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Geometric p-mixing property of the interarrival times
of a stationary Markovian Arrival Process
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Abstract

In this note, the sequence of the interarrivals of a stationary Markovian Arrival process
is shown to be p-mixing with a geometric rate of convergence when the driving process
is p-mixing. This provides an answer to an issue raised in the recent paper [4] on the
geometric convergence of the autocorrelation function of the stationary Markovian Arrival
process.
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1 Introduction

We provide a positive answer to a question raised in [4] on the geometric convergence of
the autocorrelation function associated with the interarrival times of a stationary m-state
Markovian Arrival Process (MAP). Indeed, it is shown in [3, Prop. 3.1] that the increment
sequence {1, := S, — Sy—1 }n>1 associated with a discrete time stationary Markov additive
process {(X,, Sn) bnen € XxR? is p-mixing with a geometric rate provided that the driving
stationary Markov chain { X, },en is p-mixing. There, X may be any measurable set. In
the case where the increments {7}, },> are non-negative random variables, {(X,,, S5) }nen
is a Markov Renewal Process (MRP). Therefore, we obtain the expected answer to the
question in [4] since such an MRP with {7, },>1 being the interarrival times can be
associated with a m-state MAP and the p-mixing property of {7}, },>; with geometric
rate ensures the geometric convergence of the autocorrelation function of {7),},>1. We
refer to [1, Chap. XI] for basic properties of MAPs and Markov additive processes.
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2 Geometric p-mixing of the sequence of interarrivals
of an MAP

Let us recall the definition of the p-mixing property of a (strictly) stationary sequence
of random variables {7}, },>1 (e.g. see [2]). The p-mixing coefficient with time lag k£ > 0,
denoted usually by p(k), is defined by

p(k) ‘= Sup sup sup { ‘COI‘I‘(f(Tl, s 7Tn); h(Tn-‘rka SR 7Tn+k+m)) }a

n>1 meN
f, g R-valued functions such that

E[|f(Ty,....T,)]?] and E[|R(Tysk, - - -, Tniksm)|?] are finite} (1)

where Corr(f(Tl, ooy )y (T, - - - ,Tn+k+m)) is the correlation coefficient of the two
square-integrable random variables. Note that {p(k)},>1 is a non-increasing sequence.
Then {7}, },>1 is said to be p-mixing if

li = 0.
When, for any n € N, the random variable T}, has a moment of order 2, the autocorrelation

function of {7, },>1 as studied in [4], that is Corr(7%; Ty+1) as a function of the time lag

k, clearly satisfies
Vk > 1, |Corr(Ty;Tks1)| < p(k). (2)

Therefore, any rate of convergence of the p-mixing coefficients {p(k)}r>1 is a rate of
convergence for the autocorrelation function.

We only outline the main steps to obtain from [3, Prop. 3.1] a geometric convergence
rate of {p(k)}n>1 for the m-state MRP {(X,,, S,) }nen associated with a m-state MAP. In
[4, Section 2], the analysis of the autocorrelation function in the two-states case is based
on such an MRP (notation and background in [4] are that of [5]). Recall that a m-state
MAP is a bivariate continuous-time Markov process {(J;, N¢) }+>0o on {1, ..., m} x N where
N, represents the number of arrivals up to time ¢, while the states of the driving Markov
process {J; }+>0 are called phases. Let S, be the time at the nth arrival (Sp = 0 a.s.) and
let X, be the state of the driving process just after the nth arrival. Then {(X,, Sy)}nen
is known to be an MRP with the following semi-Markov kernel @ on {1,...,m} x [0, c0)

V(zy,ze) € {1,...,m}%  Q(zy;{x2} x dy) := (ePVDy) (a1, x5)dy (3)

parametrized by a pair of m x m-matrices usually denoted by Dy and D;. The matrix
Dy + D, is the infinitesimal generator of the background Markov process {J;}+>o which
is always assumed to be irreducible, and Dy is stable. The process { X, }nen is a Markov
chain with state space X := {1,...,m} and transition probability matrix P:

V(z1,20) € X%, P(x1,22) = Q(z1; {22} X [0,00)) = ((—Do) ' D1) (w1, 72).  (4)
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{X, }nen has an invariant probability measure ¢ (i.e. ¢P = ¢). It is well-known that,
for n > 1, the interarrival time T,, := S,, — S,,_1 has a moment of order 2 (whatever the
probability distribution of X,). We refer to [1] for details about the above basic facts on
an MAP and its associated MRP.

Let us introduce the m x m-matrix
P:=e'¢ (5)

when e is the m-dimensional row-vector with all components equal to 1. Any R-valued
function v on X may be identified to a R™-dimensional vector. We use the subordinate
matrix norm induced by ¢*(¢)-norm ||v|ls := />, x [v(2)]?¢p(z) on R™

[M]|y := sup [[Mv]],.

v:l|v|[2=1

Let E be the expectation with respect to the initial conditions (Xo, So) ~ (¢, dp). Recall
that T,, :== S,, — Sp—1 for n > 1. When X, ~ ¢, we have (see [3, Section 3|):

1. if g is a R-valued function such that E[|g(X1, T3, ..., X,, T,)|] < oo, then Vk > 0, Vn >
1

Elg(Xk+1, Thr1s - - s Xitn, Thotn) | (X3, T1 0 1 < k)]

= / Q(Xs;dxy x dz) HQ(xi,l; dr; x dz;)g(x1, 21, .-, T, 2n)
(XX[0,00))” =2

(2

= (Q“")(9)(Xx) (6)
where Q®" denotes the n-fold kernel product ® Q of @ defined in (3).
i=1

2. Let f and h be two R-valued functions such that Ey|[|f(T3,...,T)[*] < oo and
Eg [|m(Thsks - -, Tnsksm)]?] < oo for (k,n) € (N*)2,m € N. From (6) with

9(x1, 21, - o s Tntktmy Zntkm) = f(215 oo Z0) R (Zntk, - -+ Zngktm), the process {17, bn>1
is stationary and the following covariance formula holds (see [3, Lem. 3.3] for details)

Cov(F(Th, ., T); M(Tosks - s Triioom))
= By [f(Th,..., T0) (PP = 2)(Q%™ () (Xa)] - (7)

where matrices P, ® are defined in (4) and (5).

First, note that the random variables f(-) and A(-) in (1) may be assumed to be of L?-norm
1. Thus we just have to deal with covariances. Second, the Cauchy-Schwarz inequality
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and Formula (7) allow us to write
Cov(f(Th, ..., Tn); M(Tosks - s Tosirm))
< Eo [T TP By [[(PE! = @)(QH () (X0 |
= B [|(P = @)@ W) (X)) (¢ is Pmvariant)
= [|(P1 = @) (@™ () 5

1PEL — 3|2 | Q¥ ()|
IPF =2 (since || Q™ (R)], < 1).

2
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Therefore, we obtain from (1) and (2) that the autocorrelation coefficient Corr(77; Ty11)
as studied in [4], satisfies

Vk>1, |Corr(Ty; Tin)| < p(k) < [P — @f5. (8)

The convergence rate to 0 of the sequence {Corr(71; Tk+1) }n>1 is bounded from above by
that of {||P*~! — ®||3}x>1. Under usual assumptions on the MAP, {X,, },ey is irreducible
and aperiodic so that there exists r € (0,1) such that

1P* = @[y = O(r") (9)

with = max(|A], A is an eigenvalue of P such that |A| < 1). For a stationary Markov
chain {X, }neny with general state space, we know from [6, p 200,207] that Property (9)
is equivalent to the p-mixing property of {X,, }ren.

3 Comments on [4]

In [4], the analysis is based on a known explicit formula of the correlation function in
terms of the parameters of the m-state MRP (see [4, (2.6)]). Note that this formula can
be obtained using n = 1,m = 0 and f(71) = T1, h(T14x) = T14x in (7). When m := 2 and
under standard assumptions on MAPs, matrix P is diagonalizable with two distinct real
eigenvalues, 1 and 0 < A < 1 which has an explicit form in terms of entries of P. Then,
the authors can analyze the correlation function with respect to the entries of matrix P
[4, (3.4)-(3.7)]. As quoted by the authors, such an analysis would be tedious and difficult
with m > 2 due to the increasing number of parameters defining an m-state MAP. Note
that Inequality (8) and Estimate (9) when m := 2 provide the same convergence rate as
in [4], that is A the second eigenvalue of matrix P.
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