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Abstract. This article is motivated by the quantitative study of the exponential growth of
Markov-driven bifurcating processes (see [13] for applications of our results). In this respect,
a key property is the multiplicative ergodicity, which deals with the asymptotic behaviour
of some Laplace-type transform of nonnegative additive functional of a Markov chain. We
establish a spectral version of this multiplicative ergodicity property in a general framework.
Our approach is based on the use of the operator perturbation method. We apply our
general results to two examples of Markov chains, including linear autoregressive models. In
these two examples the operator-type assumptions reduce to some expected finite moment
conditions on the functional (no exponential moment conditions are assumed in this work).
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1. Introduction

Let (X,X ) be a measurable space, let (Xn)n≥0 be a sequence of random variables taking
their values in X, and finally let ξ and κ be two measurable functions on X with values in
[0,+∞) and in N∗ (the set of positive integers) respectively. Define

∀n ≥ 0, Sn :=

n∑
k=0

ξ(Xk) (1)

The authors in [13] investigated the exponential growth of some branching processes, for which
the process (Xn)n≥0 is used to describe the model, while ξ(·) and κ(·) are seen respectively
as lifetimes of cells and as numbers of new cells (see also [20]).

This exponential growth is defined in [13] provided that the two following quantities are
well defined and finite

ν := inf {γ > 0, G(γ) <∞} and Cν := lim
γ→0+

γ

γ + ν
G(ν + γ) (2)

with G : [0,+∞)→[0,+∞] defined by G(γ) :=
∑

n≥0 gn(γ), where gn(γ) is expressed in terms
of the following Laplace-type transform of Sn

gn(γ) := E

n−1∏
j=0

κ(Xj)

 (κ(Xn)− 1)e−γSn

 .
The following notion of multiplicative ergodicity, introduced in [16] and [17], has proved to
be efficient in [13] to study the finiteness of ν and the existence of Cν .

Definition 1.1. Let γ1 > 0. We say that (Sn, κ(Xn))n is multiplicatively ergodic on
J = [0, γ1) if there exist two continuous maps A and ρ from J to (0,+∞) such that, for every
compact subset K of (0, γ1), there exist MK > 0 and θK ∈ (0, 1) such that, for every n ≥ 1,

∀γ ∈ K, |gn(γ)−A(γ)(ρ(γ))n| ≤MK(ρ(γ)θK)n. (3)

When κ(·) is constant, we simply say that (Sn)n is multiplicatively ergodic on J .

Let us briefly explain why this definition is of great interest for obtaining the finiteness
of ν and Cν (see in [13] for details). Assume that (Sn, κ(Xn))n is multiplicatively ergodic on
J = [0, γ1). Then
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• For every γ ∈ J we have: G(γ) =
∑

n≥0 gn(γ) <∞ ⇐⇒ ρ(γ) < 1.

• For every compact subset K of J , we obtain from the definition of ν in (2) that

∀γ ∈ K ∩ (ν,+∞),

∣∣∣∣G(γ)− A(γ)

1− ρ(γ)

∣∣∣∣ ≤ MK

1− ρ(γ)θK
.

• ν < γ1 means that ν = inf{γ ∈ J : ρ(γ) < 1} < γ1.
• If moreover ρ is differentiable at ν with ρ(ν) = 1 and ρ′(ν) 6= 0, then

Cν := lim
γ→0

γ

γ + ν
G(ν + γ) = − A(ν)

νρ′(ν)
, (4)

Throughout this paper (Xn)n is a Markov chain on (X,X ) with Markov kernel P (x, dy),
invariant probability π, and initial probability µ (i.e. µ is the distribution of X0). In this
context, the multiplicative ergodicity can be investigated via the spectral behavior of Laplace-
type operators associated with (P, κ, ξ). Indeed an easy induction gives (see [13, Section 2.2]
for details)

∀n ≥ 1, gn(γ) = µ
(
κ e−γξ Pn−1

γ (Phκ,γ)
)

(5)

where hκ,γ :=
(
κ− 1

)
e−γξ and where Pγ is the nonnegative Laplace kernel on X defined by

∀x ∈ X, Pγ(x, dy) := κ(y)e−γξ(y)P (x, dy). (6)

In others words Pγ acts on functions h : X→C as : Pγh := P (hκe−γξ).

The purpose of this work is, first to present operator-type assumptions on the Laplace
kernels Pγ ensuring that the multiplicative ergodicity holds, second to apply this approach
to two Markov models. Actually the kernels Pγ are assumed to continuously act on some
suitable Banach space B and to have on B some nice spectral properties involving the spectral
radius r(γ) of Pγ and the associated eigen-projector (see Hypothesis 2.1). Those assumptions,
together with perturbation-type hypotheses (see Hypotheses 2.3 and 2.3*), are needed in order
to study the behavior of the iterated operator Pnγ and to deduce from (5) that ν is finite and
is given by (see Theorem 2.4)

ν = inf{γ > 0, r(γ) < 1}.
The existence and the finiteness of Cν are discussed in Theorem 2.5.

Our spectral approach is based on the quasi-compactness property and on the method of
perturbation of operators. This method, introduced by Nagaev [22, 23] and by Le Page and
Guivarc’h [18, 8] to prove a wide class of limit theorems (central limit theorem, local limit
theorem, large and moderate deviations principles), has known an impressive development
in the past decades (e.g. see [3, 11] and the references therein). Unfortunately, since no ex-
ponential moment condition on ξ is assumed in this work, the classical perturbation method
does not apply in general in our context to the family of Laplace operators (see Remark 2.2
for details). Instead, through our Hypotheses 2.3 or 2.3*, we use the Keller and Liverani
perturbation theorem [15, 1] which involves several Banach spaces instead of a single one
(e.g. see [14] and the references therein). The fact that we work with several spaces compli-
cates our study compared to the classical approach. This is the price to pay for obtaining the
multiplicative ergodicity property in Markovian models under weak moment assumptions on
ξ, as illustrated in our instances presented in Theorems 5.1 and 6.1.

Further complementary discussions and reductions of our operator-type hypotheses are
addressed in Section 3, especially when the spaces involved in those hypotheses are assumed
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to be Banach lattices. The proofs of the main Theorems 2.4 and 2.5 are given in Section 4.
Finally we present in Sections 5 and 6 two applications, namely two Markovian examples
satisfying our Hypotheses 2.1 and 2.3 (or 2.3*), thus the multiplicative ergodicity property
of Definition 1.1: the first one is derived from Knudsen gas (Theorem 5.1); the second one
concerns the linear autoregressive processes (Theorem 6.1). These two theorems, already used
in [13], are obtained under weak integrability assumptions on the observable ξ (the lifetime).

2. Notations and main results

For any normed complex vector spaces (B0, ‖·‖B0) and (B1, ‖·‖B1), the space of continuous
C-linear operators from B0 to B1 is written L(B0,B1). We endow the space L(B0,B1) with
the operator norm ‖ · ‖B0,B1 given by

∀Q ∈ L(B0,B1), ‖Q‖B0,B1 = sup
f∈B0, ‖f‖B0=1

‖Qf‖B1 .

If B0 and B1 are the same Banach space (say B to simplify), we simply write (L(B), ‖ · ‖B)
for (L(B,B), ‖ · ‖B,B). If Q ∈ L(B), then we write σ(Q) for the spectrum of Q:

σ(Q) := {λ ∈ C : (Q− λ I) is non invertible},

where I denotes the identity operator on B. The spectral radius of Q (resp. its essential
spectral radius) is denoted by r(Q) (resp. ress(Q)). Recall that

r(Q) := lim
n→+∞

‖Qn‖1/nB

ress(Q) = sup{|λ| : λ ∈ C and (Q− λ I) is non Fredholm}

= lim
n→+∞

inf
F∈K(B)

‖Qn − F‖1/nB

where K(B) denotes the set of compact operators on B. Finally the topological dual space
of B is denoted by (B∗, ‖ · ‖B∗), and the adjoint operator of Q is denoted by Q∗. Recall that
Q and Q∗ have the same norm in L(B) and L(B∗) respectively. They also have the same
spectrum (thus the same spectral radius), as well as the same essential spectral radius.

With the notations introduced in Introduction, the Laplace kernels (Pγ)γ are given by

∀γ ∈ [0,+∞), Pγf = P (κe−γξf) and P∞f = P (κ1{ξ=0}f). (7)

Since the action of Pγ is considered latter on several Banach spaces, the notation Pγ|B will
sometimes be used in order to indicate that the action of Pγ is considered on B. Finally
L1(π) = L1(X,X , π) denotes the usual Lebesgue space on (X,X ) associated with the station-
ary distribution π of P .

Hypothesis 2.1. Let B be a Banach space composed of functions on X (or of classes of such
functions modulo the π−almost sure equality) such that B ⊂ L1(π). Let J be a subinterval
of [0,+∞]. We will say that Hypothesis 2.1 holds on B and J if, for every γ ∈ J , Pγ
continuously acts on B and if

(i) r(γ) = r(Pγ|B) > 0, and Pγ is quasi-compact on B (i.e. ress
(
Pγ|B

)
< r(γ))

(ii) r(γ) is the only eigenvalue of modulus r(γ) for Pγ, and r(γ) is a first order pole of Pγ
with moreover dim Ker(Pγ − r(γ)I) = dim Ker(Pγ − r(γ)I)2 = 1.
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Under Hypothesis 2.1, we know from the spectral theory (e.g. see [11, Prop. XIV.2]) that,
for every γ ∈ J , Pγ has the following spectral gap property: there exists a rank-one projector
Πγ ∈ L(B) (i.e. the eigenprojector associated with the eigenvalue r(γ)), and some constants
θγ ∈ (0, 1) and Mγ ∈ (0,+∞) such that

∀γ ∈ J, ∀f ∈ B,
∥∥Pnγ f − r(γ)nΠγf

∥∥
B ≤Mγ

(
θγ r(γ)

)n‖f‖B. (8)

If moreover µ(κe−γξ·) ∈ B∗, P (hκ,γ) ∈ B, and B(γ) := µ(κ e−γξΠγ(Phκ,γ)) is positive, then
we deduce from (5) that (3) holds with A = B/r and ρ = r in the specific case K = {γ}.
Remark 2.2. To establish the multiplicative ergodicity of Definition 1.1, further regularity
properties are needed. Due to (8), a natural way is to apply the perturbation theory of linear
operators. Unfortunately, the classical operator perturbation method [22, 23, 8, 9] does not
apply to our context. Indeed, because we do not assume any exponential moment condition on
ξ (contrarily to the above mentioned papers), the map γ 7→ Pγ is (in general) not continuous
from (0,+∞) to L(B). For instance, for linear autoregressive models (Theorem 6.1), we will
work with Banach spaces Ba = CV a linked to some weighted-supremum Banach spaces. For
the Knudsen gas (Theorem 5.1), we will work with Ba = La(π). In these two cases, the
map γ 7→ Pγ is not continuous in general from (0,+∞) to L(Ba), but only from (0,+∞) to
L(Ba,Bb) for a < b for the linear autoregressive models (and for b < a for the Knudsen gas).
This is the reason why we use below the Keller-Liverani perturbation theorem [15, 1]. The
price to pay is to consider a chain of Banach spaces instead of a single one.

In view of the previous remark we introduce two sets of hypotheses which are nothing else
but the assumptions of the Keller-Liverani perturbation theorem when applied, first to the
family (Pγ)γ (Hypothesis 2.3), second to the family (P ∗γ )γ (Hypothesis 2.3*): both of them
will be relevant for our examples in Sections 5 and 6 (Knudsen gas and linear autoregressive
model). Below the notation B0 ↪→ B1 means that B0 is continuously injected in B1.

Hypothesis 2.3. Let B0 and B1 be two Banach spaces, let J be a subinterval of [0,+∞].
We will say that ((Pγ)γ∈J ,B0,B1) satisfies Hypothesis 2.3 if

• B0 ↪→ B1,
• for every γ ∈ J , Pγ ∈ L(B0) ∩ L(B1),
• the map γ 7→ Pγ is continuous from J to L(B0,B1),
• there exist c0 > 0, δ0 > 0, M > 0 such that

∀γ ∈ J, ress
(
Pγ|B0

)
≤ δ0 (9a)

∀γ ∈ J, ∀n ≥ 1, ∀f ∈ B0, ‖Pnγ f‖B0 ≤ c0

(
δn0 ‖f‖B0 +Mn‖f‖B1

)
(9b)

Hypothesis 2.3*. ((Pγ)γ∈J ,B0,B1) satisfies all the conditions of Hypothesis 2.3, except for
(9a) and (9b) which are replaced by the following ones:

∀γ ∈ J, ress
(
(P ∗γ )|B∗1

)
≤ δ0 (10a)

∀γ ∈ J, ∀n ≥ 1, ∀f∗ ∈ B∗1, ‖(P ∗γ )nf∗‖B∗1 ≤ c0(δn0 ‖f∗‖B∗1 +Mn‖f∗‖B∗0 ) (10b)

Hypothesis 2.3* can be seen as a dual version of Hypothesis 2.3, but it is worth noticing
that the conditions (10a)-(10b) cannot be deduced from (9a)-(9b) (and conversely). Under
Hypothesis 2.3 or 2.3* we define the following set:

J0 := {γ ∈ J : r(γ) > δ0}. (11)
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Finally recall that we have set hκ,γ :=
(
κ− 1

)
e−γξ.

Theorem 2.4 (Existence of ν).
Let B0 ↪→ B3 ↪→ L1(π) be two Banach spaces such that 1X ∈ B0, let J be a subinterval of
[0,+∞]. Assume that ((Pγ)γ∈J ,B0,B3) satisfies either Hypothesis 2.3 or Hypothesis 2.3*,
and that

• Hypothesis 2.1 holds on J0 and B := B0 under Hypothesis 2.3
• Hypothesis 2.1 holds on J0 and B := B3 under Hypothesis 2.3*.

Then, setting r(γ) := r(Pγ|B) for every γ ∈ J , we have

∀γ0 ∈ J, lim sup
γ→γ0

r(γ) ≤ max(δ0, r(γ0)) , (12)

and the function γ 7→ r(γ) is continuous on J0. Moreover there exists a map γ 7→ Πγ from
J0 to L(B) which is continuous from J0 to L(B0,B3) such that, for every compact subset K
of J0, there exist θK ∈ (0, 1) and MK ∈ (0,+∞) such that

∀γ ∈ K, ∀f ∈ B,
∥∥Pnγ f − r(γ)nΠγf

∥∥
B ≤MK

(
θK r(γ)

)n‖f‖B. (13)

Consequently, under the previous assumptions, the following assertions hold:

(i) If the maps γ 7→ Phκ,γ and γ 7→ µ(κe−γξ·) are continuous from J0 to B0 and to B∗3
respectively, and if

∀γ ∈ J0, π(Πγ1X) > 0 and B(γ) := µ
(
κ e−γξΠγ(Phκ,γ)

)
> 0, (14)

then, under Pµ, (Sn, κ(Xn))n is multiplicatively ergodic on J0 with A(γ) := B(γ)
r(γ) and

ρ(γ) = r(γ).
(ii) If moreover inf

γ∈J0
r(γ) < 1 < sup

γ∈J0
r(γ), then, under Pµ, ν is finite and

ν = inf{γ > 0 : r(γ) < 1}. (15)

Formula (13) can be interpreted as a spectral multiplicative ergodicity property.

To prove the existence of Cν , we reinforce our assumptions by considering a longer chain
of Banach spaces.

Theorem 2.5 (Existence of Cν).
Assume π(ξ > 0) > 0. Let B0 ↪→ B1 ↪→ B2 ↪→ B3 ↪→ L1(π) be Banach spaces containing 1X
and let J be a subinterval of [0,+∞]. Assume that one of the two following conditions holds

(a) Either: for i = 0, 1, 2, ((Pγ)γ∈J ,Bi,Bi+1) satisfies Hypothesis 2.3, and Hypothesis 2.1
holds with (J0,Bi) ; in this case we set B := B0.

(b) Or: for i = 0, 1, 2, ((Pγ)γ∈J ,Bi,Bi+1) satisfies Hypothesis 2.3*, and Hypothesis 2.1 holds
with (J0,Bi+1) ; in this case we set B := B3.

Assume moreover that the map γ 7→ Pγ is continuous from J to L(Bi,Bi+1) for i ∈ {0, 2} and
C1 from J to L(B1,B2) with derivative P ′γf = Pγ(−ξf) (f 7→ ξf being in L(B1,B2)). Then

(13) holds with C1-smooth maps γ 7→ r(γ) := r(Pγ|B) and γ 7→ Πγ from J0 into R and into
L(B0,B3) respectively. Consequently, under the previous assumptions, the assertions (i)-(ii)
in Theorem 2.4 can be specified and completed as follows:
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(i’) If the additional assumptions in Assertion (i) of Theorem 2.4 hold with the present
spaces B0 and B3, then the functions A(·) and ρ(·) := r(·) are C1-smooth on J0.

(ii’) If moreover infγ∈J0 r(γ) < 1 < supγ∈J0 r(γ) and if r′(ν) 6= 0, then the constant Cν of
(4) is well defined and finite.

Assertions (i) and (ii) in Theorem 2.4 and 2.5 follow from Formula (5) (see the remarks
after Definition 1.1) and from the respective first part of these two theorems. The proof of
the first part in Theorems 2.4 and 2.5 is presented in Section 4.

Note that the two above results require, not only to check the spectral property (9a)
(or (10a)) and the Doeblin-Fortet inequalities (9b) (or (10b)), but also to prove (14) and
moreover r′(ν) > 0 in Theorem 2.5. This is discussed in the next section.

3. Complementary results about the previous hypotheses

Recall that the spaces linked to Hypothesis 2.1 in the assumptions of Theorems 2.4 and
2.5 are contained in L1(π). In this section we investigate Hypothesis 2.1 and Condition (14)
by using some assumptions involving the notion of positivity and non-negativity on such a
space (or on its dual space), as defined below. Moreover we give complementary results on
the spectral radius r(γ) of (Pγ)|B for some Banach space B.

Definition 3.1. Let B be a Banach space composed of functions f : X→ C (or of classes of
such functions modulo π). If f ∈ B is a class of functions, we say that it is non-negative
(resp. positive) if one of its representant is so. We say that it is non-null if the null
function is not one of its representant. An element ψ ∈ B∗ is said to be non-negative if for
every non-negative f ∈ B, we have ψ(f) ≥ 0. An element ψ ∈ B∗ is said to be positive if
for every non-negative non-null f ∈ B, we have ψ(f) > 0.

Hypothesis 3.2. For every φ ∈ B, φ ≥ 0, φ 6= 0, there exists ψ ∈ B∗, ψ ≥ 0, such that
ψ(φ) > 0. For every ψ ∈ B∗, ψ ≥ 0, ψ 6= 0, there exists φ ∈ B, φ ≥ 0 such that ψ(φ) > 0.

Hypothesis 3.3. Let J ⊂ [0,+∞] be such that: ∀γ ∈ J, Pγ ∈ L(B). For every γ ∈ J such
that r(γ) > 0, the following properties hold: if φ ∈ B is non-null and non-negative, then
Pγφ > 0 (modulo π) and every non-null non-negative ψ ∈ B∗ ∩Ker(P ∗γ − r(γ)I) is positive.

Note that Hypothesis 3.2 is quite general. Let us recall the definition of a Banach lattice.

Definition 3.4. A complex Banach space (B, ‖ · ‖B) of functions f : X→ C (or of classes of
such functions modulo π) is said to be a complex Banach lattice if it is stable by | · |, by
real part and if

∀f, g ∈ B, f(X) ∪ g(X) ⊂ R ⇒ min(f, g), max(f, g) ∈ B,

∀f, g ∈ B, |f | ≤ |g| ⇒ ‖ |f | ‖B = ‖f‖B ≤ ‖g‖B = ‖ |g| ‖B.

Such a space satisfies Hypothesis 3.2. Classical instances of Banach lattices of functions are
the spaces (Lp(π), ‖·‖p) and (BV , ‖·‖V ) (see (28) and (35)), as well as the space (L∞(X), ‖·‖∞)
composed of all the bounded measurable C-valued functions on X, and equipped with its usual
norm ‖f‖∞ := supx∈X |f(x)|.
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3.1. About Hypothesis 2.1.

Proposition 3.5. Let J be a subinterval of [0,+∞] and let B be a Banach lattice (as described
in Definition 3.4). We assume that Hypothesis 3.3 holds, that B ⊂ L1(π), and that for every
γ ∈ J

(i) Pγ ∈ L(B), r(γ) := r(Pγ|B) > 0, and Pγ is quasi-compact on B,

(ii) for every f, g ∈ B with f > 0, Pγf = r(γ)f and Pγg = r(γ)g, we have g ∈ C · f ,

Assume moreover that the Markov kernel P satisfies the following condition: 1 is the only
complex number λ of modulus 1 such that P (h/|h|) = λh/|h| in L1(π) for some h ∈ B, |h| > 0
(modulo π). Then Hypothesis 2.1 is fulfilled with J and B.

Proposition 3.5 follows from standard arguments derived from the spectral theory of pos-
itive operators. For convenience the proof of Proposition 3.5 is postponed to Appendix A.

Proposition 3.6. Assume that Hypothesis 2.1 holds for some Banach space B as described
in Definition 3.1 and for some subinterval J of [0,+∞]. Let γ ∈ J . Then

Πγ = lim
n→+∞

r(γ)−nPnγ is well defined in L(B), (16)

and there exist some nonzero elements π̂γ ∈ B∗∩Ker(P ∗γ−r(γ)I) and φ̂γ ∈ B∩Ker(Pγ−r(γ)I)

such that π̂γ(φ̂γ) = 1 and

∀f ∈ B, Πγf = π̂γ(f) φ̂γ and ∀f∗ ∈ B∗, Π∗γf
∗ = f∗(φ̂γ) π̂γ . (17)

If B satisfies Hypothesis 3.2, then φ̂γ and π̂γ are non-negative in B and B∗ respectively.

Under the additional Hypothesis 3.3, φ̂γ > 0 π-a.s. and π̂γ > 0 and, for every non-null and
non-negative f ∈ B, we have Πγf > 0 π−a.s..

Proof. Properties (16) and the existence of φ̂γ and π̂γ in (17) follow from Hypothesis 2.1.
Now assume that Hypothesis 3.2 holds. Then (16) and the first assertion in Hypothesis 3.2,

applied with φ = φ̂γ and the associated ψγ ∈ B∗, ψγ ≥ 0, imply that, for every g ∈ B, g ≥ 0,

we have 0 ≤ limn→+∞ r(γ)−nψγ(Pnγ g) = π̂γ(g)ψγ(φ̂γ), hence π̂γ ≥ 0 since ψγ(φ̂γ) > 0. Next
the second assertion in Hypothesis 3.2, applied with ψ = π̂γ and the associated φγ ∈ B,

φγ ≥ 0, gives 0 ≤ limn→+∞ r(γ)−nPnγ φγ = π̂γ(φγ)φ̂γ , hence φ̂γ ≥ 0 since π̂γ(φγ) > 0. Finally,

assume that Hypotheses 3.2 and 3.3 hold. Let γ ∈ J . Then Equation Pγφ̂γ = r(γ)φ̂γ and

Hypothesis 3.3 implies that φ̂γ > 0 π−a.s. Moreover, if γ ∈ J and if f ∈ B, f 6= 0, f ≥ 0,

then π̂γ(f) > 0 and so Πγf = π̂γ(f) φ̂γ is positive modulo π. �

Corollary 3.7. Assume that, for some subinterval J ⊂ [0,+∞), Hypothesis 2.1 holds on two
Banach spaces B1 and B2 (as described in Definition 3.1) both containing 1X and satisfying
Hypotheses 3.2 and 3.3. Then

∀γ ∈ J, r(Pγ|B1) = r(Pγ|B2) = lim
n→+∞

(π(Pnγ 1X))1/n.

If moreover B1 ↪→ B2 and if, for i = 1, 2, Πγ,i denotes the rank-one eigen-projector associated
with Pγ|Bi in (8), then the restriction of Πγ,2 to B1 equals to Πγ,1.
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Proof. For i = 1, 2, Property (8) and Proposition 3.6 applied to Pγ|Bi (with the notations φ̂γ,i
and π̂γ,i related to Proposition 3.6) gives

π(Pnγ 1X) = (r(Pγ|Bi))
nπ̂γ,i(1X)π(φ̂γ,i) + o

(
r(Pγ|Bi)

n
)

with π(φ̂γ,i) π̂γ,i(1X) > 0 from Proposition 3.6. Hence the first assertion holds. Now let
f ∈ B1. Then Πγ,1f = limn→+∞ r(Pγ|B2)−n(Pγ|B1)nf in B1 from Proposition 3.6 applied to
Pγ|B1 and from the previous fact. It follows from B1 ↪→ B2 that this convergence holds in B2

too. Now Proposition 3.6 applied to Pγ|B2 gives Πγ,1f = Πγ,2f . �

3.2. About Condition (14).

Proposition 3.8. Assume that (Pγ)γ and µ satisfy the assumptions of Theorem 2.4(i), ex-
cepted (14). Then the real number B(γ) given in (14) is well-defined for every γ ∈ J0, and

∀γ ∈ J0, B(γ) = π̂γ(Phκ,γ)µ
(
κ e−γξφ̂γ

)
, (18)

where φ̂γ and π̂γ are given in (17). Assume moreover that the space B involved in the
assumptions of Theorem 2.4 satisfies Hypotheses 3.2 and 3.3 on J0 and that one of the
following assumptions holds true

(i) µ is absolutely continuous with respect to π,
(ii) the first part in Hypothesis 3.3 is reinforced as follows: for every γ ∈ J , if φ ∈ B is

non-null and non-negative, then Pγφ > 0 everywhere on X.

Then (14) holds.

Proof. Let γ ∈ J0 (thus r(γ) > 0). First, by assumption Phκ,γ ∈ B0. Thus Πγ(Phκ,γ) ∈ B3

since Πγ ∈ L(B0,B3) (see Theorem 2.4), and B(γ) in (14) is then well-defined from the

assumptions on µ in Theorem 2.4(i). Formula (18) follows from (17) since Πγh = π̂γ(h)φ̂γ .

Also note that φ̂γ > 0 (modulo π) and that π̂γ > 0 from Proposition 3.6. Thus the first

condition of (14) holds since π(Πγ1X) = π(φ̂γ)π̂γ(1X) > 0. Moreover Phκ,γ ≥ 0 and Phκ,γ 6=
0 in L1(π) since π(Phκ,γ) = π(hκ,γ) > 0. Since B0 ↪→ B3 ↪→ L1(π) by hypothesis, it
follows that Phκ,γ 6= 0 in B1 and in B3. Thus π̂γ(Phκ,γ) > 0 from Proposition 3.6. Finally

we have π̂γ(Phκ,γ)φ̂γ > 0 (π-almost surely in Case (i) and everywhere in Case (ii) since

φ̂γ = Pγφ̂γ/r(γ) > 0), which ensures the second condition of (14) due to (18). �

3.3. About the monotonicity of the spectral radius.

Proposition 3.9. Let J be a subinterval of [0,+∞]. If (B, ‖ ·‖B) is a complex Banach lattice
(as described in Definition 3.4), and if Pγ ∈ L(B) for every γ ∈ J , then the map γ 7→ r(γ) is
non-increasing on J .

Proof. For any 0 ≤ γ < γ′ ≤ ∞ and for any f, g ∈ B such that |f | ≤ |g|, we have e−γ
′ξ|f | ≤

e−γξ|g| and so Pγ′ |f | ≤ Pγ |g|, which implies by induction that Pnγ′ |f | ≤ Pnγ |f | for every integer

n ≥ 1. We conclude that ‖Pnγ′‖B ≤ ‖Pnγ ‖B since (B, ‖ · ‖B) is a Banach lattice. This implies

that r(γ′) ≤ r(γ) and so the desired statement. �
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If B is not a Banach lattice, but only a Banach space as described in Definition 3.1, then
the non-increasingness of r(·) can be obtained under Hypotheses 3.2 and 3.3. More precisely:

Proposition 3.10. Assume that Hypothesis 2.1 is fulfilled for some subinterval J of [0,+∞]
and for some Banach space B (as described in Definition 3.1) satisfying Hypotheses 3.2 and
3.3. Then γ → r(γ) is non-increasing on J .

Proof. We use the notations of Proposition 3.6. Let γ1, γ2 ∈ J such that γ2 < γ1. Then

π̂γ1(Pnγ1 φ̂γ1) ≤ π̂γ1(Pnγ2 φ̂γ1) since π̂γ1 and φ̂γ1 are non-negative (see the previous proof). More-

over π̂γ1(Pnγ1 φ̂γ1) = (r(γ1))n and

π̂γ1(Pnγ2 φ̂γ1) = (r(γ2))nπ̂γ2(φ̂γ1)π̂γ1(φ̂γ2) + o ((r(γ2))n) .

Since π̂γ1 and π̂γ2 are positive and since φ̂γ1 and φ̂γ2 are non-null non-negative, we have

π̂γ2(φ̂γ1)π̂γ1(φ̂γ2) > 0. Thus (r(γ1))n = O ((r(γ2))n), so r(γ1) ≤ r(γ2). �

Remark 3.11. The non-increasingness of r on J implies that the set J0 in (11) is an interval.
Let us also indicate that it can happen that r(·) is constant on [0,+∞) (see Appendix B).

The next result is relevant to check the strict decreasingness of r(·).

Proposition 3.12. Assume that the assumptions of Theorem 2.5 hold.

(i) Let γ ∈ J0 be such that π (Πγ1X) > 0 and π
(
Πγ(ξΠγ1X)

)
> 0. Then r′(γ) < 0.

(ii) Assume moreover that the space B2 involved in the assumptions of Theorem 2.5 satisfies
Hypotheses 3.2 and 3.3 on J0, and that π({ξ = 0}) < 1. Then r′(·) < 0 on J0, thus
γ 7→ r(γ) is strictly decreasing on J0.

Proof. Assertion (i) follows from Proposition 4.5. Let us derive (ii) from (i). Let γ ∈ J0.
First note that ξΠγ1X ∈ B2. Indeed it follows from the assumptions of Theorem 2.5 that
Πγ1X ∈ B1 (use also Corollary 3.7) and that the map f 7→ ξf is in L(B1,B2). Hence
ξΠγ1X ∈ B2. Moreover, under the assumptions in (ii), we know from the last assertion of
Proposition 3.6 (applied on B2) that Πγ1X > 0 modulo π, thus ξΠγ1X 6= 0 in L1(π) (since
π({ξ = 0}) < 1), and so ξΠγ1X 6= 0 in B2 from B2 ↪→ L1(π). Then it follows again from
the last assertion of Proposition 3.6 (applied on B2) that Πγ(ξΠγ1X) > 0 modulo π, thus
π
(
Πγ(ξΠγ1X)

)
> 0. Hence r′(γ) < 0 from (i). �

Recall that the parameter ν has been defined in (2). Proposition 3.12 is of interest to
check the condition r′(ν) 6= 0 in Theorem 2.5. Moreover a consequence of the monotonicity
of γ 7→ r(γ) is the following characterisation of ν <∞.

Proposition 3.13. Assume that the assumptions of Theorem 2.4(i)-(ii) hold (with J and
δ0 given in Hypothesis 2.3 or 2.3*); in particular for every γ ∈ J the Laplace kernel Pγ is
assumed to continuously act on the Banach space B chosen in the assumptions of Theorem 2.4.
Assume moreover that δ0 < 1. Then, under Pµ,

(i) For every γ ∈ J we have: G(γ) <∞⇔ r(γ) < 1.

(ii) If r is non-increasing and if J = (a,+∞] for some a ≥ 0, then ν < ∞ ⇔ r(∞) =
r(P∞|B) < 1.
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Proof. First, if γ ∈ J0, then G(γ) < ∞ ⇔ r(γ) < 1 due to Theorem 2.4(i)-(ii) (use (13)
with K = {γ}) and to the first remark after Definition 1.1. Second, if γ ∈ J \ J0, then
r(γ) ≤ δ0 < 1, so that, for some fixed δ ∈ (δ0, 1), we can deduce from the definition of gn(γ)

and r(γ), and from assumptions of Theorem 2.4(i)-(ii), that there exists C̃δ > 0 such that

G(γ) ≤
∑+∞

n=0 C̃δδ
n <∞. Hence (i) is fulfilled. Now, under the assumptions of (ii), it follows

from (i) that: ν < ∞ ⇔ lim supγ→+∞ r(γ) < 1. Moreover, due to Theorem 2.4, we know
that lim supγ→+∞ r(γ) ≤ max(δ0, r(∞)), and even that limγ→+∞ r(γ) = r(∞) if r(∞) > δ0.
Considering the cases r(∞) ≤ δ0 and r(∞) > δ0 then gives the desired equivalence in (ii). �

3.4. About the positivity of the spectral radius. Recall that we have set J0 := {γ ∈ J :
r(γ) > δ0} under the assumptions of Theorem 2.4. Another consequence of the monotonicity
of γ 7→ r(γ) is the following lemma.

Lemma 3.14. Let γ1, γ2, γ3 be such that 0 ≤ γ1 < γ2 < γ3. Assume that the assumptions of
Theorem 2.4 hold with J = (γ1, γ2) and that r is non-increasing on J . Moreover suppose that,
for every γ ∈ (γ1, γ3), Pγ continuously acts on B and that the map f 7→ π(κe−γξf) is in B∗,
where B is the space given in Theorem 2.4. Assume moreover that B satisfies Hypotheses 3.2
and 3.3 and that

∆0 := lim sup
n→+∞

(
π
(
κPn0 1X

)) 1
n

<∞. (19)

If J0 6= ∅, then we have r(γ) > 0 for every γ ∈ (γ1, γ3).

Proof. Let γ0 ∈ J0, γ0 6= 0. Then r(γ) ≥ r(γ0) > 0 for every γ ∈ (γ1, γ0] from Proposi-
tion 3.10. Next let γ ∈ (γ0, γ3) and set p := γ/γ0 > 1. Due to Proposition 3.6, π̂γ0 is positive

and φ̂γ0 > 0 (modulo π), so that

0 < r(γ0) = r

(
γ

p

)
= lim

n→+∞

(
π
(
κ e
− γ
p
ξ
Pnγ
p
1X
)) 1

n
= lim

n→+∞

(
Eπ
[( n∏

j=0

κ(Xj)

)
e
− γ
p
Sn

]) 1
n

due to (13) since 1X ∈ B and f 7→ π(κe
− γ
p
ξ
f) is in B∗, and due to a formula similar to (5)

(in which we replace hκ,γ by κe−γξ). Let q = p/(p− 1). Writing κ(Xj) = κ(Xj)
1/qκ(Xj)

1/p,
it follows from the Hölder inequality that

r (γ0) ≤ lim sup
n→+∞

(
Eπ
[ n∏
j=0

κ(Xj)

]) 1
nq

× lim sup
n→+∞

(
Eπ
[( n∏

j=0

κ(Xj)

)
e−γSn

]) 1
np

≤ lim sup
n→+∞

(
π
(
κPn0 1X

)) 1
nq

× lim sup
n→+∞

(
π
(
κ e−γξ Pnγ 1X

)) 1
np
.

The above first limit superior equals to ∆
1/q
0 by hypothesis, and the second limit superior

is less than (r(γ))
1
p from the definition of r(γ) and from the fact that 1X ∈ B and f 7→

π(κe−γξf) = π(Pγf) is in B∗. Thus 0 < r(γ0) ≤ ∆
1/q
0 (r(γ))

1
p . �

Remark 3.15. Condition (19) holds if P0 ∈ L(B) and if the map f 7→ π(κf) is in B∗ since
∆0 ≤ r(0) from the definition of the spectral radius r(0) of P0. Moreover note that (19) holds
also if κ is bounded by some constant d > 0 since P0 ≤ dP .
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4. Proof of Theorems 2.4 and 2.5

Let us state the Keller-Liverani perturbation theorem. We use the operator-norm nota-
tions of the beginning of Section 2.

Theorem 4.1 (Keller-Liverani Perturbation Theorem [15, 1, 6]). Let (X0, ‖·‖X0) be a Banach
space and (X1, ‖·‖X1) be a normed space such that X0 ↪→ X1. Let J ⊂ [−∞,+∞] be an interval
and let (Q(t))t∈J be a family of operators. We assume that

• For every t ∈ J , Q(t) ∈ L(X0) ∩ L(X1),
• t 7→ Q(t) is a continuous map from J in L(X0,X1),
• There exist δ0 > 0, c0,M0 > 0 such that for every t ∈ J

∀f ∈ X0, ∀n ∈ Z+, ‖(Q(t))nf‖X0 ≤ c0

(
δn0 ‖f‖X0 +Mn

0 ‖f‖X1

)
.

Let t0 ∈ J . Then, for every ε > 0 and every δ > δ0, there exists I0 ⊂ J containing t0 such
that

sup
t∈I0, z∈D(δ,ε)

‖(zI −Q(t))−1‖X0 <∞,

with D(δ, ε) := {z ∈ C, d(z, σ(Q(t0)|X0
)) > ε, |z| > δ}.

Furthermore the map t 7→ (zI − Q(t))−1 from J to L(X0,X1) is continuous at t0 in a
uniform way with respect to z ∈ D(δ, ε), i.e.

lim
t→t0, t∈J

sup
{
‖(zI −Q(t))−1 − (zI −Q(t0))−1‖X0,X1 : z ∈ D(δ, ε)

}
= 0.

In particular,

lim sup
t→t0

r((Q(t))|X0
) ≤ max(δ0, r((Q(t0))|X0

)) . (20)

Finally the map t 7→ r((Q(t))|X0
) is continuous on {t ∈ J : r((Q(t))|X0

) > δ0 ≥ ress((Q(t))|X0
)}.

The next subsections are concerned with the proofs of the first part of Theorem 2.4 and
of Theorem 2.5 under Hypothesis 2.3 or under Hypothesis 2.3*. Recall that the assertions
(i) and (ii) of these two theorems are then provided by Formula (5).

4.1. Proof of Theorem 2.4 under Hypothesis 2.3. Here we assume that ((Pγ)γ∈J ,B0,B3)
satisfies Hypothesis 2.3 and that Hypothesis 2.1 is fulfilled on J0 with B := B0. From now
on, to simplify notations, we write Rz(γ) := (zI − Pγ)−1 for the resolvent when it is well
defined. Recall that J0 := {γ ∈ J : r(γ) > δ0}, where r(γ) := r((Pγ)|B0). The property (12)
and the continuity on J0 of the function γ 7→ r(γ) follow from Theorem 4.1. Moreover we
know from Hypothesis 2.1 on J0 with B := B0 that (8) holds. It remains to prove that, if K
is a compact subset of J0, then the constants θγ and Mγ in (8) are uniformly bounded by
some θK ∈ (0, 1) and MK ∈ (0,+∞), and that γ 7→ Πγ is continuous from J0 to L(B0,B3).
To that effect we use below the spectral definition of Πγ .

Let χ : J0 → (0,+∞) be defined by χ(γ) := max
(
δ0, λ(γ)), where we have set λ(γ) :=

max{|λ| : λ ∈ σ(Pγ|B0) \ {r(γ)}}. Due to Theorem 4.1, χ is continuous on J0. Let K be a

compact subset of J0. We set θ := maxγ∈K
χ(γ)
r(γ) . Since χ(γ) < r(γ) for every γ ∈ K and since

r(·) and χ(·) are continuous, we conclude that θ ∈ (0, 1). Next we consider any η > 0 such
that θ + 2η < 1. Let us construct the map γ 7→ Πγ from K to L(B0). Let γ0 ∈ K. Since r
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is continuous on K, there exists ε > 0 such that, for every γ ∈ K such that |γ − γ0| ≤ ε, we
have |r(γ)− r(γ0)| < ηr(γ0). Let us write K(γ0) for the set of γ ∈ K such that |γ − γ0| ≤ ε.
Observe that, for any γ ∈ K(γ0),

χ(γ) ≤ θr(γ) < θ(1 + η)r(γ0) < (θ + η)r(γ0) < (1− η)r(γ0)

and so the eigenprojector Πγ on Ker(Pγ − r(γ)I) can be defined by

Πγ =
1

2iπ

∮
Γ1(γ0)

Rz(γ) dz, (21)

where Γ1(γ0) is the oriented circle centered on r(γ0) with radius η r(γ0). Due to Theorem 4.1,
γ 7→ Πγ is well defined from K(γ0) to L(B0) and is continuous from K(γ0) to L(B0,B3).

Now, for every γ ∈ K, we define the oriented circle Γ0(γ) :=
{
z ∈ C : |z| = (θ + η) r(γ)

}
.

By definition of θ, for every γ ∈ K, we have χ(γ) ≤ θ r(γ) and so χ(γ) < (θ+ η) r(γ) < r(γ).
Hence, by definition of χ(γ), Rz(γ) is well-defined in L(B0) for every γ ∈ K and z ∈ Γ0(γ).
From spectral theory, it comes that

Nn
γ := Pnγ − r(γ)nΠγ =

1

2iπ

∮
Γ0(γ)

znRz(γ) dz (22)

and so

‖Pnγ − r(γ)nΠγ‖B0 ≤Mγ

(
(θ + η) r(γ)

)n+1
with Mγ := sup

|z|=(θ+η) r(γ)
‖Rz(γ)‖B0 . (23)

We have to prove that

MK := sup
γ∈K

Mγ <∞. (24)

Let γ0 ∈ K. Since γ 7→ r(γ) is continuous at γ0, there exists α ≡ α(γ0) > 0 such that, for
every γ ∈ K satisfying |γ − γ0| < α, we have

θ + η
2

θ + η
r(γ0) < r(γ) <

θ + 3η
2

θ + η
r(γ0).

Set δ := η
2 r(γ0). If |γ−γ0| < α and if |z| = (θ+ η) r(γ), we obtain since δ0 ≤ χ(γ0) ≤ θ r(γ0)

and θ + 2η < 1:

δ0 + δ ≤ χ(γ0) + δ ≤
(
θ +

η

2

)
r(γ0) < |z| <

(
θ +

3η

2

)
r(γ0) < r(γ0)− δ.

From the previous inequalities, let us just keep in mind that χ(γ0)+δ < |z| < r(γ0)−δ. Then,
by definition of χ(γ0), we conclude that every complex number z such that |z| = (θ+ η) r(γ)
satisfies

|z| > δ0 + δ and d
(
z, σ(Pγ0)

)
> δ.

Hence, up to a change of α, due to Theorem 4.1, we obtain that

sup
γ>0 : |γ−γ0|<α

Mγ = sup {‖Rz(γ)‖B0 : |γ − γ0| < α, |z| = (θ + η) r(γ)} <∞.

By a standard compacity argument, we have proved (24). Consequently, with θK := θ + η,
we deduce from (23) that

‖Pnγ − r(γ)nΠγ‖B0 ≤MK

(
θK r(γ)

)n
from which we derive (13) with B = B0.
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4.2. Proof of Theorem 2.5 under Hypothesis 2.3. First we prove the following lemma.

Lemma 4.2. For every γ ∈ J0 and for i = 1, 2, the spectral radius of Pγ|Bi is equal to

r(γ) := r
(
Pγ|B0

)
.

Proof. For i = 0, 1, 2 set ri(γ) := r((Pγ)|Bi). Due to Theorem 2.4 applied to ((Pγ)γ , J,Bi,Bi+1),
π(Pnγ 1X) ∼ ci ri(γ)n as n goes to infinity, with ci := π(Πγ1X) > 0 from (14). This proves the
equality of the spectral radius. �

Proof of Theorem 2.5 under Hypothesis 2.3. We define χi as χ in the proof of Theorem 2.4
for each Bi (i = 0, 1, 2). We define now χ := max(χ0, χ1, χ2). Let us prove the differentiability
of r and Π on J0. Let γ0 ∈ J0. Let η > 0 be such that r(γ0) > χ(γ0) + 2η and let ε > 0 be
such that for every γ ∈ J0 satisfying |γ−γ0| < ε, we have r(γ) > r(γ0)−η > χ(γ0)+η > χ(γ).
We set I0 := J0 ∩ (γ0 − ε, γ0 + ε) and

D0 := {z ∈ C : χ(γ0) + η < |z| < r(γ0)− η} ∪ {z ∈ C : |z − r(γ0)| = η}. (25)

Due to the hypotheses of Theorem 2.5 and to an easy adaptation of [14, Lemma A.2] (see
Remark 4.3), we obtain that, for every z ∈ D0, the map γ 7→ Rz(γ) is C1 from I0 to L(B0,B3)
with R′z(γ) = Rz(γ)P ′γRz(γ) and

lim
h→0

sup
z∈D0

‖Rz(γ0 + h)−Rz(γ0)− hR′z(γ0)‖B0,B3
|h|

= 0. (26)

Moreover, for every γ ∈ I0, we deduce from spectral theory that Πγ and Nγ (already defined
in the proof of Theorem 2.4) are given by

Πγ =
1

2iπ

∮
Γ1

Rz(γ) dz and Nγ =
1

2iπ

∮
Γ0

zRz(γ) dz,

where Γ1 is the oriented circle centered at r(γ0) with radius η and Γ0 is the oriented circle
centered at 0 with some radius ϑ0 satisfying χ(γ0) + η < ϑ0 < r(γ0) − η. Thus γ 7→ Πγ

and γ 7→ Nγ are C1-smooth from J0 to L(B0,B3). Since 1X ∈ B0 by hypothesis this implies
the continuous differentiability of γ 7→ Nγ1X and of γ 7→ Πγ1X from J0 to B3. Since r(γ) =
π((Pγ−Nγ)(1X))

π(Πγ(1X)) and γ 7→ Pγ1X is C1 from I0 to B3 and since π ∈ B∗3 by hypothesis, we obtain

the continuous differentiability of r on I0. �

Remark 4.3 (Proof of the differentiability of γ 7→ Rz(γ)). We adapt the arguments of [14,
Lemma A.2], writing

Rz(γ) = Rz(γ0) + Rz(γ0) [Pγ − Pγ0 ]Rz(γ0) + ϑz(γ),

with ϑz(γ) := Rz(γ0) [Pγ − Pγ0 ]Rz(γ0) [Pγ − Pγ0 ]Rz(γ).

Then

‖ϑz(γ)‖B0,B2
|γ − γ0|

≤ ‖Rz(γ0)‖B2
∥∥∥∥Pγ − Pγ0γ − γ0

∥∥∥∥
B1,B2

‖Rz(γ0)‖B1‖Pγ − Pγ0‖B0,B1‖Rz(γ)‖B0 . (27)

From the hypotheses of Theorem 2.5 and from the resolvent bounds derived from Theorem 4.1,
the last term goes to 0, uniformly in z ∈ D, when γ goes to γ0. Similarly we have:∥∥Rz(γ0)(Pγ − Pγ0)Rz(γ0)− (γ − γ0)Rz(γ0)P ′γ0Rz(γ0)

∥∥
B0,B3

≤ M‖Pγ − Pγ0 − (γ − γ0)P ′γ0‖B1,B2 = o(γ − γ0)
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when again the finite positive constant M is derived from the resolvent bounds of Theorem 4.1.
This shows that R′z(γ0) = Rz(γ0)P ′γ0Rz(γ0) in L(B0,B3). To prove that γ 7→ R′z(γ) is contin-
uous from J0 to L(B0,B3) in a uniform way with respect to z ∈ D, observe that γ 7→ Rz(γ) is
C0 from J0 to L(B0,B1) (use Theorem 4.1), that γ 7→ P ′γ is C0 (uniformly in z ∈ D) from J0

to L(B1,B2) by hypothesis, and finally that γ 7→ Rz(γ) is C0 (uniformly in z ∈ D) from J0 to
L(B2,B3) (again use Theorem 4.1). Observe that (27) gives the differentiability at γ0 of the
map γ 7→ Rz(γ) considered from J to L(B0,B2). The additional space B3 is only required to
obtain the continuous differentiability.

4.3. Proof of Theorems 2.4 and 2.5 under Hypothesis 2.3*. Here the Keller-Liverani
perturbation theorem must be applied to the dual family (P ∗γ )γ . Actually the hypotheses of
Theorem 2.4 are:

• B∗3 ↪→ B∗0,
• For every γ ∈ J , P ∗γ ∈ L(B∗0) ∩ L(B∗3),
• γ 7→ P ∗γ is a continuous map from J in L(B∗3,B∗0),

• There exist δ0, c0,M0 > 0 such that, for all γ ∈ J , ress
(
(Pγ)∗|B∗3

)
≤ δ0 and

∀n ≥ 1, ∀f∗ ∈ B∗3, ‖(P ∗γ )nf∗‖B∗3 ≤ c0(δn0 ‖f∗‖B∗3 +Mn‖f∗‖B∗0 ).

• Hypothesis 2.1 holds on (J0,B3).

Proof of Theorem 2.4 under Hypothesis 2.3*. Under these assumptions it follows from The-
orem 4.1 applied to (P ∗γ )γ∈J with respect to (B∗3,B∗0) that, for every ε > 0 and every δ > δ0,

the map γ 7→ (zI − P ∗γ )−1 is well defined from J0 to L(B∗3), provided that z ∈ D(δ, ε) with

D(δ, ε) := {z ∈ C, d(z, σ
(
(P ∗γ0)|B∗2 )

)
> ε, |z| > δ} = {z ∈ C, d(z, σ

(
(Pγ0)|B2)

)
> ε, |z| > δ}.

In addition, the map γ 7→ (zI − P ∗γ )−1, considered from J0 to L(B∗3,B∗0), is continuous at
every γ0 ∈ J0 in a uniform way with respect to z ∈ D(δ, ε). By duality this implies that
γ 7→ (zI − Pγ)−1 is well defined from J0 to L(B3) for every z ∈ D(δ, ε). Moreover, when this
map is considered from J0 to L(B0,B3), it is continuous at γ0 in a uniform way with respect
to z ∈ D(δ, ε). Finally Hypothesis 2.1 on (J0,B3) enables us to identify the spectral elements
associated with r(γ) := r

(
(Pγ)|B3

)
. Consequently one can prove as in Subsection 4.1 that

there exists a map γ 7→ Πγ from J0 to L(B3), which is continuous from J0 to L(B0,B3), such
that (13) holds with B := B3. �

Proof of Theorem 2.5 under Hypothesis 2.3*. When Theorem 2.5 is stated with Hypothe-
sis 2.3*, then Theorem 2.4 applies on (B0,B1), (B1,B2) and (B2,B3) (with Hypothesis 2.3*
in each case). Thus, for every γ ∈ J0, the spectral radius ri(γ) := r((Pγ)|Bi) are equal for
i = 1, 2, 3 (See the proof of Lemma 4.2). Observe that, from our hypotheses, Hypothesis
2.1 holds on (J0,Bi) for i = 1, 2, 3. Since P ∗γ on B∗i inherits the spectral properties of Pγ on
Bi, we can prove as above that, for every γ0 ∈ J0 and for every ε > 0 and δ > δ0, the map
γ 7→ (zI − P ∗γ )−1 is well defined from some subinterval I0 of J0 containing γ0 into L(B∗3),
provided that z ∈ D0 where the set D0 is defined in (25). In addition, by applying Remark 4.3
with the adjoint operators (P ∗γ )γ and the spaces B∗3 ↪→ B∗2 ↪→ B∗1 ↪→ B∗0, we can prove that the

map γ 7→ (zI − P ∗γ )−1, considered from J0 to L(B∗3,B∗0), is C1 in a uniform way with respect
to z ∈ D0. By duality, this gives (26). We conclude the differentiability of γ 7→ Π∗γ from J0

to L(B∗3,B∗1) and so the differentiability of γ 7→ Πγ from J0 to L(B1,B3). �
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4.4. Complements on the derivative of r(·). Let us first prove the following.

Lemma 4.4. Let J1 = (a, b) ⊂ [0,+∞) and let B1 ↪→ B2 be two Banach spaces such that
f 7→ ξf ∈ L(B1,B2). Assume that, for every γ ∈ J1, Pγ ∈ L(B1)∩L(B2) and that there exist
elements φγ ∈ B1 and πγ ∈ B∗2 such that Pγφγ = r(γ)φγ and P ∗γ πγ = r(γ)πγ. Moreover as-
sume that γ 7→ Pγ and γ 7→ r(γ) are differentiable from J1 to L(B1,B2) and to C respectively,
with respective derivatives at γ ∈ J1 given by P ′γ : f 7→ Pγ(−ξf) and r′(γ). Finally assume
that γ 7→ φγ is continuous from J1 to B1 and differentiable from J1 to B2 with derivative
γ 7→ φ′γ.

Then we have for every γ ∈ J1: r′(γ)πγ (φγ) = −r(γ)πγ
(
ξφγ
)
. In particular, if r(γ) > 0,

πγ(φγ) ≥ 0 and πγ
(
ξφγ
)
> 0, then r′(γ) < 0.

Proof. Let γ, γ0 ∈ J1. We have Pγφγ = r(γ)φγ in B2. From Pγφγ −Pγ0φγ0 = Pγ0(φγ −φγ0) +
(Pγ − Pγ0)(φγ), we obtain that

r(γ0)φ′γ0 + r′(γ0)φγ0 = Pγ0(φ′γ0) + Pγ0(−ξφγ0) in B2.

We conclude by composing by πγ0 and using the fact that πγ0 ◦ Pγ0 = r(γ0)πγ0 . �

Proposition 4.5. Assume that the assumptions of Theorem 2.5 hold. For every γ ∈ J0, set
φγ := Πγ1X and πγ := Π∗γπ. Then the assumptions of Lemma 4.4 hold with J1 = J0 and with
respect to the spaces B1 ↪→ B2 (resp. B1 ↪→ B3) when the assumptions of Theorem 2.5 hold
with Hypothesis 2.3 (resp. with Hypothesis 2.3*). Consequently, for every γ ∈ J0,

π (Πγ1X) > 0 and π(Πγ(ξΠγ1X)) > 0 =⇒ r′(γ) < 0.

Proof of Proposition 4.5 under Hypothesis 2.3. We have πγ ∈ B∗2 since π ∈ B∗2 and Π∗γ is
well defined in L(B∗2). Moreover φγ ∈ B1 since 1X ∈ B1 and Πγ ∈ L(B1), and γ 7→ φγ is
continuous from J to B1 by Theorem 2.4. Finally γ 7→ φγ is differentiable from J to B2

(see the end of Remark 4.3). We have proved that the assumptions of Lemma 4.4 hold as
stated under Hypothesis 2.3. Finally, since r(γ) > 0 when γ ∈ J0, the desired implication
in Proposition 4.5 follows from the conclusion of Lemma 4.4 because πγ(φγ) = π(φγ) and
πγ(ξ φγ) = π(Πγ(ξΠγ1X)). �

Proof of Proposition 4.5 under Hypothesis 2.3*. Note that πγ := Π∗γπ ∈ B∗3 since π ∈ B∗3 and
Π∗γ is well defined in L(B∗3). The function γ 7→ Pγ is differentiable from J0 to L(B1,B2),
thus from J0 to L(B1,B3). We have φγ := Πγ1X ∈ B1 since 1X ∈ B1 and Πγ is well defined
in L(B1). Moreover γ 7→ φγ is continuous from J to B1 since Πγ is well defined in L(B1),
continuous from J0 to L(B0,B1), and 1X ∈ B0. Finally γ 7→ φγ is differentiable from J to B3

since Πγ is well defined in L(B3) and differentiable from J0 to L(B1,B3) and 1X ∈ B1. �

5. Application to the Knudsen gas

In this section, we apply our general results for the Knudsen gas. In this model, at each
step, either we follow a Markov chain Z = (Zn)n (with probability (1−α)) or we generate an
independent random variable with distribution the invariant probability measure of Z (with
probability α). See [2] for more about this model.
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Knudsen gas. Let X := Rd, let π be some Borel probability measure on X, and let U be
a Markov operator with stationary probability π. We fix α ∈ (1/2, 1). Let X = (Xn)n be a
Markov chain with transition kernel P := απ + (1− α)U .

Here we apply the assertions (i)-(ii) of Theorems 2.4 and 2.5 to Knudsen gas by considering
the action of the Laplace-type kernels Pγ on the usual Lebesgue space (La(π), ‖ · ‖a) for some
suitable a ∈ [1,+∞), where

‖f‖a :=

(∫
X
|f(x)|a dπ(x)

) 1
a

. (28)

Mention that Theorem 2.6 of [13] directly follows from the next theorem.

Theorem 5.1 (Knudsen gas). Let p > 1. Assume that X = (Xn)n is a Knudsen gas as above
described, and that its initial distribution µ on X is absolutely continuous with respect to π,
with density in Lp(π). Assume moreover that κ ≡ 2. Then, under Pµ, (Sn)n is multiplicatively
ergodic on the interval J0 = {γ > 0 : r(γ) > 2(1− α)}, where r(γ) denotes le spectral radius
of Pγ on Lb with b := p

p−1 . If moreover α > 1/2 and if

2α
∑
n≥0

(2(1− α))nPπ
( n∑
k=0

ξ(Zk) = 0

)
< 1, (29)

where (Zn)n is a Markov process with transition U , then ν defined in (2) is finite. Finally,
if π(ξτ ) <∞ for some τ > 1 and if p > τ

τ−1 , then the constant Cν in (4) is well defined and
finite.

Theorem 5.1 straightforwardly extends to the case κ(·) ≡ m, where m ≥ 2 is any integer.
To prove Theorem 5.1, we will check that the hypothesis of Theorems 2.4 and 2.5 are fulfilled
via Hypothesis 2.3 on J = [0,+∞) and on some suitable spaces La(π). Before we prove the
following.

Lemma 5.2. Let 1 ≤ b < a.

(i) For every γ ≥ 0, ress(Pγ|La(π)) ≤ 2(1− α).

(ii) The function γ 7→ Pγ is continuous from (0,+∞] to L(La(π),Lb(π)).
(iii) For any γ ∈ [0,+∞] and any f ∈ La(π), ‖Pγf‖a ≤ 2((1− α)‖f‖a + α‖f‖1).
(iv) For any γ > 0, for any non-null non-negative f ∈ La(π) and every non-null non-negative

g ∈ La′(π) with a′ = a
a−1 , we have π(gPγf) > 0 and Pγf > 0.

(v) If r(γ) > 2(1 − α), for every f, g ∈ La(π) with f > 0, Pγf = r(γ)f and Pγg = r(γ)g,
then we have g ∈ C · f .

(vi) 1 is the only complex number λ of modulus 1 such that P (h/|h|) = λh/|h| in L1(π) for
some h ∈ B, |h| > 0 (modulo π).

(vii) Let τ > 1. If π(ξτ ) < ∞ and if b < τa
τa+1 , then f 7→ ξf is in L(La(π),Lb(π)) and

γ 7→ Pγ is C1 from [0,+∞) to L(La(π),Lb(π)), with P ′γf = −Pγ(ξf).

Proof.
(i) Observe that Pγ = 2(απ(e−γξ·) + (1 − α)Uγ) with Uγ := U(e−γξ·). Since the sum of
a Fredholm operator with a compact operator is Fredholm, we directly obtain ress(Pγ) =
2(1− α)ress(Uγ) ≤ 2(1− α).
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(ii) For every 0 ≤ γ, γ′ <∞ and every f ∈ B such that ‖f‖a = 1, we have

‖Pγf − Pγ′f‖b = 2‖P ((e−γξ − e−γ′ξ)f)‖b
≤ 2‖(e−γξ − e−γ′ξ)f‖b ≤ 2‖e−γξ − e−γ′ξ‖c,

where c is such that 1
a + 1

c = 1
b . Hence ‖Pγ − Pγ′‖La(π),Lb(π) ≤ 2‖e−γξ − e−γ

′ξ‖c, which

converges to 0 as γ′ goes to γ, by the dominated convergence theorem. In the same way, we
prove that ‖Pγ − P∞‖La(π),Lb(π) ≤ 2‖e−γξ‖c and hence the continuity of γ 7→ Pγ at infinity.

(iii) For every γ ∈ [0,+∞] and every f ∈ La(π), ‖Pγf‖a ≤ 2‖Pf‖a ≤ 2((1−α)‖f‖a+α‖f‖1)
since ‖Uf‖a ≤ ‖f‖a. This gives the Doeblin-Fortet inequality.

(iv) For any non-null non-negative f ∈ La(π), we have Pγf ≥ 2απ(e−γξf)1X > 0. The other
assertion of (iv) is then obvious.

(v) Let f, g ∈ La(π) such that f > 0, Pγf = r(γ)f and Pγg = r(γ)g in La(π). Set β :=
π(e−γξg)
π(e−γξf)

and h := g − β f . Then π(e−γξh) = 0 and Pγh = r(γ)h, which gives r(γ)h =

2(1−α)U(e−γξh), so that r(γ) |h| ≤ 2(1−α)U(|h|). Since π U = π, we obtain: r(γ)π(|h|) ≤
2(1− α)π(|h|). Finally we conclude that π(|h|) = 0 because r(γ) > 2(1− α) and so g = βf
in La(π).

(vi) Let k ∈ L1(π) and λ ∈ C be such that |λ| = 1, |k| ≡ 1X and P (k) = λk. Then
λk = απ(k) + (1− α)U(k). Taking the modulus, we obtain 1 ≤ α|π(k)|+ (1− α)U(1X) ≤ 1.
By convexity we conclude that |π(k)| = 1 and that k is constant modulo π, so that λ = 1.

(vii) Let f ∈ La(π). Observe that ‖ξf‖b ≤ ‖ξf‖ τa
τa+1

≤ ‖ξ‖τ‖f‖a, thus

∀γ ≥ 0, ‖Pγ(ξf)‖b = ‖P (e−γξξf)‖b ≤ ‖e−γξξf‖b ≤ ‖ξf‖b ≤ ‖ξ‖τ‖f‖a.

This proves that, for every γ ≥ 0, the map f 7→ Pγ(ξf) is in L(La(π),Lb(π)). Next, for any
f ∈ La(π) and γ, γ′ > 0, we have

‖Pγ′f − Pγf + (γ′ − γ)Pγ(ξf)‖b = ‖P
(
(e−γ

′ξ − e−γξ + (γ′ − γ)e−γξξ)f
)
‖b

≤
∥∥∥(e−γ

′ξ − e−γξ + (γ′ − γ)e−γξξ)f
∥∥∥
b

≤
∥∥∥e−γ′ξ − e−γξ + (γ′ − γ)e−γξξ

∥∥∥
τ
‖f‖a,

and ‖e−γ′ξ−e−γξ+(γ′−γ)e−γξξ‖τ converges to 0 as γ′ goes to γ by the dominated convergence
theorem. We have proved that γ 7→ Pγ is differentiable from [0,+∞) to L(La(π),Lb(π)), with
P ′γf = −Pγ(ξf). Finally, since b < τa

τa+1 , we can choose d > 1 such that 1
b = 1

d + τa+1
τa , so

that we obtain for any f ∈ La(π) and γ, γ′ > 0

‖Pγ(ξf)− Pγ′(ξf)‖b = ‖P
(
(e−γξ − e−γ′ξ)ξf

)
‖b ≤ ‖(e−γξ − e−γ′ξ)ξf‖b
≤ ‖e−γξ − e−γ′ξ‖d ‖ξf‖ τa

τa+1

≤ ‖e−γξ − e−γ′ξ‖d ‖ξ‖τ‖ f‖a.

from which we deduce that γ 7→ P ′γ is continuous from [0,+∞) to L(La(π),Lb(π)) since

‖e−γξ − e−γ′ξ‖d converges to 0 as γ′ goes to γ by the dominated convergence theorem. �

Proof of Theorem 5.1. Let us first apply Theorem 2.4 to obtain the existence of ν. Let
b := p

p−1 and a > b. From Assertion (i)-(iii) of Lemma 5.2, (Pγ)γ satisfies Hypothesis 2.3

with J = [0,+∞), B0 = La(π) and B1 = Lb(π) (to obtain (9b), iterate Inequality (iii) of
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Lemma 5.2 and use ‖ · ‖1 ≤ ‖ · ‖b). Next, if γ ∈ J0 (i.e. r(γ) > 2(1 − α)), then Pγ is
quasi-compact from Assertion (i) of Lemma 5.2. Moreover note that Hypothesis 3.2 holds
with B = La(π) since La(π) is a Banach lattice, and that Hypothesis 3.3 is fulfilled with
B = La(π) by using the last property in Assertion (iv) of Lemma 5.2. Then Pγ satisfies the
hypotheses of Proposition 3.5 on B0 = La(π) from Assertions (v) and (vi) of Lemma 5.2.
Thus Hypothesis 2.1 holds on J0 with B0 = La(π). Theorem 2.4 ensures that γ 7→ r(γ) is
continuous on J0 and that Properties (12)-(13) hold.

Consequently, from the assertion (i) of Theorems 2.4, (Sn)n is multiplicatively ergodic on
J0 with respect to Pµ, if we prove that µγ : f 7→ µ(e−γξf) is in (Lb(π))∗, that the function

γ 7→ µγ is continuous from J0 to (Lb(π))∗, and finally that Condition (14) holds. Observe that
(14) holds from Proposition 3.8 since the initial distribution µ is assumed to be absolutely
continuous with respect to π in Theorem 5.1. Next, since the density gµ of µ with respect to
π is supposed to be in Lp(π), we have

∀f ∈ Lb(π), µγ(f) =

∫
Rd
f(y) e−γξ(y) gµ(y) dπ(y)

thus µγ ∈ (Lb(π))∗ since e−γξ gµ ∈ Lp(π). Moreover the norm in (Lb(π))∗ of (µγ−µγ′) equals

to ‖(e−γξ − e−γ′ξ) gµ‖p, which converges to 0 as γ′→ γ from Lebesgue’s theorem.

Now we apply the assertion (ii) of Theorems 2.4 to prove that ν defined in (2) is finite
under Condition (29). To that effect we need to study the spectral radius r(γ) of Pγ . First
observe that the non-increasingness of r(·) follows from Proposition 3.9 since La(π) is a
Banach lattice. Consequently the set J0 := {γ > 0 : r(γ) > 2(1 − α)} is an interval with
min J0 = 0 since r(0) = 2. Now set hγ := e−γξ for γ ≥ 0 and h∞ := 1{ξ=0}. Recall that
Pγf = 2[απ(f hγ)+(1−α)U(f hγ)], that Uγ(·) = U(·×hγ), and denote by r(Uγ) the spectral
radius of (Uγ)|La(π). Note that r(Uγ) ≤ 1 since U is Markov.

Lemma 5.3. Let γ ∈ [0,∞], a ∈ (1,+∞) and λ ∈ C be such that |λ| > 2(1−α)r(Uγ). Then
λ is an eigenvalue of (Pγ)|La(π) if and only if

λ = 2α
∑
n≥0

2n(1− α)n

λn
π(hγU

n
γ (1X)). (30)

In particular r(γ) > 2(1−α) if and only if (30) admits a solution belonging to (2(1−α),+∞).

Proof of Lemma 5.3. First, let f ∈ La(π), f 6= 0, be such Pγf = λf in La(π), i.e. λf =
2[απ(f hγ) + (1− α)Uγ(f)], thus[

I − 2(1− α)

λ
Uγ

]
(f) =

2απ(f hγ)

λ
1X .

Observe that π(f hγ) 6= 0, otherwise f would satisfy λf = 2(1− α)Uγ(f), which contradicts
the fact that λ/(2− 2α) is not in the spectrum of Uγ . Hence

f =
2απ(fhγ)

λ

[
I − 2(1− α)

λ
Uγ

]−1

(1X) =
2απ(fhγ)

λ

∑
n≥0

2n(1− α)n

λn
Unγ 1X,

and so

λ = λπ

(
f hγ

π(f hγ)

)
= 2α

∑
n≥0

2n(1− α)n

λn
π
(
hγ U

n
γ 1X

)
,
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which leads to (30).

Second, if (30) holds, then we consider g ∈ La(π) be given by g := 2α
λ

∑
n≥0

2n(1−α)n

λn Unγ 1X.

This g satisfies λg = 2[α1X + (1− α)Uγ(g)] and, due to (30), π(hγ g) = 1, so Pγg = λg. This
proves the first equivalence of Lemma 5.3. For the second one, assume that r(γ) > 2(1− α).
Then r(γ) is an eigenvalue of (Pγ)|La(π) since we know that Hypothesis 2.1 holds on J0 and
B0 = La(π). The first part of Lemma 5.3 then implies that λ = r(γ) satisfies (30) (note that
r(γ) > 2(1 − α)r(Uγ) from r(Uγ) ≤ 1). Now suppose that there exists λ ∈ (2(1 − α),+∞)
satisfying (30). Then λ > 2(1 − α)r(Uγ), thus λ is an eigenvalue of (Pγ)|La(π) from the first
part of Lemma 5.3, so that r(γ) ≥ λ > 2(1− α). �

Remark 5.4. Lemma 5.3 implies that, if γ > 0 is such that r(γ) > 2(1− α), then λ = r(γ)
is the unique positive solution of (30). Indeed, under the condition r(γ) > 2(1 − α), we
know that r(γ) satisfies (30) (see the above arguments). Moreover Equation (30) admits at
most one solution λ ∈ (0,+∞) since the left (resp. right) hand side of (30) is an increasing
(resp. decreasing) function of the variable λ.

Assume α > 1/2 and (29) (which implies that π(ξ = 0) < 1). For every γ ∈ [0,∞] and
every λ > 0, we write ζ(γ, λ) for the expression contained in the right hand side of (30),
which rewrites as

ζ(γ, λ) = 2α
∑
n≥0

2n(1− α)n

λn
Eπ
[
e−γ

∑n
k=0 ξ(Zk)

]
if γ ∈ (0,∞) ,

and

ζ(∞, λ) = 2α
∑
n≥0

2n(1− α)n

λn
Pπ

(
n∑
k=0

ξ(Zk) = 0

)
,

by using the Markov property. Note that ζ(·, 1) is decreasing, continuous on (0,∞), with
finite values (since 2(1 − α) < 1). Note that ζ(0, 1) = α

α− 1
2

> 1 and that ζ(∞, 1) is the left

hand side of (29), thus ζ(∞, 1) < 1. Therefore there exists a unique ν ∈ (0,∞) such that
ζ(ν, 1) = 1. Since 1 > 2(1− α) it follows from the first equivalence of Lemma 5.3 that λ = 1
is an eigenvalue of (Pν)|La(π). Thus r(ν) ≥ 1. In particular we have r(ν) > 2(1− α), so that
r(ν) = 1 from Remark 5.4. Moreover [0, ν] ⊂ J0 = {γ ∈ [0,∞) : r(γ) > 2(1 − α)}. The
claimed statements on J0 and ν in Theorem 5.1 are proved.

Now we apply Theorem 2.5 to prove the existence of the constant Cν in (4). Assume
that α > 1/2, that (29) holds, and that π(ξτ ) < ∞ for some τ > 1. Let p > τ

τ−1 and set

a3 := p
p−1 (i.e. 1/p + 1/a3 = 1). Note that a3 < τ . Let a2 be such that a3 < a2 < τ . Since

lima→+∞
τa
τ+a = τ , we can chose a1 > a2 such that a2 <

τa1
τ+a1

. Next let a0 > a1. From

Lemma 5.2 we deduce that the assumptions of Theorem 2.5 hold with the spaces Bi = Lai(π)
for i = 0, 1, 2, 3, so that we can apply Theorem 2.5: we conclude that r is C1 on J0. The fact
that r′ < 0 can easily be proved using Proposition 3.12 (to check the condition in Assertion (i)
of Proposition 3.12, use the fact that Hypotheses 3.2 and 3.3 hold with B = La(π) and apply
the last assertion of Proposition 3.6). In this particular case, we can also use the fact that
r is given by an implicit formula F (r(γ), γ) = 0 (see (30)), where F is C1 with non-null
derivatives at (r(γ), γ). Moreover Cν in (4) is well-defined, provided that µγ : f 7→ µ(e−γξf)
is in (La3(π))∗ and that the function γ 7→ µγ is continuous from J0 to (La3(π))∗. These
conditions hold since µ is absolutely continuous with respect to π with density in Lp(π) (see
the proof of the multiplicative ergodicity). Moreover (14) has been proved together with the
multiplicative ergodicity. The proof of Theorem 5.1 is then achieved. �
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6. Application to the linear autoregressive model

Linear autoregressive model. X := R and Xn = αXn−1 + ϑn for n ≥ 1, where X0 is
a real-valued random variable, α ∈ (−1, 1), and (ϑn)n≥1 is a sequence of i.i.d. real-valued
random variables independent of X0. Let r0 > 0. We assume that ϑ1 has a continuous
Lebesgue probability density function p > 0 on R satisfying the following condition: for all
x0 ∈ R, there exist a neighbourhood Vx0 of x0 and a non-negative function qx0(·) such that
y 7→ (1 + |y|)r0 qx0(y) is Lebesgue-integrable and such that :

∀y ∈ R, ∀v ∈ Vx0 , p(y + v) ≤ qx0(y). (31)

The domination condition (31) means that p satisfies (32) under a (local) uniform domination
way. This implies that p has a moment of order r0, that is∫

|x|r0p(x)dx <∞ . (32)

In other words ϑ1 admits a moment of order r0. Observe that (Xn)n∈N is a Markov chain
with transition kernel

P (x,A) =

∫
R

1A(αx+ y)p(y) dy =

∫
R

1A(y)p(y − αx) dy (33)

Set V (x) := (1 + |x|)r0 , x ∈ R. Recall that, under Assumption (32), P satisfies the
following drift condition (see [21])

∀δ > |α|r0 , ∃L ≡ L(δ) > 0, PV ≤ δ V + L1R. (34)

Moreover it is well-known that (Xn)n∈N is V -geometrically ergodic, see [21]. Let (BV , ‖ · ‖V )
be the weighted-supremum Banach space

BV :=
{
f : R→C measurable : ‖f‖V := sup

x∈R
|f(x)|V (x)−1 <∞

}
. (35)

Let (CV , ‖ · ‖V ) denote the following subspace of BV :

CV :=

{
f ∈ BV : f is continuous and `V (f) := lim

|x|→∞

f(x)

V (x)
exists in C

}
,

where the symbol lim|x|→∞ means that the limits when x→±∞ exist and are equal. Note
that V ∈ CV and that CV is a closed subspace of (BV , ‖ · ‖V ). Let C0,V be the subspace of CV
defined by

C0,V := {f ∈ CV : `V (f) = 0}.
Finally we denote by (C1, ‖ · ‖∞) the space of bounded continuous complex-valued functions
on R endowed with the supremum norm ‖·‖∞. We will see below that, for every γ ∈ (0,+∞],
Pγ continuously acts on CV (see Lemma 6.2). For γ ∈ (0,+∞], we denote by r(γ) the spectral
radius of Pγ on CV , that is:

r(γ) = r(Pγ|CV ) := lim
n→+∞

‖Pnγ ‖
1/n
V = lim

n→+∞
‖Pnγ V ‖

1/n
V

where ‖ ·‖V also denotes the operator norm on CV . The last equality holds because, for every
n ≥ 1, we have ‖Pnγ ‖V = ‖Pnγ V ‖V . Indeed, since V ∈ CV with ‖V ‖V = 1, ‖Pnγ ‖V ≥ ‖Pnγ V ‖V .
Moreover, for every f ∈ CV with ‖f‖V = 1, we have

‖Pnγ f‖V = sup
x∈R

|(Pnγ f)(x)|
V (x)

≤ sup
x∈R

(Pnγ |f |)(x)

V
≤ ‖f‖V sup

x∈R

(Pnγ V )(x)

V (x)
= ‖Pnγ V ‖V .
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We will also prove that limγ→ 0+ r(γ) ≥ 2.

Recall that ξ : R → [0,+∞) is a measurable function and that Sn =
∑n

k=0 ξ(Xk). Let
κ : R→{2, ...} be a measurable function. The function ξ : R→ [0,+∞) is said to be coercive
if lim|x|→+∞ ξ(x) = +∞, i.e. if, for every β, the set [ξ ≤ β] is bounded.

Mention that Theorem 2.7 of [13] directly follows from the next theorem.

Theorem 6.1. Assume that the previous assumptions hold. Assume that the distribution µ
of X0 belongs to C ∗V , namely satisfies µ(V ) <∞. Assume moreover that ξ is coercive, that κ
is bounded, that p is continuous, and that supx∈R(ξ(x)/V (x)) <∞. Then, under Pµ,

a) (Sn, κ(Xn))n is multiplicatively ergodic on (0,+∞) with ρ = r on [0,+∞).
b) If moreover the Lebesgue measure of the set [ξ = 0] is zero, then limγ→+∞ r(γ) = 0. Hence

ν is finite.
c) Moreover, if there exists τ > 0 such that supx∈R(ξ(x)1+τ/V (x)) < ∞, then γ 7→ r(γ)

admits a negative derivative on [0,+∞). Hence (4) holds also with Cν ∈ (0,+∞).

Recall that
∫
R |x|

r0 dπ(x) < ∞ under the assumptions of Theorem 6.1 (see [4, 5]). Hence

supx∈R
ξ(x)1+τ

(1+|x|)r0 <∞ implies that
∫
R |ξ|

1+τ dπ <∞.

The next subsections are devoted to the proof of Theorem 6.1. Here we apply the asser-
tions (i)-(ii) of Theorems 2.4 and 2.5 by considering the action of the Laplace-type kernels
Pγ on CV a for suitable a ∈ [0, 1], in particular on CV (i.e. a = 1) and CV 0 = C1 (i.e. a = 0).

6.1. Study of Hypothesis 2.3*. In this subsection we prove that ((Pγ)γ∈J ,B0,B1) satisfies
Hypothesis 2.3* with J = (0,+∞], B0 = C1, and B1 = CV . First we specify the action of Pγ
on CV and on C1.

Lemma 6.2. Assume that Assumption (31) holds (thus (32)), that p is continuous, that ξ
is coercive and that κ is bounded. Then, for every γ ∈ [0,+∞], Pγ continuously acts on both
C1 and CV . For every γ ∈ [0,+∞], Pγ is compact from C1 into CV . For every γ ∈ (0,+∞],
we have Pγ(BV ) ⊂ C0,V .

Proof. Let γ ∈ [0,+∞]. From (34) it easily follows that

PγV ≤ PV ≤ (δ + L)V , (36)

so that Pγ continuously acts on BV . Let f ∈ BV . Then

∀x ∈ R, (Pγf)(x) =

∫
R
ψγ(x, y) dy (37)

with

{
ψγ(x, y) := κ(y)e−γξ(y) f(y) p(y − αx) if 0 ≤ γ <∞
ψγ(x, y) := κ(y)1{ξ=0}(y) f(y) p(y − αx) if γ = +∞.

Let A > 0. We deduce from Assumption (31) and from a usual compactness argument
([−A,A] is compact) that there exists a non-negative function q ≡ qA such that y 7→ V (y) q(y)
is Lebesgue-integrable and

∀v ∈ [−A,A], ∀y ∈ R, p(y + v) ≤ q(y).
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Thus we have for every x ∈ [−A,A] and for every y ∈ R
|ψγ(x, y)| ≤ ‖κ‖∞‖f‖V (1 + |y|)r0 p(y − αx) ≤ ‖κ‖∞‖f‖V V (y) q(y). (38)

Since x 7→ ψγ(x, y) is continuous for every y ∈ R from the continuity of p, we deduce from
Lebesgue’s theorem that the function Pγf is continuous on R. We have proved that, if
γ ∈ [0,+∞] and if f ∈ BV , then Pγf is continuous on R. Thus Pγ continuously acts on C1.

Now, if γ ∈ (0,+∞], then

∀x ∈ R,
(Pγf)(x)

V (x)
=

∫
R
χγ(x, y) dy with χγ(x, y) := θγ(αx+ y)

f(αx+ y)

V (x)
p(y)

where θγ(αx+ y) :=

{
κ(y)e−γξ(αx+y) if 0 < γ <∞
κ(y)1{ξ=0}(αx+ y) if γ = +∞.

For every (x, y) ∈ R2, we obtain that

|χγ(x, y)| ≤ θγ(αx+ y) ‖f‖V
(

1 + |x|+ |y|
1 + |x|

)r0
p(y) ≤ ‖κ‖∞‖f‖V

(
1 + |y|

)r0p(y).

Moreover lim|x|→+∞ θγ(αx + y) = 0 since ξ is coercive. It follows again from Lebesgue’s
theorem that

lim
|x|→+∞

(Pγf)(x)

V (x)
= 0,

thus Pγf ∈ C0,V . We have proved that, if γ ∈ (0,+∞], then Pγ(BV ) ⊂ C0,V , thus the
last assertion of Lemma 6.2 holds and Pγ continuously acts on CV . Finally, to prove the
compactness property stated in Lemma 6.2, let γ ∈ [0,+∞] and consider Pγ as written in
(37). Since p is continuous, the image by Pγ of the unit ball {f ∈ C1 : ‖f‖∞ ≤ 1} is
equicontinuous from Scheffé’s lemma. Then Pγ is compact from C1 into CV from Ascoli’s
theorem and from lim|x|→∞ V (x) = +∞. �

The second inequality in (36) combined with the Jensen inequality (since P (x, dy) is a
probability measure) implies the following useful inequality

∀α ∈ (0, 1), sup
x∈R

(PV α)(x)

V α(x)
≤ (δ + L)α . (39)

Then the continuity of γ 7→ Pγ from (0,+∞] into L(C1, CV ) required in Hypothesis 2.3*
follows from the following.

Lemma 6.3. Let 0 ≤ a < a+ b ≤ 1. Assume that ξ ≤ cV for some positive constant c. Then
the following operator-norm inequality holds for every (γ, γ′) ∈ [0,+∞)2

‖Pγ − Pγ′‖CV a ,CV a+b := sup
f∈CV a ,‖f‖V a≤1

‖Pγf − Pγ′f‖V a+b ≤ ‖κ‖∞(c|γ − γ′|)b(δ + L)a+b .

Proof. Let (γ, γ′) ∈ [0,+∞)2. For all (u, v) ∈ [0,+∞)2, we have |e−u− e−v| ≤ |e−u− e−v|b ≤
|u− v|b from Taylor’s inequality. Thus we obtain for any f ∈ CV a∣∣(Pγf)(x)− (Pγ′f)(x)

∣∣ ≤ ‖κ‖∞‖f‖V a
∫
R

∣∣e−γξ(y) − e−γ′ξ(y)
∣∣(V (y))ap(y − αx) dy

≤ ‖κ‖∞‖f‖V a(c |γ − γ′|)b
∫
R

(V (y))a+b p(y − αx) dy

≤ ‖κ‖∞‖f‖V a(c |γ − γ′|)bPV a+b(x),
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from which we deduce the desired inequality, due to (39). �

Lemma 6.4. Assume that Assumption (31) holds (thus (32)) and that ξ is coercive. Then

‖Pγ − P∞‖C1,CV := sup
f∈C1,‖f‖∞≤1

‖Pγf − P∞f‖V −→ 0 when γ→+∞.

Proof. Let ε > 0. Let f ∈ C1 be such that ‖f‖∞ ≤ 1. From |Pγf | ≤ P1R = 1R it follows that
there exists A ≡ A(ε) such that :

|x| > A ⇒ ∀γ ∈ (0,+∞),
|(Pγf)(x)|
V (x)

≤ ε. (40)

Moreover, for any β > 0 and x ∈ R such that |x| ≤ A, we obtain that∣∣(Pγf − P∞f)(x)
∣∣ ≤ ‖κ‖∞e−γβ

∫
[ξ>β]

p(y − αx) dy + ‖κ‖∞
∫

[0<ξ≤β]
p(y − αx) dy

≤ ‖κ‖∞

(
e−γβ +

∫
[0<ξ≤β]

q(y) dy

)
where q ≡ qA is the function given in (38). Since q is Lebesgue-integrable on R, we have∫

[0<ξ≤β] q(y) dy→ 0 when β→ 0, so that there exists β0 ≡ β0(ε) > 0 such that

‖κ‖∞
∫

[0<ξ≤β0]
q(y) dy ≤ ε

2
.

Finally let γ0 ≡ γ0(ε) > 0 be such that : ∀γ > γ0, ‖κ‖∞e−γβ0 ≤ ε/2. Then

|x| ≤ A ⇒ ∀γ ∈ (γ0,∞),
|(Pγf − P∞f)(x)|

V (x)
≤ |(Pγf)(x)− (P∞f)(x)| ≤ ε. (41)

Inequalities (40) and (41) provide the desired statement. �

To study Conditions (10a) and (10b) of Hypothesis 2.3* with J = (0,+∞], B0 = C1, and
B1 = CV , we use the duality arguments of [12, prop. 5.4]. The topological dual spaces of
CV and C1 are denoted by (C∗V , ‖ · ‖V ) and (C∗1 , ‖ · ‖∞) respectively (for the sake of simplicity
we use the same notation for the dual norms). For any γ > 0, we denote by P ∗γ the adjoint
operator of Pγ on CV . Note that each P ∗γ is a contraction with respect to the dual norm ‖·‖∞
because so is Pγ on C1.

In the sequel, δ > |α|r0 is fixed, as well as the associated constant L ≡ L(δ) in (34).

Lemma 6.5. Assume that (32) holds, that κ is bounded, and that ξ is coercive. Then, for
every γ > 0 and for every β > 0, there exists a positive constant Lβ such that

PγV ≤ ‖κ‖∞(e−γβ δ V + Lβ 1R). (42)

Moreover

P∞V ≤ ‖κ‖∞

(
sup
[ξ=0]

V

)
1R. (43)
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Proof. We have for every γ > 0 and for every β > 0

PγV = P (κe−γξV ) = P
(
κe−γξ1[ξ>β]V

)
+ P

(
κe−γξ1[ξ≤β]V

)
≤ ‖κ‖∞

(
e−γβ

(
δ V + L1R

)
+

∫
[ξ≤β]

V (y)P (·, dy)

)
(from (34))

≤ ‖κ‖∞

(
e−γβ δ V +

(
L+ sup

[ξ≤β]
V
)
1R

)
from which we deduce the first desired statement. For P∞, we have

P∞V = P (κ1{ξ=0}V ) ≤

(
sup
[ξ=0]

V

)
P (κ) ≤

(
sup
[ξ=0]

V

)
‖κ‖∞1R.

�

Corollary 6.6. Assume that Assumption (32) holds true, that κ is bounded, and that ξ is
coercive. Then, for every γ1 > 0 and for every ε > 0, there exists a constant D > 0 such that

∀γ ∈ [γ1,+∞], ∀f∗ ∈ C∗V , ‖P ∗γ f∗‖V ≤ ε ‖f∗‖V +D ‖f∗‖∞. (44)

Moreover, for every γ ∈ (0,+∞], the essential spectral radius ress((Pγ|CV )∗) is zero.

Proof. Choose β = β(γ1, ε) > 0 such that ‖κ‖∞e−γ1β δ < ε. Then we deduce from Lemma 6.5
that Pγ1V ≤ ε V +D 1R, where D ≡ D(L, γ1, ε) is a positive constant. Now let γ ∈ [γ1,+∞].
Since PγV ≤ Pγ1V , we also have PγV ≤ ε V + D 1R. This inequality easily rewrites as (44)
(see the proof in [7, p. 190]). Finally, since P ∗γ is compact from C∗V into C∗1 (Lemma 6.2), we
deduce from [10] that ress(P

∗
γ ) ≤ ε. We obtain ress(P

∗
γ ) = 0 because ε is arbitrary. �

Remark 6.7. Let γ1 > 0, ε > 0 and 0 ≤ a ≤ a + b ≤ 1. Observe that Corollary 6.6 holds
also if we replace V by V a+b (since ϑ1 admits a moment of order r0(a+ b)). Moreover notice
that (44) with V a+b instead of V directly gives that there exists a constant Dε,a+b > 0 such
that

∀γ ∈ [γ1,+∞], ∀f∗ ∈ C∗V a+b , ‖P ∗γ f∗‖V a+b ≤ ε ‖f∗‖V a+b +Dε,a+b ‖f∗‖V a (45)

since ‖f∗‖∞ ≤ ‖f∗‖V a.

The previous statements ensure that Hypothesis 2.3* holds with J = (0,+∞], B0 = C1,
and B1 = CV . The use of Theorems 2.4 and 2.5 also requires, first to study the function
γ 7→ r(γ) = r(Pγ|CV ), in particular the limit of r(γ) when γ tends to 0 and +∞, second to
check Hypothesis 2.1 on the space CV . This is the purpose of the next subsections.

6.2. Preliminary useful statements on r(γ). For every γ > 0 we set r(γ) = r(Pγ|CV ).

Proposition 6.8. Assume that Assumption (32) holds true, that κ is bounded, that ξ is
coercive and finally that the function ξ/V is bounded on R. Then lim

γ→ 0+
r(γ) ≥ 2.

Proof. We need the following lemma concerning the special case κ ≡ 2. To avoid confusion

we write below P̃γ and r̃(γ) in place of Pγ and r(γ) when κ ≡ 2.

Lemma 6.9. Assume that (32) holds, that κ ≡ 2, and that ξ is coercive. Then P̃0 continu-
ously acts on CV . Moreover the function γ 7→ r̃(γ) is continuous at γ = 0, with r̃(0) = 2.
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Proposition 6.8 follows from Lemma 6.9. Indeed, from Pnγ ≥ P̃nγ (since κ ≥ 2), we deduce

that r(γ) = r(Pγ) ≥ r(P̃γ) = r̃(γ). It then follows from Proposition 3.9 that limγ→ 0+ r(γ) ≥
limγ→ 0+ r̃(γ) = r̃(0) = 2. �

Proof of Lemma 6.9. Note that P̃0 = 2P . The fact that P , thus P̃0, continuously acts on CV
follows from Lemma 6.2 applied with κ ≡ 2 and γ = 0. Moreover iterating Inequality (34)
proves that P is power-bounded on CV (i.e. supn≥1 ‖PnV ‖V < ∞), thus r(P ) = 1 since P
is Markov. Moreover (34) rewrites as the following (dual) Doeblin-Fortet inequality (see the
proof in [7, p. 190]):

∀f∗ ∈ C∗V , ‖P ∗f∗‖V ≤ δ ‖f∗‖V + L ‖f∗‖∞. (46)

Since P is compact from C1 into CV (apply the same argument as in Lemma 6.2), so is P ∗

from C∗V into C∗1 . Then we deduce from [10] and by duality that, under Assumption (32), P
is a quasi-compact operator on CV and that its essential spectral radius ress(P ) satisfies the
following bound (see also [24, Sect. 8]): ress(P ) ≤ δ. It follows that

r̃(0) = r(P̃0) = 2 and ress(P̃0) ≤ 2δ. (47)

Observe that (34) and Inequality P̃γV ≤ 2PV give P̃γV ≤ 2δ V + 2L1R, which rewrites as
the following Doeblin-Fortet inequality:

∀γ ∈ [0,+∞), ∀f∗ ∈ C∗V , ‖P̃ ∗γ f∗‖V ≤ 2δ ‖f∗‖V + 2L ‖f∗‖∞. (48)

Using (47), (48) and Lemma 6.3 (with a = 0 et b = 1), it follows from Theorem 4.1 (applied
with δ0 = 2δ) that γ 7→ r̃(γ) is continuous at γ = 0 since r̃(0) = 2 > 2δ. �

Proposition 6.10. Assume that Assumption (31) holds (thus (32)), that p is continuous,
that ξ is coercive, that κ is bounded, and finally that Leb(ξ = 0) = 0. Then lim

γ→+∞
r(γ) = 0.

Proof. We apply Theorem 4.1 to the family (Pγ)γ∈(0,+∞] at the neighborhood of γ = +∞.
Observe that Leb(ξ = 0) = 0 implies that P∞ = 0, in particular the spectral radius r(∞) of
P∞ is zero. From Lemma 6.4 and Corollary 6.6, Theorem 4.1 applies to the above family,
and the Conclusion (20) and r(∞) = 0 then give lim supγ→+∞ r(γ) ≤ ε for every ε > 0 (given
by (44)). Since moreover r(·) is non-increasing, we obtain limγ→+∞ r(γ) = 0. �

6.3. Study of Hypothesis 2.1. In this subsection we prove that Hypothesis 2.1 holds with
respect to (J1,B1) with B1 = CV and J1 := (0, θ1), where

θ1 := sup{γ > 0 : r(γ) > 0}. (49)

We know from Proposition 6.8 that θ1 ∈ (0,+∞]. Note that CV is a Banach lattice. Let us
use Proposition 3.5 to prove Hypothesis 2.1.

Observe that, for any γ ∈ (0, θ1), Pγ is quasi-compact on CV from Corollary 6.6 since
r(γ) > 0. The other conditions of Proposition 3.5 follow from Remark 6.12 and Lemmas 6.13-
6.14 below. First we state the following.

Lemma 6.11. For any non-null e∗ ∈ C∗V , e∗ ≥ 0, there exists a nonnegative Borel measure
m ≡ me∗ on R such that

∀f ∈ CV , e∗(f) = m

(
f

V
− `V (f) 1R

)
+ e∗(V ) `V (f). (50)
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Remark 6.12. Since B = CV is a Banach lattice, CV satisfies Hypothesis 3.2. Moreover, due
to Lemma 6.11, Hypothesis 3.3 is fulfilled with J1 and B = CV . Indeed, let γ ∈ J1 and let
φ ∈ CV be non-null and non-negative. Then, we have Pγφ > 0 everywhere from the definition
of P and the strict positivity of the function p(·). Now prove that, if ψ ∈ B∗∩Ker(P ∗γ −r(γ)I)
is non-null and non-negative, then ψ(Pγφ) > 0, so ψ is positive. Let γ > 0. First observe
that ψ 6= c `V for every c ∈ C because r(γ) > 0 and P ∗γ (`V ) = 0 from Lemma 6.2. Second
note that m = 0 in (50) implies that e∗ = e∗(V ) `V . Thus the nonnegative measure m ≡ mψ

associated with ψ in (50) is non-null. Since `V (Pγφ) = 0 from Lemma 6.2, we deduce from
(50) (applied with e∗ = ψ) and from Pγφ > 0 that ψ(Pγφ) = m(Pγφ/V ) > 0.

Proof of Lemma 6.11. Let (C, ‖ · ‖) denote the subspace of C1 defined as follows

C :=

{
g ∈ C1 : lim

|x|→∞
g(x) exists in C

}
,

with the notation lim|x|→∞ having the same meaning as in the definition of CV . For every
g ∈ C, we set: `(g) := lim|x|→∞ g(x). We denote by C∗ the topological dual space of C. Let
e∗ ∈ C∗V , e∗ ≥ 0, and let ẽ∗ ∈ C∗ be defined by:

∀g ∈ C, ẽ∗(g) := e∗(gV ).

Next let ẽ∗0 be the restriction of ẽ∗ to C0 := {g ∈ C : `(g) = 0}. From the Riesz representation
theorem, there exists a unique positive Borel measure m on R such that

∀g ∈ C0, ẽ∗0(g) = m(g) :=

∫
R
g dm.

Then, writing g = (g − `(g) 1R) + `(g) 1R for any g ∈ C, we obtain that

ẽ∗(g) = m
(
g − `(g) 1R

)
+ ẽ∗(1R) `(g).

We conclude by observing that, for any f ∈ CV , we have e∗(f) = ẽ∗(f/V ). �

Lemma 6.13. If γ ∈ J1 (i.e. r(γ) > 0) and if f, g ∈ CV are such that Pγf = r(γ)f and
Pγg = r(γ)g with f > 0, then g ∈ C · f .

Proof. Let f, g ∈ CV ∩Ker(Pγ−r(γ)I) with f > 0. Let β ∈ C be such that h := g−βf vanishes
at 0. Since h ∈ Ker(Pγ−r(γ)I), we deduce from a classical result for positive operators acting
on a Banach lattice that Pγ |h| = r(γ)|h| (see Proposition A.1). Then |h|(0) = 0, the positivity
of p(·) and finally the continuity of |h| show that h = 0. �

Lemma 6.14. Let h ∈ CV with |h| > 0 and λ ∈ C be such that |λ| = 1 and P h
|h| = λ h

|h| in

L1(π). Then λ = 1.

Proof. Observe that h
|h| is in C1 so in BV . But it is known from [21] that (Xn)n is V -

geometrically ergodic, so λ=1. �

6.4. Proof of Theorem 6.1. To prove Assertion a) of Theorem 6.1, we apply Theorem 2.4.
Let γ1 be such that 0 < γ1 < θ1, with θ1 is given in (49). Let ε ∈ (0, 1). Then, from the
results of the previous subsections, the assumptions of Theorem 2.4 hold with J = (γ1, θ1),
B0 = C1, B3 = CV , δ0 = ε, thus with J0 := {γ ∈ J : r(γ) > ε}. Note that the space B of
Theorem 2.4 is here B = B3 = CV . A first consequence is that θ1 = +∞. Indeed, for every
γ > 0, Pγ continuously acts on CV from Lemma 6.2. Moreover, since κ is bounded, the map
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f 7→ π(κe−γξf) is in B∗ = (CV )∗ and Condition (19) holds from Remark 3.15. Consequently
the hypotheses of Lemma 3.14 are fulfilled with γ1 as stated above (i.e. 0 < γ1 < θ1), with
γ2 = θ1, and for every γ3 > θ1 (if θ1 <∞). But Lemma 3.14 then ensures that r(γ) > 0 for
every γ ∈ (γ1, γ3), thus for every γ ∈ (0,+∞) since γ3 is arbitrary large. This proves that
θ1 = +∞.

Now we prove the assumptions of Assertion (i) of Theorem 2.4. Recall that Hypotheses 3.2
and 3.3 hold (see Remark 6.12), and note that the additional condition in Assertion (ii) of
Proposition 3.8 clearly holds from the form of P (see (33)) and from the positivity of the
density p. Thus (14) is satisfied due to Proposition 3.8. Next let us prove that the continuity
assumptions of Assertion (i) of Theorem 2.4 hold, namely that γ 7→ Phκ,γ and γ 7→ µ(κe−γξ)
are continuous from J0 to C1 and to C∗V respectively. For every γ, γ′ > γ1 and every β > 0,
we have

‖Phκ,γ − Phκ,γ′‖∞ ≤ ‖(κ− 1)(e−γξ − e−γ′ξ)‖∞ ≤ ‖κ− 1‖∞
(
2 e−γ1β + β|γ − γ′|

)
,

by using the sets [ξ ≥ β], [ξ < β] and the Taylor inequality. Next let ε > 0 and choose β
such that 2 ‖κ − 1‖∞e−γ1β < ε/2. Then ‖Phκ,γ − Phκ,γ′‖∞ < ε provided that |γ − γ′| <
ε/(2β‖κ − 1‖∞). Moreover, for every γ ∈ J0, the map µγ : f 7→ µ(κe−γξf) is in (CV )∗ from
µ(V ) <∞, and we have for every γ, γ′ ∈ J0 and for every f ∈ CV∣∣µγ(f)− µγ′(f)

∣∣ ≤ ‖κ‖∞‖f‖V µ(∣∣e−γξ − e−γ′ξ∣∣V )
so that the norm of (µγ − µγ′) in (CV )∗ is less than ‖κ‖∞ µ(|e−γξ − e−γ′ξ|V ) which converges
to 0 as γ′→ γ from Lebesgue’s theorem. This proves the assumptions of Assertion (i) of
Theorem 2.4. Since γ1 and ε are arbitrarily small, we deduce from Theorem 2.4 that, under
Pµ, (Sn, κ(Xn))n is multiplicatively ergodic on (0,+∞) with ρ(γ) = r(γ) > 0 on (0,+∞).
We have proved Assertion a) of Theorem 6.1.

For Assertion b), observe that limγ→+∞ r(γ) = 0 from Proposition 6.10. Consequently,
from the continuity of r(·), ν is finite and satisfies (15), and so (2), with respect to Pµ,
provided that µ is a probability distribution belonging to C∗V .

Finally, to prove Part c) of Theorem 6.1, we assume now that ξ ∈ B
V

1
1+τ

for some τ > 0

and that [ξ = 0] has Lebesgue measure 0, and we apply Theorem 2.5. Consider any

0 < a0 < a1 < a1 +
1

1 + τ
< a2 < a3 = 1.

Let us prove that the additional assumptions of Theorem 2.5 hold true with Bi := CV ai for
i ∈ {0, 1, 2, 3}. Let i ∈ {0, 1, 2}. The fact that (Pγ)γ satisfies the conditions of Hypothesis
2.3* on (J,Bi,Bi+1) comes from Lemma 6.3 and Remark 6.7. The fact that Hypothesis 2.1 is
satisfied on Bi+1 follows from Proposition 3.5: apply the results of Subsection 6.3 with V ai+1

in place of V . Observe that

‖ξf‖B2 = sup
x∈R

|ξ(x)f(x)|
(V (x))a2

≤ sup
x∈R

|ξ(x)|
(V (x))

1
1+τ

sup
x∈R

|f(x)|
(V (x))a1

≤ ‖f‖B1 sup
x∈R

|ξ(x)|
(V (x))

1
1+τ

.

Hence we have proved that f 7→ ξf is in L(B1,B2). The fact that γ 7→ Pγ is C1 from
(0,+∞) to L(B1,B2) and that P ′γ := Pγ(−ξf) can be established by adapting the operator-
norm estimations used in the proof of Assertion (vii) of Lemma 5.2 to the present context
of weighted-supremum spaces (use the techniques of [14, Lemma 10.4]). Finally, due to
Proposition 3.12, we have r′(ν) < 0. We conclude by Theorem 2.5.
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Appendix A. Proof of Proposition 3.5

Proposition 3.5 directly follows from the following statement.

Proposition A.1. Let B be a non null complex Banach lattice of functions f : X→ C (or of
classes of such functions modulo π). Let Q be a (nonnull) nonnegative quasicompact operator
on B such that r(Q) 6= 0 and such that for every nonnull nonnegative f ∈ B and for every
nonnull nonnegative ψ ∈ B∗∩Ker(Q∗− r(Q)I), we have Qf > 0 (modulo π) and ψ(Qf) > 0.
Then

(a) r(Q) is a first order pole of Q, and there exists a positive φ ∈ B and a positive ψ ∈ B∗
such that

ψ(φ) = 1, Qφ = r(Q)φ and Q∗ψ = r(Q)ψ. (51)

(b) Let λ ∈ C and h ∈ B such that |λ| = r(Q) and Qh = λh. Then Q|h| = r(Q)|h| in B.
(c) If moreover Q is of the form Q = P (κe−γξ·) where P is the operator associated with

a Markov kernel, if 1X ∈ B ↪→ L1(π), if Ker(Q − r(Q)I) = C · φ and if 1 is the only
complex number λ of modulus 1 such that P (h/|h|) = λh/|h| in L1(π) for some h ∈ B
with |h| > 0, then r(Q) is the only eigenvalue of modulus r(Q) of Q.

Proof. The fact that r(Q) is a finite pole of Q is classical for a nonnegative quasi-compact
operator Q on a Banach lattice. Let us just remember the main arguments. From quasi-
compactness we know that there exists a finite pole λ ∈ σ(Q) such that |λ| = r(Q). Thus,
setting λn := λ(1 + 1/n) for any n ≥ 1, we deduce from λ ∈ σ(Q) that

lim
n→+∞

‖(λnI −Q)−1‖B = +∞.

Since B is a Banach lattice, we deduce from the Banach-Steinhaus theorem that there exists
a nonnegative and nonnull element f ∈ B such that

lim
n→+∞

‖(λnI −Q)−1f‖B = +∞.

Next define rn := r(Q)(1 + 1/n) and observe that∣∣(λnI −Q)−1f
∣∣ =

∣∣∑
k≥0

λ−(k+1)
n Q kf

∣∣ ≤∑
k≥0

r−(k+1)
n Q kf.

Since B is a Banach lattice, the last inequality is true in norm, that is∥∥(λnI −Q)−1f
∥∥ ≤ ∥∥∑

k≥0

r−(k+1)
n Q kf

∥∥
from which we deduce that limn→+∞ ‖(rnI−Q)−1‖B = +∞, thus r(Q) ∈ σ(Q). Finally r(Q)
is a finite pole of Q from quasi-compactness.

Let q denote the order of the pole r(Q), namely r(Q) is a pole of order q of the resolvent
function z 7→ (zI −Q)−1. Then there exists ρ > 0 such that (zI −Q)−1 admits the following
Laurent series provided that |z − r(Q)| < ρ and z 6= r(Q):

(zI −Q)−1 =
+∞∑
k=−q

(z − r(Q))kAk,
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where Ak are bounded linear operators on B. By quasi-compactness, A−1 is a projection onto
the finite subspace Ker(Q− r(Q)I)q. Moreover we know that

A−q =
(
Q− r(Q)I

)q−1 ◦A−1 = A−1 ◦
(
Q− r(Q)I

)q−1
, (52)

and that, setting rn := r(Q)(1 + 1/n),

A−q = lim
n→+∞

(
rn − r(Q)

)q(
rnI −Q

)−1

= lim
n→+∞

(
rn − r(Q)

)q∑
k≥0

r−(k+1)
n Q k. (53)

Since Q is a nonnull nonnegative operator on B, so is A−q. Since A−q 6= 0, we take a
nonnegative h0 ∈ B such that φ := A−qh0 6= 0 in B. We have (Q − r(Q)I)A−q = 0, so
r(Q)φ = Qφ. Similarly there exists a nonnegative ψ0 ∈ B∗ such that ψ1 := A∗−qψ0 is a
nonzero and nonnegative element of Ker(Q∗ − r(Q)I), where A∗−q is the adjoint operator of
A−q. Note that ψ1(φ) = ψ1(Qφ)/r(Q) > 0 from our hypotheses, so that φ and ψ := ψ1/ψ1(φ)
satisfy (51). To conclude the proof of Assertion (a), let us prove by reductio ad absurdum
that q = 1. Assume that q ≥ 2. Then A 2

−q = 0 from (52) and A−1(B) = Ker(Q− r(Q)I)q, so

that ψ1(φ) = (A∗−qψ0)(A−qh0) = ψ0(A2
−qh0) = 0. This contradicts the above fact.

To prove (b), recall that, from our hypotheses, we have ψ(g) = ψ(Qg)/r(Q) > 0 for every
nonnull nonnegative g ∈ B. Let λ ∈ C and h ∈ B such that |λ| = r(Q) and Qh = λh. The
positivity of Q gives |λh| = r(Q)|h| = |Qh| ≤ Q|h|, thus g0 := Q|h| − r(Q)|h| ≥ 0. From
ψ(g0) = 0, it follows that g0 = 0, that is: Q|h| = r(Q)|h| in B.

Now let us prove Assertion (c) of Proposition A.1. Recall that the above nonnull nonneg-
ative function φ ∈ B is such that Qφ = r(Q)φ. From our hypotheses we deduce that φ > 0
(modulo π). Let λ ∈ C and h ∈ B be such that |λ| = r(Q), h 6= 0 and Qh = λh. Due to the
previous point and to our assumptions, we obtain that Q|h| = r(Q) |h| and |h| = βφ for some
β > 0. In particular h 6= 0 π− a.s.. One may assume that β = 1 for the sake of simplicity.
Let A = {x ∈ X : |h(x)| = φ(x) > 0} and

B = {x ∈ X : (Qφ)(x) = r(Q)φ(x)}, C = {x ∈ X : (Qh)(x) = λh(x)}.

Let Ac = X \A. It follows from π(Ac) = 0 and from the invariance of π that

π
(
P
(
1Ac(φ+ |h|)κe−γξ

))
= π

(
1Ac
(
φ+ |h|

)
κe−γξ

)
= 0.

Let D := {x ∈ X :
(
P (1Ac (φ + |h|)κe−γξ)

)
(x) = 0}. Then we have π(D) = 1. Now define

E = A ∩B ∩ C ∩D. Then π(E) = 1, and we obtain that

∀x ∈ E, |h(x)| = φ(x) > 0 (54a)

∀x ∈ E, λh(x) =
(
P (1Ahκe

−γξ)
)
(x) =

∫
A
h(y)κ(y)e−γξ(y) P (x, dy) (54b)

∀x ∈ E, r(Q)φ(x) =
(
P (1Aφκe

−γξ)
)
(x) =

∫
A
φ(y)κ(y)e−γξ(y) P (x, dy). (54c)

Let x ∈ E and define the probability measure: ηx(dy) := (r(Q)φ(x))−1φ(y)κ(y)e−γξ(y) P (x, dy).
We have ∫

A

r(Q)φ(x)h(y)

λφ(y)h(x)
ηx(dy) = 1.
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Since |h(x)| = φ(x) and |h| = φ on A, the previous integrand is of modulus one. Then a
standard convexity argument ensures that the following equality holds for P (x, ·)−almost
every y ∈ X:

r(Q)φ(x)h(y) = λφ(y)h(x).

This implies that r(Q)P h
|h| = λ h

|h| everywhere on E, thus r(Q)P h
|h| = λ h

|h| in L1(π). So

λ = r(Q) from the hypothesis of Assertion (c) of Proposition A.1. �

Appendix B. A counter-example

Assume that (X, d) is a metric space equipped with its Borel σ-algebra. Let L∞ denote
the set of bounded functions f : X→ C, endowed with the supremum norm.

Proposition B.1. Assume that P is a Markov kernel satisfying the following condition :
there exists S ∈ (0,+∞) such that, for every x ∈ X, the support of P (x, dy) is contained
in the ball B(x, S) centered at x with radius S. Assume that κ ≡ 2 and that ξ(y)→ 0 when
d(y, x0)→+∞, where x0 is some fixed point in X. Then, for every γ ∈ [0,+∞), the kernel
Pγ := 2P (e−γξ·) continuously acts on L∞ and its spectral radius r(γ) = r((Pγ)|L∞) satisfies
the following

∀γ ∈ [0,+∞), r(γ) = 2.

Proof. We clearly have r(γ) ≤ 2 since Pγ ≤ 2P and P is Markov. For any β > 0, we obtain
with f = 1[ξ≤β]

∀x ∈ X, (Pγf)(x) = 2

∫
[ξ≤β]

e−γξ(y) P (x, dy) ≥ 2e−γβ P
(
x, [ξ ≤ β]

)
.

The set [ξ ≤ β] contains X \ B(x0, R) for some R > 0 since ξ(y)→ 0 when d(y, x0)→+∞.
Thus, for d(x, x0) sufficiently large (d(x, x0) > R + S), we have P

(
x, [ξ ≤ β]

)
= 1, so that

‖Pγ‖L∞ ≥ ‖Pγf‖L∞ ≥ 2e−γβ. This gives ‖Pγ‖L∞ = 2 when β→ 0. Similarly we obtain with
f = 1[ξ≤β], that, ∀x ∈ X \B(x0, R+ 2S),

(P 2
γ f)(x) = 4

∫
e−γ(ξ(y)+ξ(z)) 1[ξ≤β](z)P (y, dz)P (x, dy)

≥ 4e−γβ
∫
X\B(x0,R+S)

e−γξ(y) P
(
y, [ξ ≤ β]

)
P (x, dy) ≥ 4e−2γβ

and so ∀β > 0, ‖P 2
γ ‖L∞ ≥ ‖P 2

γ f‖L∞ ≥ 4e−2γβ. Again this provides ‖P 2
γ ‖L∞ = 4 since β

can be taken arbitrarily small. Similarly we can prove that ‖Pnγ ‖L∞ = 2n for every n ≥ 1,
thus r(γ) = 2. �
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[3] Broise A., Dalb́o F., Peigné M. Études spectrales d’opérateurs de transfert et applications. Astérisque
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Européenne de Bretagne, France.

E-mail address: Loic.Herve@insa-rennes.fr
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