n≥1 is independent from (Xµ1

0 , Xµ2
0 ). Also note that, if µ ∈ Ma, then we have

E
[
p(Xµ

n )
a
]
=

∫
X
(PnVa)(x)dµ(x) ≤ ξ ∥µ∥aa.

From Holder’s inequality (use 1 = 1/a+ (a− 1)/a), we obtain

E
[
∆n(µ1, µ2)

]
= E

[
d
(
Fϑn:ϑ1X

µ1
0 , Fϑn:ϑ1X

µ2
0

) (
p(Xµ1

n ) + p(Xµ2
n )
)a−1

]
≤ E[d(Xµ1

0 , Xµ2
0 )]E

[
L(ϑn : ϑ1)

(
p(Xµ1

n ) + p(Xµ2
n )
)a−1

]
≤ E[d(Xµ1

0 , Xµ2
0 )]E

[
L(ϑn : ϑ1)

a
] 1
a E
[(
p(Xµ1

n ) + p(Xµ2
n )
)a]a−1

a

≤ E[d(Xµ1
0 , Xµ2

0 )]E
[
L(ϑ1)

a
]n

a ξ
a−1
a (∥µ1∥a + ∥µ2∥a)a−1.

This proves (52). Property (53) follows from (52) and the definition of ma(f). □

Now recall that we consider the case N = 1 in (35). Let us prove the inequality (36a) in
this case (that is (37)). Property (53), applied to µ1 := δx and µ2 := π gives∣∣Pnf(x)− π(f)

∣∣ ≤ E
[
|f(Xx

n)− f(Xπ
n )|
]

≤ ξ
a−1
a ma(f)κ

n
1,a E[d(x,Xπ

0 )]
(
∥δx∥a + ∥π∥a

)a−1
.

Next observe that ∥δx∥a = p(x) and

E[d(x,Xπ
0 )] ≤ E

[
d(x, x0) + d(x0, X

π
0 )
]
≤ p(x) + π(d(x0, ·)) ≤ p(x) ∥π∥1.

Hence E[d(x,Xπ
0 )] (∥δx∥a + ∥π∥a)a−1 ≤ p(x)a∥π∥1 (1 + ∥π∥a)a−1. This proves the expected

inequality.

Finally, to prove (36b), it remains to study ma(P
nf) for f ∈ La. Inequality (53) applied

to µ1 := δx and µ2 := δy for any (x, y) ∈ X2 gives:

∀f ∈ La, |Pnf(x)− Pnf(y)| ≤ ξ
a−1
a ma(f)κ

n
1,a d(x, y)

(
p(x) + p(y)

)a−1
.

Thus ma(P
nf) ≤ ξ

a−1
a ma(f)κ

n
1,a. Since ma(1X) = 0, this gives

ma

(
Pnf − π(f)1X

)
≤ ξ

a−1
a ma(f)κ

n
1,a.

Combining the last inequality with (37) gives (36b).
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D Proof of Proposition 5.1

For every θ := (ξ, γ) ∈ Θ := (0,+∞)× (γ0,+∞) we have

E
[
∥Fξ

(
0, ϑ

(γ)
1

)
∥a
]
=

∫
Rd

∥Φξ

(
F (0, v)

)
∥a νγ(v) dv ≤

(
κa
κ̃a

)a ∫
Rq

∥F (0, v)∥a ν(v) dv <∞

so that Assumption (H2) holds with x0 = 0 andMa := M̃aκa/κ̃a. Moreover note that LΦξ
≤ 1,

so that
∀v ∈ V, LFξ

(v) ≤ LF (v).

Hence we have for every θ = (ξ, γ) ∈ Θ

E
[
LFξ

(
ϑ
(γ)
1

)a]
=

∫
Rd

LFξ
(v)a νγ(v) dv ≤ cγ

∫
Rd

LF (v)
a ν(v) dv ≤ cγ κ̃

a
a ≤ κa

a.

Thus Assumption (H3) holds. It remains to check Assumption (H4) and to specify the error
term ∆θ. Let P (respectively Pθ) denote the transition kernel of the unperturbed IFS {Xn}n∈N
(respectively of the perturbed IFS {X(θ)

n }n∈N). Let ε > 0, and let f ∈ B0 be such that |f |0 ≤ 1.
First note that we have for every x ∈ Rd satisfying ∥x∥ > Aε∣∣(Pθf)(x)− (Pf)(x)

∣∣
Va(x)

≤ 2

Va(x)
≤ ε (54)

by definition of Aε in Proposition 5.1. Next, for every θ := (ξ, γ) ∈ Θ and for every x ∈ Rd

define the following subset Eθ,x and Gθ,x of Rq:

Eθ,x :=
{
v ∈ Rq : v ∈ B(0, γ), ∥F (x, v)∥ ≤ ξ

}
, Gθ,x :=

{
v ∈ Rq : v ∈ B(0, γ), ∥F (x, v)∥ > ξ

}
.

From the definition of the thresholding function Φξ, we have for every x ∈ Rd

(Pθf)(x) =

∫
Rq

f
(
Fξ(x, v)

)
νγ(v) dv

= cγ

∫
Eθ,x

f
(
F (x, v)

)
ν(v) dv + cγ

∫
Gθ,x

f(ηx,v) ν(v) dv

with ηx,v := ξ∥F (x, v)∥−1 F (x, v) . Hence

∣∣(Pθf)(x)− (Pf)(x)
∣∣ ≤ |cγ − 1|

∫
Eθ,x

ν(v) dv + (1 + cγ)

∫
Rq\Eθ,x

ν(v) dv

≤ |cγ − 1|+
(
1 +

(
κa
κ̃a

)a)(
P
(
∥ϑ1∥ > γ

)
+ P

(
∥F (x, ϑ1)∥ > ξ

))
from the definition of Rq \ Eθ,x and the condition cγ ≤ (κa/κ̃a)

a. Now let x ∈ Rd be such
that ∥x∥ ≤ Aε. Then

∀v ∈ Rq, ∥F (x, v)∥ ≤ LF (v)Aε + ∥F (0, v)∥
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from F (x, v) = (F (x, v)− F (0, v)) + F (0, v) and from the triangular inequality. Therefore[
LF (v)Aε ≤

ξ

2
and ∥F (0, v)∥ ≤ ξ

2

]
=⇒ ∥F (x, v)∥ ≤ ξ,

from which we deduce that

P
(
∥F (x, ϑ1)∥ > ξ

)
≤ P

(
LF (ϑ1) >

ξ

2Aε

)
+ P

(
∥F (0, ϑ1)∥ >

ξ

2

)
≤ (2Aε)

a

ξa
E
[
LF (ϑ1)

a
]
+

2a

ξa
E
[
∥F (0, ϑ1)∥a

]
≤ (2Aεκ̃a)

a + (2M̃a)
a

ξa

from Markov inequality. Consequently we obtain that for every x ∈ Rd such that ∥x∥ ≤ Aε∣∣(Pθf)(x)− (Pf)(x)
∣∣

Va(x)

≤
∣∣(Pθf)(x)− (Pf)(x)

∣∣
≤ |cγ − 1|+

(
1 +

(
κa
κ̃a

)a)(E
[
∥ϑ1∥a

]
γa

+
(2Aεκ̃a)

a + (2M̃a)
a

ξa

)
. (55)

The conclusion of Proposition 5.1 follows from (54)-(55).
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