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Computable bounds of spectral gap for discrete Markov

chains with band transition matrices

Loïc HERVÉ, and James LEDOUX ∗

version du Saturday 7th March, 2015 – 20:39

Abstract

We analyse the ℓ2(π)-convergence rate of irreducible and aperiodic Markov chains
with N -band transition probability matrix P and with invariant distribution π. This
analysis is heavily based on: first the study of the essential spectral radius ress(P|ℓ2(π)) of
P|ℓ2(π) derived from Hennion’s quasi-compactness criteria; second the connection between
the spectral gap property (SG2) of P on ℓ2(π) and the V -geometric ergodicity of P .
Specifically, (SG2) is shown to hold under the condition

α0 :=
N
∑

m=−N

lim sup
i→+∞

√

P (i, i+m)P ∗(i+m, i) < 1.

Moreover ress(P|ℓ2(π)) ≤ α0. Simple conditions on asymptotic properties of P and of its
invariant probability distribution π to ensure that α0 < 1 are given. In particular this
allows us to obtain estimates of the ℓ2(π)-geometric convergence rate of random walks
with bounded increments. The specific case of reversible P is also addressed. Numerical
bounds on the convergence rate can be provided via a truncation procedure. This is
illustrated on the Metropolis-Hastings algorithm.

AMS subject classification : 60J10; 47B07

Keywords : Rate of convergence, ℓ2-spectral gap, V -geometric ergodicity, Essential spectral
radius, Metropolis-Hastings algorithm.

1 Introduction

Let P := (P (i, j))(i,j)∈X2 be a Markov kernel on a countable state space X. For the sake of
simplicity we suppose that X := N. Throughout the paper we assume that P is irreducible

∗INSA de Rennes, IRMAR, F-35042, France; CNRS, UMR 6625, Rennes, F-35708, France; Université
Européenne de Bretagne, France. {Loic.Herve,James.Ledoux}@insa-rennes.fr
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and aperiodic, that P has a unique invariant probability measure denoted by π := (π(i))i∈N
(observe that ∀i ∈ N, π(i) > 0 from irreducibility), and finally that

∃i0 ∈ N, ∃N ∈ N
∗, ∀i ≥ i0 : |i− j| > N =⇒ P (i, j) = 0. (AS1)

We denote by (ℓ2(π), ‖ · ‖2) the usual Hilbert space of sequences (f(i))i∈N ∈ C
N such that

‖f‖2 := [
∑

i≥0 |f(i)|2 π(i) ]1/2 < ∞. It is well-known that P defines a linear contraction on

ℓ2(π), and that its adjoint operator P ∗ on ℓ2(π) is defined by P ∗(i, j) := π(j)P (j, i)/π(i).
The kernel P is said to have the spectral gap property on ℓ2(π) at rate ρ ∈ (0, 1) if there
exists some positive constants ρ ∈ (0, 1) and C ∈ (0,+∞) such that

∀n ≥ 1,∀f ∈ ℓ2(π), ‖Pnf −Πf‖2 ≤ C ρn ‖f‖2 with Πf := π(f)1N, (SG2)

where π(f) :=
∑

i≥0 f(i)π(i). A relevant and standard issue is to compute the value (or to
find an upper bound) of

̺2 := inf{ρ ∈ (0, 1) : (SG2) holds true}. (1)

In this work we use the quasi-compactness criteria of [Hen93] to study (SG2) and to
estimate ̺2. In Section 2 it is proved that (SG2) holds when

α0 :=
N
∑

m=−N

lim sup
i→+∞

√

P (i, i+m)P ∗(i+m, i) < 1. (AS2)

Moreover ress(P|ℓ2(π)) ≤ α0. The main argument to obtain this result is the Doeblin-Fortet
inequality in Lemma 2. We refer to [Hen93] for the definition of the essential spectral radius
ress(T ) (related to quasi-compactness) of a bounded linear operator T on a Banach space. In
Section 3, under the following assumptions

∀m = −N, . . . ,N, P (i, i+m) −−−−−→
i→+∞

am ∈ [0, 1]. (AS3)

π(i+ 1)

π(i)
−−−−−→
i→+∞

τ ∈ [0, 1) (AS4)

N
∑

k=−N

k ak < 0, (NERI)

we establish that (AS2) holds (hence (SG2)) and that α0 can be explicitly computed in
function of τ and the am’s. Observe that (NERI) means that the expectation of the asymp-
totic random increments is negative. Moreover, using the inequality ress(P|ℓ2(π)) ≤ α0,
Property (SG2) is proved to be connected to the so-called V -geometric ergodicity of P for
V := (π(n)−1/2)n∈N, which corresponds to the spectral gap property on the usual weighted-
supremum space BV associated with V . In particular, denoting the minimal V -geometrical
ergodic rate by ̺V , it is proved that, either ̺2 and ̺V are both less than α0, or ̺2 = ̺V .
As a result, an accurate bound of ̺2 is obtained for random walks (RW) with i.d. bounded
increments using the results of [HL14b]. In the reversible case (Section 4) the previous results
hold under Assumptions (AS3) and (AS4) provided that am 6= a−m for at least one m. A
first illustration to Birth-and-Death Markov chains (BDMC) is proposed in Subsection 4.1.
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The reversible case naturally contains the Markov kernels associated with the Metropolis-
Hastings (M-H) Algorithm. In Subsection 4.2 we observe that, if the target distribution π
and the proposal kernel Q := (Q(i, j))(i,j)∈N2 satisfy (AS1), (AS3) and (AS4), then so is the
associated reversible M-H kernel P , which then satisfies (SG2).

Estimating ̺2 is a difficult but relevant issue. This question is investigated in Section 5
where an accurate estimation of ̺2 is obtained by using the above mentioned link between
̺2 and ̺V and by applying the truncation procedure in [HL14a]. Numerical applications to
discrete MCMC are presented at the end of Section 5. Bounding ̺2 in the reversible case is
of special interest since (SG2) holds in this case with C = 1 and ρ = ̺2.

The spectral gap property for Markov processes has been widely investigated in the discrete
and continuous-time cases (e.g. see [Ros71] for discrete-time, [Che04] for continuous-time, and
[CG13] for dynamical systems). We point out that there exist different definitions of the spec-
tral gap property according that we are concerned with discrete or continuous-time case. A
simple and concise presentation about this difference is proposed in [Yue00, MS13]. The focus
of our paper is on the discrete time case. In the reversible case, the equivalence between the
geometrical ergodicity and (SG2) is proved in [RR97] and Inequality ̺2 ≤ ̺V is obtained
in [Bax05, Th.6.1.]. This equivalence fails in the non-reversible case (see [KM12]). The link
between ̺2 and ̺V stated in our Proposition 1 is obtained with no reversibility condition.
The works [SW11, Wüb12] provide formulae for ̺2 in terms of isoperimetric constants which
are related to P in reversible case and to P and P ∗ in non-reversible case. However, to the
best of our knowledge, no explicit value (or upper bounds) of ̺2 can be derived from these
formulae for discrete Markov chains with band transition matrices. For instance (SG2) is
proved to hold in [Wüb12] for RW with i.d. bounded increments satisfying (NERI) and a
weak reversibility condition, but no explicit bounds for ̺2 are derived from isoperimetric con-
stants. For such RWs, our method gives the exact value of ̺2 with no reversibility assumption
(see Examples 1 and 2). Concerning BDMCs, recall that the decay parameter of P , which
equals to ̺2 for these models (see [vDS95]), is only known for specific instances of BDMC
(see Remark 3 for details). In the context of discrete MCMC, no satisfactory bound for ̺2
was known to the best of our knowledge, except for special instances as the simulation of a
geometric distribution corresponding to a simple BDMC (see [MT96, Ex. 2]). The bounds
for ̺2 obtained in Section 5 for discrete MCMC via truncation procedure applies to any tar-
get distribution π satisfying (AS4) when the proposal kernel Q satisfies (AS1) and (AS3).
The accuracy of our estimation in Section 5 depends on the order k of the used truncated
finite matrix Pk (see Tables 2 and 3). Our explicit bound ress(P|ℓ2(π)) ≤ α0 in Theorem 1
for discrete Markov chains with band transition matrices is the preliminary key results in
this work. Recall that ress(P|ℓ2(π)) is a natural lower bound of ̺2 (see [HL14b, Prop. 2.1]
with ℓ2(π) in place of BV ). The essential spectral radius of Markov operators on a L

2-type
space is investigated for discrete-time Markov chains with general state space in [Wu04] (see
also [GW06]), but no explicit bound for ress(P|ℓ2(π)) can be derived a priori from these the-
oretical results for discrete Markov chains with band transition matrices, except Inequality
ress(P|ℓ2(π)) ≤ ress(P|BV

) in the reversible case (see [Wu04, Th. 5.5.]). Finally recall that,
for any Markov chain (Xn)n∈N with transition kernel P satisfying (SG2), the Berry-Esseen
theorem and the first-order Edgeworth expansion apply to additive functional of (Xn)n∈N
under the expected third-order moment condition, see [FHL12].
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2 (SG2) under Assumption (AS1) on P

Theorem 1 If Condition (AS2) holds, then P satisfies (SG2). Moreover ress(P|ℓ2(π)) ≤ α0.

Proof. Let ℓ1(π) denote the usual Banach space of sequences (f(i))i∈N ∈ C
N satisfying the

following condition: ‖f‖1 :=
∑

i≥0 |f(i)|π(i) <∞.

Lemma 1 The identity map is compact from ℓ2(π) into ℓ1(π).

Lemma 2 For any α > α0, there exists a positive constant L ≡ L(α) such that

∀f ∈ ℓ2(π), ‖Pf‖2 ≤ α ‖f‖2 + L‖f‖1.

It follows from these lemmas and from [Hen93] that P is quasi-compact on ℓ2(π) with
ress(P|ℓ2(π)) ≤ α. Since α can be chosen arbitrarily close to α0, this gives ress(P|ℓ2(π)) ≤ α0.
Then (SG2) is deduced from aperiodicity and irreducibility assumptions. �

Lemma 1 follows from the Cantor diagonal procedure.

Proof of Lemma 2. Under Assumption (AS1) we define

∀i ≥ i0, ∀m = −N, . . . ,N, βm(i) :=
√

P (i, i +m)P ∗(i+m, i). (2)

Let α > α0, with α0 given in (AS2). Fix ℓ ≡ ℓ(α) ≥ i0 such that
∑N

m=−N supi≥ℓ βm(i) ≤ α.
For f ∈ ℓ2(π) we have from Minkowski’s inequality and the band structure of P for i ≥ ℓ

‖Pf‖2 ≤
[

∑

i<ℓ

∣

∣(Pf)(i)
∣

∣

2
π(i)

]1/2

+

[

∑

i≥ℓ

∣

∣

∣

∣

N
∑

m=−N

P (i, i +m) f(i+m)

∣

∣

∣

∣

2

π(i)

]1/2

≤ Cℓ

∑

i<ℓ

|(Pf)(i)|π(i) +

[

∑

i≥ℓ

∣

∣

∣

∣

N
∑

m=−N

P (i, i+m) f(i+m)

∣

∣

∣

∣

2

π(i)

]1/2

where Cℓ > 0 is derived from equivalent norms on the space Cℓ. Note that
∑

i<ℓ |(Pf)(i)|π(i) ≤
‖Pf‖1 ≤ ‖f‖1 so that setting L := Cℓ

‖Pf‖2 ≤ L‖f‖1 +
[

∑

i≥ℓ

∣

∣

∣

∣

N
∑

m=−N

P (i, i+m) f(i+m)

∣

∣

∣

∣

2

π(i)

]1/2

. (3)

It remains to obtain the expected control of the second terms in the right hand side of (3).
For m = −N, . . . ,N , let us define Fm = (Fm(i))i∈N ∈ ℓ2(π) by

Fm(i) :=

{

0 if i < ℓ
P (i, i+m) f(i+m) if i ≥ ℓ.
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Then
[

∑

i≥ℓ

∣

∣

∣

∣

N
∑

m=−N

P (i, i +m) f(i+m)

∣

∣

∣

∣

2

π(i)

]1/2

=
∥

∥

N
∑

m=−N

Fm‖2

≤
N
∑

m=−N

‖Fm‖2 =
N
∑

m=−N

[

∑

i≥ℓ

P (i, i+m)2 |f(i+m)|2π(i)
]1/2

=
N
∑

m=−N

[

∑

i≥ℓ

P (i, i+m)
π(i)P (i, i +m)

πi+m
|f(i+m)|2πi+m

]1/2

(from the definition of P ∗)

≤
N
∑

m=−N

(

sup
i≥ℓ

βm(i)
)

[

∑

i≥ℓ

|f(i+m)|2πi+m

]1/2

(from (2))

≤
( N

∑

m=−N

sup
i≥ℓ

βm(i)

)

‖f‖2.

The statement in Lemma 2 can be deduced from the previous inequality and from (3). �

3 (SG2) and geometric ergodicity. Application to RWs with

i.d. bounded increments

We specify Theorem 1 in terms of V−geometric ergodicity for V := (π(n)−1/2)n∈N. Let
(BV , ‖ · ‖V ) denote the weighted-supremum space of sequences (g(n))n∈N ∈ C

N such that
‖g‖V := supn∈N V (n)−1 |g(n)| <∞. Recall that P is said to be V -geometrically ergodic if P
satisfies the spectral gap property on BV , namely: there exists C ∈ (0,+∞) and ρ ∈ (0, 1)
such that

∀n ≥ 1,∀f ∈ BV , ‖Pnf −Πf‖V ≤ C ρn ‖f‖V . (SGV )

When this property holds, we define

̺V := inf{ρ ∈ (0, 1) : (SGV ) holds true}. (4)

Remark 1 Under Assumptions (AS3) and (AS4), we have

α0 :=

N
∑

m=−N

lim sup
i→+∞

√

P (i, i+m)P ∗(i+m, i) =















N
∑

m=−N

am τ
−m/2 if τ ∈ (0, 1)

a0 if τ = 0,

(5)

Indeed, if (AS4) holds with τ ∈ (0, 1), then the claimed formula follows from the definition
of P ∗(·, ·). If τ = 0 in (AS4), then am = 0 for every m = 1, . . . , N since the invariance of π
gives

∑N
m=−N P (i+m, i)π(i +m)/π(i) = 1. Thus a−m = 0 when m < 0. Hence α0 = a0.

Proposition 1 If P and π satisfy Assumptions (AS3), (AS4) and (NERI), then P satis-
fies (AS2) (and α0 < 1 with α0 given in (5)). Moreover P satisfies both (SG2) and (SGV ),
we have max(ress(P|BV

), ress(P|ℓ2(π))) ≤ α0, and the following assertions hold:

5



(a) if ̺V ≤ α0, then ̺2 ≤ α0;

(b) if ̺V > α0, then ̺2 = ̺V .

Proof. If τ = 0 in (AS4), then α0 = a0 < 1 from (5) and (NERI). Now assume that (AS4)
holds with τ ∈ (0, 1). Then α0 =

∑N
m=−N am τ

−m/2 = ψ(
√
τ), where: ∀t > 0, ψ(t) :=

∑N
k=−N ak t

−k. Moreover it easily follows from the invariance of π that ψ(τ) = 1. Inequality
α0 = ψ(

√
τ) < 1 then follows from the following assertions: ∀t ∈ (τ, 1), ψ(t) < 1 and

∀t ∈ (0, τ) ∪ (1,+∞), ψ(t) > 1. To prove these properties, note that ψ(τ) = ψ(1) = 1
and that ψ is convex on (0,+∞) since the second derivative of ψ is positive on (0,+∞).
Moreover we have limt→+∞ ψ(t) = +∞ since ak > 0 for some k < 0 (use ψ(τ) = ψ(1) = 1
and τ ∈ (0, 1)). Similarly, limt→ 0+ ψ(t) = +∞ since ak > 0 for some k > 0. This gives the
desired properties on ψ since ψ′(1) > 0 from (NERI).

(SG2) and ress(P|ℓ2(π)) ≤ α0 follow from Theorem 1. Next (SGV ) is deduced from the
well-known link (see [MT93]) between geometric ergodicity and the following drift inequality:

∀α ∈ (α0, 1), ∃L ≡ Lα > 0, PV ≤ αV + L 1N. (6)

This inequality holds from

(PV )(i)

V (i)
=

N
∑

m=−N

P (i, i +m)

(

π(i)

π(i+m)

)
1

2

−−−−−→
i→+∞

α0.

This gives (6), from which (SGV ) is derived using aperiodicity and irreducibility. It also
follows from (6) that ress(P|BV

) ≤ α (see [HL14b, Prop. 3.1]). Thus ress(P|BV
) ≤ α0.

Now we prove (a) and (b) using the spectral properties of [HL14b, Prop. 2.1] of both
P|ℓ2(π) and P|BV

(due to quasi-compactness). We will also use the following obvious inclusion:
ℓ2(π) ⊂ BV . In particular every eigenvalue of P|ℓ2(π) is also an eigenvalue for P|BV

. First
assume that ̺V ≤ α0. Then there is no eigenvalue for P|BV

in the annulus Γ := {λ ∈ C : α0 <
|λ| < 1} since ress(P|BV

) ≤ α0. From ℓ2(π) ⊂ BV it follows that there is also no eigenvalue for
P|ℓ2(π) in this annulus. Hence ̺2 ≤ α0 since ress(P|ℓ2(π)) ≤ α0. Second assume that ̺V > α0.
Then P|BV

admits an eigenvalue λ ∈ C such that |λ| = ̺V . Let f ∈ BV , f 6= 0, such that
Pf = λf . We know from [HL14b, Prop. 2.2] that there exists some β ≡ βλ ∈ (0, 1) such that
|f(n)| = O(V (n)β) = O(π(n)−β/2), so that |f(n)|2π(n) = O(π(n)(1−β)), thus f ∈ ℓ2(π) from
(AS4). We have proved that ̺2 ≥ ̺V . Finally the converse inequality is true since every
eigenvalue of P|ℓ2(π) is an eigenvalue for P|BV

. Thus ̺2 = ̺V . �

Example 1 (RWs with i.d. bounded increments) Let P be defined as follows. There
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exist some positive integers c, g, d ∈ N
∗ such that

∀i ∈ {0, . . . , g − 1},
c

∑

j=0

P (i, j) = 1; (7a)

∀i ≥ g,∀j ∈ N, P (i, j) =

{

aj−i if i− g ≤ j ≤ i+ d

0 otherwise.
(7b)

(a−g, . . . , ad) ∈ [0, 1]g+d+1 : a−g > 0, ad > 0,
d

∑

k=−g

ak = 1. (7c)

We assume that P is aperiodic and irreducible, and that Assumtion (NERI) holds, that is:
∑d

k=−g k ak < 0. Then P admits a unique invariant distribution π, and the conclusions
of Proposition 1 hold. Moreover it can be derived from standard results of linear difference
equation that π(n) ∼ c τn when n→+∞, with τ ∈ (0, 1) defined by ψ(τ) = 1, where ψ(t) :=
∑N

k=−N ak t
−k. Thus, if γ := τ−1/2, then BV = {(g(n))n∈N ∈ C

N, supn∈N γ
−n |g(n)| < ∞}.

Then we know from [HL14b, Prop. 3.2] that ress(P|BV
) = α0 with α0 given in (5), and that

̺V can be computed from an algebraic polynomial elimination. More precisely, the procedure
in [HL14b] developed for a special value γ̂ can be applied for γ := τ−1/2 by considering Γ :=
{λ ∈ C : ψ(

√
τ) < |λ| < 1}. When Assertion (b) of Proposition 1 applies, we obtain the exact

value of ̺2 (see Example 2). Property (SG2) is proved in [Wüb12, Th. 2] under an extra weak
reversibility assumption (with no explicit bound on ̺2). However, except in case g = d = 1
where reversibility is automatic, a RW with i.d. bounded increments is not reversible or even
weak reversible in general. Note that no reversibility condition is required in Proposition 1.

Example 2 (Numerical examples in case g = 2 and d = 1) Let P be defined by

P (0, 0) = a ∈ (0, 1), P (0, 1) = 1− a, P (1, 0) = b ∈ (0, 1), P (1, 2) = 1− b (8)

∀n ≥ 2, P (n, n− 2) = 1/2, P (n, n− 1) = 1/3, P (n, n) = 0, P (n, n+ 1) = 1/6. (9)

The form of boundary probabilities in (8) and the special values in (9) are chosen for con-
venience. Other (finitely many) boundary probabilities in (8) and other values in (9) could
be considered provided that P is irreducible and aperiodic and that (a−2, a−1, a0, a1) satis-
fies a−2, a1 > 0 and (NERI) i.e. a1 < 2a−2 + a−1. Here the fonction ψ is given by:
ψ(t) := t2/2 + t/3 + 1/6t = 1 + (t − 1)(t2 − 5t/3 − 1/3)/2t. Then function ψ(·) − 1 has a
unique zero over (0, 1) which is τ = (

√
37 − 5)/6 ≈ 0.1805 and α0 = ψ(

√
τ) ≈ 0.6242. Let

γ := 1/
√
τ ≈ 2.3540 and V := (γn)n∈N. Using the procedure from [HL14b] and Proposition 1,

we give in Table 1 the values of α0, ̺V and ̺2 for this instance.

Remark 2 If (AS4) in Proposition 1 is reinforced by the condition π(n) ∼ c τn when
n→+∞ with τ ∈ (0, 1) (e.g. see Example 1), then let us consider BV = {(g(n))n∈N ∈
C
N, supn∈N γ

−n |g(n)| < ∞} with γ := τ−1/2. Then we deduce from [HL14b, Prop. 3.2]
that ress(P|BV

) = α0 with α0 given in (5), so that ̺V ≤ α0 implies that ̺V = α0 since
̺V ≥ ress(P|BV

). Then it follows from Proposition 1 that ̺2 ≤ ̺V and that this inequality is
an equality when ̺V > α0. The passage from (SGV ) to (SG2) and the inequality ̺2 ≤ ̺V was
established in [RR97, Bax05] for general reversible V -geometrically ergodic Markov kernels.
Again note that no reversibility condition is assumed in Proposition 1.
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(a, b) α0 ρV ̺2

(1/2, 1/2) 0.624 0.624 ≤ 0.624

(1/10, 1/10) 0.624 0.688 0.688

(1/50, 1/50) 0.624 0.757 0.757

Table 1: Convergence rate on ℓ2(π) for different boundary transition probabilities (a, b)

4 Applications to the reversible case

The reversible case corresponds to the condition P = P ∗ (i.e. P is self-adjoint in ℓ2(π)),
namely: ∀(i, j) ∈ N

2, π(i)P (i, j) = π(j)P (j, i) (detailed balance condition). Then (SG2) is
equivalent to the condition ̺2 = ‖P −Π‖2 < 1, where ‖ · ‖2 denotes here the operator norm
on ℓ2(π). Thus, when (SG2) holds in the reversible case, we have C = 1 and ρ = ̺2, that is

∀n ≥ 1, ∀f ∈ ℓ2(π), ‖Pnf − π(f)1‖2 ≤ ̺2
n ‖f‖2. (10)

Corollary 1 If P is reversible, then:

1. P satisfies (SG2) and ress(P|ℓ2(π)) ≤ α0 under (AS2), with:

α0 :=
N
∑

m=−N

(

lim sup
i→+∞

√

P (i, i +m)P (i+m, i)

)

< 1.

2. If Condition (AS3) holds true, then

α0 = 1−
N
∑

m=1

(√
am −√

a−m

)2
. (11)

Consequently, if am 6= a−m for at least one m ∈ {1, . . . , N}, then P satisfies (AS2).

3. If P satisfies (AS3) and if π satisfies (AS4) with τ ∈ (0, 1), then am 6= a−m for each
m ∈ {1, . . . , N} and the conclusions of Proposition 1 hold with α0 given in (11).

4. If P satisfies (AS3) with a0 < 1 and if π satisfies (AS4) with τ = 0, then the conclusions
of Proposition 1 hold.

Keep in mind that all our results are stated for positive recurrent Markov kernels. For instance,
for Markov chain associated with P (i, i−1) := p, P (i, i) := r, P (i, i+1) := q where p+r+q = 1,
Formula (11) is α0 = 1− (

√
q −√

p)2, but the existence of π is only guaranteed when p > q.

Proof. The first statement follows from Theorem 1 and reversibility. Next (AS3) gives
α0 =

∑N
m=−N

√
am a−m, hence Assertion 2. since

∑N
m=−N am = 1. If moreover (AS4) holds

with τ ∈ (0, 1), then am 6= a−m for every m ∈ {1, . . . , N} since τm a−m = am from the balance
condition. Thus, under (AS3) and (AS4) with τ ∈ (0, 1), we obtain from Assertion 2. that
α0 < 1. Moreover, since the real numbers α0 given in (11) and in (5) are equal, all the spectral
properties obtained in Proposition 1 remain valid. Idem for Assertion 4. from Remark 1. �
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4.1 Birth-and-Death Markov chains (BDMC)

The transition kernel P := (P (i, j))(i,j)∈N2 of a Birth-and-Death Markov chains is defined by

P :=















r0 q0 0 · · · · · ·
p1 r1 q1

. . .

0 p2 r2 q2
. . .

...
. . .

. . .
. . .

. . .















. (12)

Recall that, under the following conditions

r0 < 1, ∀i ≥ 1, 0 < qi, pi < 1, S := 1 +

∞
∑

i=1

i
∏

j=1

qj−1

pj
<∞, (13)

P is irreducible, aperiodic and π (unique) is given by: π(0) = 1/S, π(i) = (
∏i

j=1
qj−1

pj
)/S.

Moreover it is well-known that P is reversible w.r.t. π. Finally Condition (AS2) writes as:

α0 := lim sup
i

√
piqi−1 + lim sup

i
ri + lim sup

i

√
qipi+1 < 1. (14)

Consequently, under Conditions (13) and (14), P satisfies (SG2) and ress(P|ℓ2(π)) ≤ α0. In
particular, if the sequences (pi)i∈N∗ , (ri)i∈N and (qi)i∈N in (12) admit a limit when i→+∞,
say p, r, q, then (SG2) holds provided that p > q. Moreover ress(P|ℓ2(π)) ≤ 1− (

√
p−√

q)2.

Example 3 (State-independent BDMC)

Let P given by (12) such that, for any i ≥ 1, pi := p, ri := r, qi := q, with p, q, r ∈ [0, 1] such
that p + r + q = 1 and p > q > 0. Let r0 ∈ (0, 1) and β0 := 1 − q −√

pq. The bounds for ̺V
with V (n) := (p/q)n/2 can be derived from [HL14b, Prop. 4.1], so that (Corollary 1):

• if r0 ∈ [β0, 1), then ̺2 ≤ r + 2
√
pq;

• if r0 ∈ (0, β0], then :

(a) in case 2p ≤
(

1− q +
√
pq
)2

: ̺2 ≤ r + 2
√
pq;

(b) in case 2p >
(

1− q +
√
pq
)2

, setting β1 := p−√
pq −

√

r
(

r + 2
√
pq
)

:

̺2 =
∣

∣r0 +
p(1− r0)

r0 − 1 + q

∣

∣ when r0 ∈ (0, β1] (15a)

̺2 ≤ r + 2
√
pq when r0 ∈ [β1, β0). (15b)

Remark 3 (Discussion on the ℓ2(π)-spectral gap and the decay parameter)
Let P be a BDMC satisfying (13). It can be proved that the decay parameter of P , denoted
by γ in [vDS95] but by γDS here to avoid confusion, equals to ̺2, that is (from reversibility):
γDS = ̺2 = ‖P − Π‖2. But note that γDS is only known for specific instances of BDMC
from [vDS95] (see [Kov10] for a recent contribution). For a general Markov kernel P , we only
have (see also [Pop77, Isa79]) γDS ≤ ̺2. In particular, the decay parameter does not provide
information on non-reversible RWs with i.d. bounded increments of Section 3.
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4.2 The Metropolis-Hastings Algorithm

Let π = (π(i))i∈N (target distribution) be a probability measure on N known up to a multi-
plicative constant. Let Q := (Q(i, j))(i,j)∈N2 (proposal kernel) be any transition kernel on N.
The associated Metropolis-Hastings (M-H) Markov kernel P := (P (i, j))(i,j)∈N2 is defined by

P (i, j) :=

{

min
(

Q(i, j) , π(j)Q(j,i)
π(i)

)

if i 6= j

1−∑

ℓ 6=i P (i, ℓ) if i = j.

It is well-known that P is reversible with respect to π and that π is P -invariant.

Corollary 2 Assume that π(i) > 0 for every i ∈ N and that π satisfies (AS4) with τ ∈ (0, 1).
Assume that Q is an aperiodic and irreducible Markov kernel on N such that for every (i, j) ∈
N
2, Q(i, j) = 0 ⇔ Q(j, i) = 0, satisfying (AS1) and the following condition (see (AS3))

∀m = −N, . . . ,N, qm := lim
i→+∞

Q(i, i +m). (16)

Then the associated M-H kernel P satisfies (SG2) and ress(P|ℓ2(π)) ≤ α0 with

α0 := 1−
N
∑

m=1

(√
pm −√

p−m

)2
where pk :=







min
(

qk , τ
k q−k

)

if k 6= 0

1−∑N
ℓ=1

(

pℓ + p−ℓ

)

if k = 0.
(17)

If (AS4) holds with τ = 0, then pm = 0 for every m = 1, . . . , N , and the above conclusions
holds true with α0 := p0 when p0 < 1.

Proof. It is well-known that P is irreducible and aperiodic under the basic assumptions on
Q. If Q satisfies (AS1) for some N , then so is P (with the same N). Assumption (AS3)
holds for P : limi→+∞ P (i, i+m) = pm with pm defined in (17). Then apply Corollary 1. �

Example 4 Assume that π (possibly known up to a multiplicative constant) is such that
π(i) > 0 for every i ∈ N and satisfies (AS4). Let Q be a transition kernel on N satisfying

Q(0, 0) := r < 1, Q(0, 1) := 1−r, ∀i ≥ 1, Q(i, i−1) = q, Q(i, i) = 1−2q, Q(i, i+1) = q

for some q ∈ (0, 1/2]. The associated M-H Markov kernel P (q) is given by P (q)(0, 1) =
min(1− r , q π(1)/π(0)) and

∀i ≥ 1, P (q)(i, i− 1) = qmin

(

1 ,
π(i− 1)

π(i)

)

P (q)(i, i+ 1) = qmin

(

1 ,
π(i+ 1)

π(i)

)

P (q)(i, i) := 1−
∑

ℓ 6=i

P (q)(i, ℓ).

The conditions of Corollary 2 are trivially satisfied. Then P (q) satisfies (SG2). Next α0 ≡
α0(q) in (17) is

10



α0(q) = 1− q
(

1−
√
τ
)2

(18)

since the pm’s in (17) are given by p−1 = q, p0 = 1−q−qτ, p1 = qτ . When q ∈ (0, 1/2], α0(q)

is minimal for q = 1/2, thus q = 1/2 provides the minimal bound for ress(P
(q)
|ℓ2(π)

) The relevant

question is to find q ∈ (0, 1/2] providing the minimal value of ̺2 ≡ ̺2(q) (See Example 6).

Example 5 (Simulation of Poisson distribution with parameter 1) Let π be the Pois-
son distribution with parameter λ := 1, defined by π(i) := exp(−1)/i!. Then (AS4) holds
with τ = 0. Introduce the proposal kernel Q of Example 4 with r := 1/2 and q := 1/2. The
associated M-H kernel P is given by P (q)(0, 0) = P (q)(0, 1) = 1/2 and

∀i ≥ 1, P (q)(i, i− 1) =
1

2
P (q)(i, i) =

i

2(i+ 1)
, P (q)(i, i + 1) =

1

2(i+ 1)
.

We know from Example 4 that P (q) satisfies (SG2) and ress(P
(q)
|ℓ2(π)

) ≤ α0 = 1/2. The rate of

convergence ̺2 ≡ ̺2(q) of P (q) is studied in Example 7.

5 Bound for ̺2 via truncation and numerical applications

Let us consider the following k-th truncated (and augmented) matrix Pk associated with P :

∀(i, j) ∈ {0, . . . , k−1}2, Pk(i, j) :=

{

P (i, j) if 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ k − 2
∑

ℓ≥k−1 P (i, ℓ) if 0 ≤ i ≤ k − 1 and j = k − 1.

Let σ(Pk) denote the set of eigenvalues of Pk, and define ρk := max
{

|λ|, λ ∈ σ(Pk), |λ| < 1
}

.

Recall that V (i) := π(i)−1/2 and that ̺V is defined in (4). The statement below follows
from Proposition 1 and from the weak perturbation method in [HL14a] applied to P|BV

, for
which the drift inequality (6) plays an important role.

Proposition 2 If P satisfies (AS3), (AS4) and (NERI), then the following properties holds
with α0 given in (5):

(a) ̺2 ≤ α0 ⇐⇒ ̺V ≤ α0, and in this case we have lim supk ρk ≤ α0;

(b) ̺2 > α0 ⇐⇒ ̺V > α0, and in this case we have ̺2 = ̺V = limk ρk.

Below the estimation of the convergence rate ̺2 for some Metropolis-Hastings Markov
kernel P is derived from Proposition 2. Recall that Inequality (10) applies when P is reversible.
The generic procedure for the following instances of Markov kernel P is as follows:

1. Compute α0 given in (17) and choose a small ε > 0

2. k := 2

11



τ = 0.2 τ = 0.5

q α0(q, τ) ρk(q) ̺2(q) α0(q, τ) ρk(q) ̺2(q)

0.1 0.9694 ρ27 ≃ 0.9710 ≃ 0.9710 0.9914 ρ39 ≃ 0.9921 ≃ 0.9921

0.2 0.9389 ρ30 ≃ 0.9421 ≃ 0.9421 0.9828 ρ44 ≃ 0.9842 ≃ 0.9842

0.3 0.9083 ρ31 ≃ 0.9131 ≃ 0.9131 0.9743 ρ47 ≃ 0.9763 ≃ 0.9763

0.4 0.8778 ρ32 ≃ 0.8842 ≃ 0.8842 0.9657 ρ50 ≃ 0.9684 ≃ 0.9684

0.5 0.8472 ρ33 ≃ 0.8552 ≃ 0.8552 0.9571 ρ51 ≃ 0.9605 ≃ 0.9605

τ = 0.6 τ = 0.8

q α0(q, τ) ρk(q) ̺2(q) α0(q, τ) ρk(q) ̺2(q)

0.1 0.9949 ρ44 ≃ 0.9953 ≃ 0.9953 0.99889 ρ55 ≃ 0.99883 ≤ 0.99889

0.2 0.9898 ρ51 ≃ 0.9906 ≃ 0.9906 0.99777 ρ66 ≃ 0.99781 ≃ 0.99781

0.3 0.9848 ρ55 ≃ 0.9860 ≃ 0.9860 0.99666 ρ73 ≃ 0.9968 ≃ 0.9968

0.4 0.9797 ρ58 ≃ 0.9814 ≃ 0.9814 0.99554 ρ79 ≃ 0.99579 ≃ 0.99579

0.5 0.9746 ρ60 ≃ 0.9767 ≃ 0.9767 0.99443 ρ83 ≃ 0.9948 ≃ 0.9948

Table 2: Results for different values of τ with ε = 10−5. The second eigenvalue ρk ≡ ρk(q) of
Pk ≡ P (q)

k is obtained from the observed empirical stabilization of ρk with respect to k.

3. Consider the k-order truncated matrix Pk of the kernel P .

4. Compute the second highest eigenvalue ρk of Pk.

5. If |ρk − ρk−1| > ε then (k := k + 1, return to step 3)

else if ρk > α0 then ̺2 ≃ ρk else ̺2 ≤ α0.

It is clear that the control of the stabilization of the sequence (ρk)k≥2 through the comparison
between |ρk − ρk−1| and ε only provides an estimation of ̺2.

Example 6 (Example 4 continued)
Let us consider the probability distribution π given by π(i) := C (i + 1) τ i for n ∈ N where C
is a (possibly unknown) normalisation constant and 0 < τ < 1. Then (AS4) is satisfied. If
we choose an RW as in Example 4 for the proposal kernel, the associated M-H kernel P (q) is
defined by P (q)(0, 1) = min (1− r , 2 q τ) and

∀i ≥ 1, P (q)(i, i − 1) = qmin

(

1 ,
1

τ

i

i+ 1

)

P (q)(i, i+ 1) = qmin

(

1 , τ
i+ 2

i+ 1

)

P (q)(i, i) := 1−
∑

ℓ 6=i

P (q)(i, ℓ).

For q ∈ (0, 1/2], P (q) satisfies (SG2) with ress(P
(q)
|ℓ2(π)

) ≤ α0(q) = 1− q
(

1−√
τ
)2

(see (18)).

Table 2 based on Proposition 2 gives the estimate of ̺2(q) of P (q).

12



q α0(q) ≡ ress(P
(q)) ρk(q) ̺2(q)

0.1 0.9 ρ37 ≃ 0.9003 ≃ 0.9003

0.2 0.8 ρ83 ≃ 0.8008 ≃ 0.8008

0.3 0.7 ρ151 ≃ 0.7015 ≃ 0.7015

0.38 0.62 ρ61 ≃ 0.6301 ≃ 0.6301

0.4 0.6 ρ17 ≃ 0.6568 ≃ 0.6568

0.5 0.5 ρ14 ≃ 0.8090 ≃ 0.8090

Table 3: ρk ≡ ρk(q) is obtained from the observed empirical stabilization of ρk with ε = 10−5.

Example 7 (Example 5 continued) Table 3 based on Proposition 2 gives the estimation
of ̺2(q) of the M-H P (q) used in the simulation of the Poisson distribution of Example 5.

Note that q := 1/2 gives the smallest value of ress(P
(q)
|ℓ2(π)

) = α0(q) = 0.5, with α0 given by

(18). However q := 1/2 does not provide the minimal rate of convergence in ℓ2(π)-norm (or
in BV -norm). More precisely, for q = 1/2, the kernel P (q) admits some eigenvalues in the
annulus Γ := {λ ∈ R : 0.5 < |λ| < 1}, among which ̺2(q) ≈ 0.8090 is the larger one in
absolute value. Actually the minimal rate of convergence is achieved at q ≈ 0.38 and note that
every value 0.2 ≤ q < 0.5 in Table 3 provides a minimal rate than for q := 1/2. It could be
conjectured from numerical evidence that for q ≤ q0 with q0 ≈ 0.35, ̺2 = α0(q).
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