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Abstract

The asymptotic of products of general Markov/transition kernels is investigated using
Doeblin’s coefficient. We propose a general approximating scheme as well as a conver-
gence rate in total variation of such products by a sequence of positive measures. These
approximating measures and the control of convergence are explicit from the two param-
eters in the minorization condition associated with the Doeblin coefficient. This allows
us to extend the well-known forward/backward convergence results for stochastic matri-
ces to general Markov kernels. A new result for forward/backward products of random
Markov kernels is also established.

AMS subject classification : 60J05, 60F99, 60B20
Keywords : Non-homogeneous Markov chains, Doeblin’s coefficient

1 Introduction

There is a large literature on the asymptotic behaviour of non-homogeneous Markov chains. A
main objective is to get convergence properties as well as rate of convergence of stochastic al-
gorithms based on general Markov chains as, for instance, in Markov search for optimization
or in stochastic simulation. Such an issue requires to analyse various products of transi-
tion kernels of the underlying Markov chain. In this paper the asymptotic of products of
Markov/transition kernels is investigated using Doeblin’s coefficient and the total variation
norm. Let us introduce the basic material relevant to this work. Let (X,X ) be a measurable
space. We denote by K the set of all the Markov kernels on (X,X ), and by P the set of all
the probability measures on (X,X ). If K ∈ K and if (a, ν) ∈ [0, 1] × P, we write K ≥ a ν
when

∀(x,A) ∈ X×X , K(x,A) ≥ a ν(A). (1)

Obviously every K ∈ K satisfies (1) with a = 0. Doeblin’s coefficient α(K) of any K ∈ K is
defined as in [LC14] by

α(K) := sup
{
a ∈ [0, 1] : ∃ν ∈ P, K ≥ a ν

}
. (2)
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When α(K) ∈ (0, 1], K satisfies the so-called minorization property [RR04]. We denote by E
the set of all the positive measures µ on (X,X ) such that µ(X) ≤ 1. Let (B, ‖ · ‖∞) denote the
space of bounded measurable real-valued functions on (X,X ), equipped with the supremum
norm: ∀f ∈ B, ‖f‖∞ := supx∈X |f(x)|. Let (L(B), ‖ · ‖) be the Banach space of all the
bounded linear operators on B where ‖ · ‖ denotes the operator norm on L(B) defined by

∀T ∈ L(B), ‖T‖ := sup
{
‖Tf‖∞, ‖f‖∞ ≤ 1

}
.

Note that if T is non-negative (i.e. f ≥ 0 ⇒ Tf ≥ 0) then ‖T‖ = ‖T1X‖∞. Throughout the
paper, K ∈ K is identified with its functional action on B (still denoted by K) defined by

∀f ∈ B, ∀x ∈ X, (Kf)(x) :=

∫
X
f(y)K(x, dy).

Similarly any element µ ∈ E acts on B according to:

∀f ∈ B, µf = µ(f)1X where we shortly set µ(f) :=

∫
X
f(y)µ(dy).

Obviously the maps f 7→ Kf and f 7→ µf are in L(B). Finally, if (A,B) ∈ K2 then A · B
denotes the Markov kernel on (X,X ) defined by the product of A by B, which is identified
with its action A ◦B on B (to simplify we only use the notation A ·B).

The following key statement (Theorem 2.2) is proved in Section 2. Let (Kj)j≥1 ∈ KN and,
for every j ≥ 1, let (aj , νj) ∈ [0, 1]× P be chosen for Kj satisfying Inequality (1). For every
n ≥ 1 let σn be a permutation on the finite set {1, . . . , n}, and introduce

Kσn :=
n∏
j=1

Kσn(j) and µσn := Kσn −
n∏
j=1

(
Kσn(j) − aσn(j)νσn(j)

)
. (3)

Then, for all n ≥ 1, we have µσn ∈ E , µσn ≤ Kσn and the following assertions are equivalent:

(a)
∑
i≥1

ai = +∞.

(b) ∃(σn)n≥1, limn ‖Kσn − µσn‖ = 0.

(c) ∀(σn)n≥1, limn ‖Kσn − µσn‖ = 0.

As a result, Seneta’s statements [Sen81] for the convergence of forward/backward products
of finite stochastic matrices are extended in Section 3 to general Markov kernels via a condition
of type (a) for some block-kernels. When X is finite, this condition is necessary and sufficient
for the so-called weak ergodicity, see [Sen81, IS11]. Using Notation (3) with some fixed
(σn)n≥1, the weak ergodicity property writes as follows:

lim
n→+∞

sup
(x,x′)∈X2

sup
‖f‖∞≤1

∣∣(Kσnf)(x)− (Kσnf)(x′)
∣∣ = 0. (4)

When X is infinite, condition of type (a) (for block-kernels) seems to be only sufficient for (4)
to hold, as mentioned in [LC14] in the context of forward products (see Remark 3.6 for details
and further comparisons with [LC14]). The novelty in our work is that the weak ergodicity
condition (4) is replaced with the condition limn ‖Kσn − µσn‖ = 0 which implies that

dTV

(
Kσn , E

)
:= inf

µ∈E
sup
x∈X
‖Kσn(x, ·)− µ(·)‖TV −→ 0 when n→ +∞, (5)
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where ‖β‖TV := sup|f |≤1
∣∣ ∫

X f(x)β(dx)
∣∣ denotes the total variation norm of any finite signed

measure β on (X,X ). The weak ergodicity property (4) directly implies that limn dTV

(
Kσn ,P

)
=

0. However the possibility in (5) of considering the distance with respect to the set E (in place
of P) provides much more flexibility in the proofs, knowing that the above positive measure
µσn satisfies limn dTV(µσn ,P) = 0. The first interest of our approach is that the property
limn ‖Kσn − µσn‖ = 0 is more explicit than weak ergodicity, since the sequence (µσn)n is
simply defined from the kernels Kj and from the elements of the associated minorization con-
ditions. The second interest is that Condition (b) is equivalent to Condition (a), contrarily
to weak ergodicity (excepted in matrix case). The third interest is that the norm equality of
Lemma 2.1 gives an accurate control of ‖Kσn − µσn‖, thus of dTV

(
Kσn , E

)
.

This new approach allows us to extend some classical results on products of stochastic
matrices to general Markov kernels via very simple proofs. For instance, Corollary 4.1 and
Theorem 4.3 extend the asymptotic results of [Wol63, CW08, Ste08] and of [HIV76] and
provide explicit rates of convergence.

Our approach is also relevant to study the products of random Markov kernels. In particu-
lar simple criteria are presented in Theorem 5.1 for the convergence of forward/backward prod-
ucts when (Kj)j≥1 is a sequence of independent and identically distributed random Markov
kernels. To the best of our knowledge the results obtained in Section 5 in the random context
are new too, even in matrix case.

Mention that the notion of weak ergodicity also leads to investigate stability issues for
discrete and continuous time non-homogeneous Markov processes with respect to the pa-
rameters of the models (initial distributions, transition matrices in discrete time, intensity
matrix-generator in continuous time). We refer to [LGM00] and to the recent review [ZKS20]
(see also the references therein) for such questions in discrete or continuous time context.
These issues are not addressed in our work.

The paper is organized as follows. General results concerning the convergence of products
of Markov kernels in link with Doeblin’s coefficient defined in (2) are presented in Section 2.
The specific cases of backward and forward products are studied in Section 3. Complemen-
tary statements on the rate of convergence of forward/backward products are presented in
Section 4. Applications to products of random Markov kernels are proposed in Section 5.

2 Convergence of products of Markov kernels

Let us consider any p ∈ N∗ and any family (Tj)1≤j≤p ∈ Kp. For every 1 ≤ j ≤ p, let
aj ∈ [0, α(Tj)] and νj ∈ P such that Tj ≥ ajνj . Set

Tp :=

p∏
j=1

Tj and µp := Tp −
p∏
j=1

(
Tj − ajνj

)
. (6)

Lemma 2.1 The element µp given in (6) belongs to E and we have µp ≤ Tp. Moreover∥∥Tp − µp
∥∥ =

p∏
j=1

(1− aj). (7)

Proof. Let us prove by induction on the integer p that µp ∈ E and µp ≤ Tp. If p = 1,
then µ1 = a1ν1, so that µ1 ∈ E and µ1 ≤ T1. Now assume that the conclusions µp ∈ E and
µp ≤ Tp holds true for some p ≥ 1. Let (Tj)1≤j≤p+1 ∈ Kp+1 and, for every 1 ≤ j ≤ p+ 1, let
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aj ∈ [0, α(Tj)] and νj ∈ P be such that Tj ≥ ajνj . Let Tp and µp be given in (6). Introduce
Tp+1 = Tp · Tp+1 and

µp+1 = Tp+1 −
p+1∏
j=1

(
Tj − ajνj

)
= Tp+1 − (Tp − µp) ·

(
Tp+1 − ap+1νp+1

)
. (8)

Then we get Tp+1 − µp+1 = (Tp − µp) ·
(
Tp+1 − ap+1νp+1

)
so that Tp+1 − µp+1 ≥ 0 since

Tp − µp ≥ 0 by induction assumption and Tp+1 ≥ ap+1νp+1 ≥ 0. Moreover (8) gives

µp+1 = ap+1νp+1 + µp · (Tp+1 − ap+1νp+1)

and we know from the induction assumption that µp ∈ E with ∀f ∈ B, µpf = µp(f)1X. Thus

µp+1f = µp+1(f)1X with µp+1(f) = ap+1νp+1(f) + µp
(
Tp+1f − ap+1νp+1(f)

)
so that µp+1(·) is defined as a finite signed measure on (X,X ). But µp+1(·) is a positive measure
on X such that µp+1(X) ≤ 1 since ap+1νp+1 ≤ Tp+1, (Tp+1 − ap+1νp+1)(1X) = (1 − ap+1)1X
and µp(X) ≤ 1. We have proved that µp+1 ∈ E . The first part of Lemma 2.1 is established.

Finally, to obtain (7), note that∥∥Tp − µp
∥∥ =

∥∥(Tp − µp) · 1X
∥∥ =

∥∥ p∏
j=1

(Tj − ajνj) · 1X‖ =

p∏
j=1

(1− aj)

since we have Tp − µp ≥ 0, and ‖Tj − ajνj‖ = ‖(Tj − ajνj) · 1X‖∞ from Tj − ajνj ≥ 0 and
(Tj − ajνj) · 1X = (1− aj)1X. �

Let Σ be the set of all the sequences σ := (σn)n≥1, where σn is a permutation on the finite
set {1, . . . , n}. For any (Kj)j≥1 ∈ KN and σ ∈ Σ, let (Kσn)n≥1 ∈ KN be defined by

∀n ≥ 1, Kσn :=
n∏
j=1

Kσn(j). (9)

For every j ≥ 1, let aj ∈ [0, α(Kj)] and let νj ∈ P be such that Kj ≥ ajνj . Finally define

∀n ≥ 1, µσn := Kσn −
n∏
j=1

(
Kσn(j) − aσn(j)νσn(j)

)
. (10)

The following theorem, which has its own interest, is crucial for the study of the forward and
backward products in the next section.

Theorem 2.2 For every σ ∈ Σ and for every n ≥ 1, we have µσn ∈ E, µσn ≤ Kσn, and

∀n ≥ 1,
∥∥Kσn − µσn

∥∥ =

n∏
j=1

(1− aj). (11)

Moreover the following assertions are equivalent:

(a)
∑
j≥1

aj = +∞.

(b) ∃σ ∈ Σ, lim
n
‖Kσn − µσn‖ = 0.

(c) ∀σ ∈ Σ, lim
n
‖Kσn − µσn‖ = 0.
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Proof. The first part follows from Lemma 2.1. Since Condition (a) does not depend on
σ ∈ Σ, the equivalences hold true if we show that, for any (Kj)j≥1 ∈ KN and σ ∈ Σ,

lim
n
‖Kσn − µσn‖ = 0 ⇔

∑
j≥1

aj = +∞. (12)

The following equivalences hold true from (11)

lim
n
‖Kσn − µσn‖ = 0⇐⇒ lim

n→+∞

n∑
j=1

ln(1− aj) = −∞⇐⇒
∑
j≥1

ln(1− aj) = −∞.

Moreover the last condition is equivalent to
∑

j≥1 aj = +∞. Indeed, we have ∀x ∈ [0, 1),
−x/(1 − x) ≤ ln(1 − x) ≤ −x from Taylor’s formula. Thus

∑
j≥1 aj = +∞ implies that∑

j≥1 ln(1 − aj) = −∞. Conversely assume that
∑

j≥1 aj < +∞, and set τj = aj/(1 − aj).
We have limj aj = 0, thus τj ∼ aj when j → +∞, so that

∑
j≥1 τj < +∞. Therefore the

series
∑

j≥1 ln(1− aj) converges. The proof of (12) is complete. �

Let us complete Theorem 2.2 with the following statement.

Proposition 2.3 Let (Kj)j≥1 ∈ KN and let σ ∈ Σ. The following assertions are equivalent.

(a) There exists (mn)n≥1 ∈ EN such that ∀n ≥ 1, mn ≤ Kσn, and limn ‖Kσn −mn‖ = 0.

(b) limn α(Kσn) = 1.

Proof. Assume that Assertion (a) holds true. Write mn = bnβn with (bn, βn) ∈ [0, 1]× P.
Then bnβn ≤ Kσn implies that bn ≤ α(Kσn). Moreover limn bn = 1 from

1− bn = ‖(Kσn −mn)1X‖∞ = ‖Kσn −mn‖.

This gives limn α(Kσn) = 1. Conversely assume that limn α(Kσn) = 1. For every n ≥ 1 there
exists (an, νn) ∈ [0, 1]× P such that

α(Kσn)− 1

n
≤ an ≤ α(Kσn) and anνn ≤ Kσn

from the definition of α(Kσn). Moreover we have anνn ∈ E and

‖Kσn − anνn‖ = ‖(Kσn − anνn)1X‖∞ = 1− an

with limn an = 1 since limn α(Kσn) = 1. This gives (a) with mn = anνn. �

3 Convergence of forward and backward products

Through this section we consider any sequence (Kj)j≥1 ∈ KN. For every 1 ≤ k ≤ n, set

• Kk:n :=
∏n
j=kKj ; note that Kk:n+1 = Kk:n ·Kn+1 (forward products).

• Kn:k :=
∏k
j=nKj ; note that Kn+1:k = Kn+1 ·Kn:k (backward products).
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In the next statements, the integer k ≥ 1 is fixed, and the sequence of interest is then,
either (Kk:n)n≥k for forward products (Theorem 3.2), or (Kn:k)n≥k for backward products
(Theorem 3.3). The sequences (Kk:n)n≥k and (Kn:k)n≥k are both of the generic form (9) since
we have K1:n =

∏n
j=1Kσn(j) with σn(j) = j, while Kn:1 =

∏n
j=1Kσn(j) with σn(j) = n−j+1

(setting k = 1 to simplify). The common basic property of both backward and forward
products with respect to Doeblin’s coefficient is the following.

Lemma 3.1 For any k ≥ 1, the sequences (α(Kk:i))i≥k and (α(Ki:k))i≥k are non-decreasing.

Proof. These sequences are both non-decreasing provided that:

∀(K,K ′) ∈ K2, α(K) ≤ min
(
α(K ·K ′), α(K ′ ·K)

)
.

Let (a, ν) ∈ [0, 1] × P be such that aν ≤ K. Then (aν) · K ′ = a(ν · K ′) ≤ K · K ′. Thus
a ≤ α(K ·K ′) since ν ·K ′ ∈ P. Hence α(K) ≤ α(K ·K ′). Similarly we deduce from K ≥ aν
that K ′ ·K ≥ K ′ · (aν) = aν, thus a ≤ α(K ′ ·K). Hence α(K) ≤ α(K ′ ·K). �

Theorem 3.2 (forward products) The following assertions are equivalent.

(a) For every k ≥ 1, there exists (mk:n)n≥k ∈ EN such that, for every n ≥ k, mk:n ≤ Kk:n,
and such that limn ‖Kk:n −mk:n‖ = 0.

(b) There exists a strictly increasing sequence (`j)j≥1 of positive integers such that we have∑
j≥1 α(Qj) = +∞ with Qj defined by Qj := K`j :`j+1−1.

(c) ∀k ≥ 1, limn α(Kk:n) = 1.

Theorem 3.2 extends the statement [Sen81, Th. 4.8] to general Markov kernels. Conditions (b)
and (c) have been already proved to be equivalent in [LC14]. That Conditions (b) and (c) are
both equivalent to Condition (a) is a new result to the best of our knowledge. Condition (a)
then appears as a suitable alternative to the weak ergodicity definition to study the asymptotic
behaviour of forward products of general Markov kernels, see Remark 3.6.

Proof. Assume that Assertion (a) holds. Set `1 := 1. From Proposition 2.3 we know that
limn α(K1:n) = 1. Thus there exists `2 > 1 such that α(K1:`2−1) ≥ 1/2. Similarly it follows
from (a) that there exists `3 > `2 such that α(K`2:`3−1) ≥ 1/2. Iterating this fact shows that
there exists an increasing sequence (`j)j≥1 of positive integers such that, for every j ≥ 1,
α(Qj) ≥ 1/2 with Qj := K`j :`j+1−1, so that

∑
j≥1 α(Qj) = +∞. Assume that Assertion (b)

holds. Let k ≥ 1, and let i ≥ 1 such that `i ≥ k. For every j ≥ i, it follows from the definition
of α(Qj) that there exists (aj , νj) ∈ [0, 1]× P such that

α(Qj)−
1

j2
≤ aj ≤ α(Qj) and Qj ≥ ajνj .

Then
∑

j≥i aj = +∞. Thus, by applying Theorem 2.2 to (Qj)j≥i, we can define an explicit
sequence (µi:n)n≥i ∈ EN such that µi:n ≤ Qi:n and limn ‖Qi:n − µi:n‖ = 0. To that effect use
the formulas (9)-(10) with (Qj)j≥i ∈ KN and the above sequence (aj , νj)j≥i ∈ ([0, 1] × P)N.
Thus limn α(Qi:n) = 1 from Proposition 2.3. Therefore limn α(K`i:n) = 1 since (α(K`i:n))n≥`i
is non decreasing from Lemma 3.1 and contains the subsequence (α(Qi:n))n≥i. Then we obtain
that limn α(Kk:n) = 1 since k ≤ `i ≤ n implies that α(K`i:n) ≤ α(Kk:n) from Lemma 3.1.
We have proved that (b)⇒ (c). That (c)⇒ (a) follows from Proposition 2.3. �

6



The results of Theorem 3.2 easily extends to backward products. By contrast the strong
ergodicity property (13) below is specific to backward products.

Theorem 3.3 (backward products) The following assertions are equivalent.

(a) For every k ≥ 1, there exists (mn:k)n≥k ∈ EN such that, for every n ≥ k, mn:k ≤ Kn:k,
and such that limn ‖Kn:k −mn:k‖ = 0.

(b) There exists a strictly increasing sequence (`j)j≥1 of positive integers such that we have∑
j≥1 α(Qj) = +∞ with Qj defined by Qj := K`j+1−1:`j .

(c) ∀k ≥ 1, limn α(Kn:k) = 1.

Moreover, for any sequence (mn:k)n≥k ∈ EN satisfying Condition (a), the following strong
ergodicity property holds true: there exists (πk)k≥1 ∈ PN such that

∀k ≥ 1, lim
n
‖mn:k − πk‖ = lim

n
‖Kn:k − πk‖ = 0. (13)

Theorem 3.3, which extends the statement [Sen81, Th. 4.18] to general Markov kernels, is
new to the best of our knowledge. Note that the possibility of considering block-products in
Condition (b) of both Theorems 3.2-3.3 may be relevant. The equivalence between (a), (b)
and (c) in Theorem 3.3 can be established exactly as in Theorem 3.2. The strong ergodicity
property (13) follows from the next lemma.

Lemma 3.4 Let (mn:k)n≥k ∈ EN satisfying Assertion (a) of Theorem 3.3. Then there exists
(πk)k≥1 ∈ PN such that

∀k ≥ 1, ∀n ≥ k, max
(
‖mn:k − πk‖ ,

1

2
‖Kn:k − πk‖

)
≤ ‖Kn:k −mn:k‖. (14)

Proof. Let k ≥ 1 be fixed and let q > p ≥ k. Then

‖mq:k −mp:k‖ ≤ ‖mq:k −Kq:k‖+ ‖Kq:k −mp:k‖ ≤ ‖mq:k −Kq:k‖+ ‖Kp:k −mp:k‖ (15)

from Kq:k−mp:k = Kq · · ·Kp+1 ·(Kp:k−mp:k) and ‖Kj‖ = 1. We deduce from the assumption
that (mn:k)n≥k is a Cauchy’s sequence in the Banach space M of finite signed measures on
(X,X ) equipped with the total variation norm (e.g. see [DMPS18, App. D]). Consequently
the sequence (mn:k)n≥k converges in M to some πk ∈ M. When q → +∞, (15) gives:
∀p ≥ k, ‖πk −mp:k‖ ≤ ‖Kp:k −mp:k‖. Then (14) follows from ‖Kp:k − πk‖ ≤ ‖Kp:k −mp:k‖+
‖mp:k − πk‖. That πk ∈ P is obvious since πk is the limit of Markov kernels (thus πk ≥ 0 and
πk(X) = 1). �

Remark 3.5 (Finite case and link with Seneta’s results) Seneta introduced in [Sen81,
Th. 4.8] the notion of proper coefficients of ergodicity to obtain a necessary and sufficient
condition for the forward products of finite stochastic matrices to be weakly ergodic (see (16)).
The same holds true in [Sen81, Th. 4.18] for the backward products, with the additional well-
known fact that weak and strong ergodicity properties are equivalent in this case. Actually, in
the matrix case, Theorems 3.2 and 3.3 corresponds to the statements [Sen81, Th. 4.8 and 4.18]
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in terms of Doeblin’s coefficient of ergodicity. Indeed, if K = (K(i, j))1≤i,j≤d is a stochastic
d× d−matrix, then the real number α(K) defined in (2) reduces to α(K) =

∑d
j=1 αj(K) with

αj(K) := mini=1,...,dK(i, j). Then Doeblin ergodicity coefficient of K in [Sen81] corresponds
to b(K) = 1−α(K). Let (Kj)i≥1 be any sequence of stochastic d× d−matrices. According to
[Sen81, Def. 4.4], the weak ergodicity condition for forward products is

∀k ≥ 1, ∀i, i′, j = 1, . . . , d, lim
n→+∞

∣∣Kk:n(i, j)−Kk:n(i′, j)
∣∣ = 0, (16)

where Kk:n := (Kk:n(i, j))1≤i,j≤d. This condition is clearly equivalent to Condition (a) of
Theorem 3.2 in the matrix case. The same conclusions hold true for backward products of
stochastic d× d−matrices, and the equivalence between weak and strong ergodicity properties
is nothing else but the last assertion of Theorem 3.3. A proof of [Sen81, Th. 4.8] only based
on the contraction property of the Doeblin ergodicity coefficient b(·) is addressed in [CL10].
This provides a proof of the weak ergodicity characterization given in Doeblin’ work [Doe37]
without proof. Our method provides another alternative way to establish [Sen81, Th. 4.8] via
Doeblin’s coefficient, and to prove [Sen81, 4.18] by the way.

Remark 3.6 Although Theorems 3.2 and 3.3 are extensions of the matrix case, we point out
that when X is infinite, none of the three equivalent conditions (a) (b) (c) in Theorems 3.2 is
known to be equivalent to the following weak ergodicity condition

∀k ≥ 1, lim
n→+∞

sup
(x,x′)∈X2

sup
‖f‖∞≤1

∣∣(Kk:nf)(x)− (Kk:nf)(x′)
∣∣ = 0 (17)

which is a natural extension of (16). As mentioned in [LC14, p. 178], Condition (a) of
Theorem 3.2 clearly implies that (17) holds. That (17) implies any of the three conditions
(a) (b) (c) of Theorem 3.2 is an open question. Let us mention that in [Paz70, Ios72] the
weak ergodicity property (17) is proved to be equivalent to the following condition: ∀k ≥
1, ∃(νk,n)n≥k ∈ PN, limn ‖Kk:n − νk,n‖ = 0. However this condition is quite different from
Conditions (a) of Theorems 3.2 since νk,n is a probability measure which does not satisfy
νk,n ≤ Kk:n in general. By the way, finding a probability measure νk,n satisfying the above
hypothesis of [Paz70, Ios72] is a difficult issue in practice. Mention that other norms can be
considered to define weak ergodicity, for instance L1-type norm as in [Muk13].

4 Results on the rate of convergence

When the sequences (mk:n)n≥k ∈ EN or (mn:k)n≥k ∈ EN in Theorems 3.2 and 3.3 are computed
thanks to Formulas (9)-(10), then the norm equality (11) provides an accurate control of
‖Kk:n −mk:n‖. This is illustrated in Proposition 4.1 and Theorem 4.3 below.

Proposition 4.1 Let (Kj)j≥1 ∈ KN be such that α0 := infj≥1 α(Kj) > 0. Let c ∈ (0, α0).
Then for every k ≥ 1 there exist sequences (µk:n)n≥k ∈ EN and (µn:k)n≥k ∈ EN such that

∀n ≥ k, ‖Kk:n − µk:n‖ ≤ (1− c)n−k+1 and ‖Kn:k − µn:k‖ ≤ (1− c)n−k+1. (18)

Moreover the following property holds true for backward products

∀k ≥ 1, ∀n ≥ k, ‖Kn:k − πk‖ ≤ 2(1− α0)
n−k+1 (19)

where (πk)k≥1 ∈ PN is the sequence of Theorem 3.3 associated with the µn:k’s.
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Similar results to (18) are obtained in [Wol63] when {Kj , j ≥ 1} is a finite set of finite stochas-
tic matrices. The results of [Wol63] are extended in [CW08] to the case when {Kj , j ≥ 1} is
a compact set of finite stochastic matrices. In the homogeneous case Property (19) is a well-
known result (e.g. see [RR04] and Remark 4.2). In the non-homogeneous case Property (19)
is proved in [Ste08] when X is finite. The statement for a complete separable metric space X
is stated in [Ste08] with the indication that a proof could be provided by using an iterated
function system. Note that the properties (18) and (19) are obtained here for general state
spaces and without any topological assumption on the set {Kj , j ≥ 1}.

Proof. To simplify assume that k = 1. For every j ≥ 1 there exist aj ∈ [c, α0] and νj ∈ P
such that Kj ≥ ajνj . Using σn(j) = j and σn(j) = n − j + 1 respectively, Formula (10)
can be used to define (µ1:n)n≥1 ∈ EN and (µn:1)n≥1 ∈ EN. Inequalities in (18) follow from
the norm equality (11) since c ≤ aj . To prove (19), note that the second inequality of (18)
and Property (14) applied to the sequence (µn:1)n≥1 give: ∀n ≥ 1, ‖Kn:1 − π1‖ ≤ 2(1− c)n.
Inequality (19) then holds since c is arbitrarily closed to α0. �

Remark 4.2 If K ∈ K satisfies K ≥ α0 ν for some (α0, ν) ∈ (0, 1]× P and if K is assumed
to admit an invariant probability measure π, then it is well-known that ‖Kn−π‖ ≤ (1−α0)

n,
see [RR04, Th. 8]. Property (19) in case Kj = K and k = 1 provides the same result, up
to the factor 2 which is due to the functional definition of the total variation norm. The
existence of π is not assumed here (it is a by-product of Theorem 3.3). Obviously, if some
iterate Kn0 satisfies the above minorization condition (in place of K), the same conclusion
holds by replacing the rate (1− α0)

n by (1− α0)
bn/n0c where b·c is the integer part function.

As an application of Assertion (a) of Theorem 3.2, the following statement extends to gen-
eral Markov kernels the result of [HIV76] concerning forward products of stochastic matrices,
see Remark 4.5.

Theorem 4.3 Let K ∈ K be strongly ergodic, namely

∃π ∈ P, ∃c ∈ (0,+∞), ∃β ∈ (0, 1), ∀m ≥ 1, ‖Km − π‖ ≤ c βm. (20)

Let (Kn)n≥1 ∈ KN be such that limn ‖Kn −K‖ = 0 and

∃α0 ∈ (0, 1), ∃i0 ≥ 1, ∀i ≥ i0, α(Ki) > α0. (21)

Then the following uniform convergence holds:

lim
n→+∞

sup
k≥1
‖Kk:k+n − π‖ = 0. (22)

More precisely, setting di0 := (1− α0)
1−i0, we have for all k ≥ 1, n ≥ i0 and m ≥ 1

‖Kk:k+n+m − π‖ ≤ 2 di0 (1− α0)
n
(
1 + (1− α0)

m
)

+mγn + c βm (23)

with γn := supj≥n+1 ‖Kn −K‖.

Proof. Note that
∑

i≥1 α(Kj) = +∞ from Assumption (21). It follows from Assertion (a)

of Theorem 3.2 that, for every k ≥ 1, there exists (µk,k+n)n≥1 ∈ EN such that, for every n ≥ 1,
µk,k+n ≤ Kk:k+n, and such that

lim
n→+∞

∆k,k+n = 0 where ∆k,k+n := ‖Kk:k+n − µk,k+n‖.
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Actually the sequence (µk,k+n)n≥k ∈ EN is provided by Theorem 2.2, from which we deduce
the following inequality by using (21)

∀k ≥ 1, ∀n ≥ i0, ∆k,k+n ≤ di0 (1− α0)
n with di0 := (1− α0)

1−i0 . (24)

Note that µk,k+n · π = µk,k+n(1X)π. We have for n,m ≥ 1

µk,k+n+m − µk,k+n(1X)π = (µk,k+n+m −Kk:k+n+m) + Kk:k+n · (Kk+n+1:k+n+m −Km)

+ (Kk:k+n − µk,k+n) ·Km + µk,k+n · (Km − π).

Moreover an easy induction based on the triangular inequality gives

∀i ≥ 1, ∀m ≥ 1, ‖Ki+1:i+m −Km‖ ≤ mγi with γi := sup
j≥i+1

‖Kj −K‖.

Thus: ∀k, n,m ≥ 1, ‖Kk+n+1:k+n+m −Km‖ ≤ mγn since γk+n ≤ γn. From these remarks
and from (20) and (24) we deduce that for all k ≥ 1, n ≥ i0 and m ≥ 1

‖µk,k+n+m − µk,k+n(1X)π‖ ≤ di0 (1− α0)
n+m +mγn + di0 (1− α0)

n + c βm.

Next observe that

∀k, n ≥ 1, 1− µk,k+n(1X) = ‖Kk:k+n1X − µk,k+n1X‖∞ = ‖Kk:k+n − µk,k+n‖ = ∆k,k+n

since Kk:k+n − µk,k+n ≥ 0. Consequently we have for all k ≥ 1, n ≥ i0 and m ≥ 1

‖µk,k+n+m − π‖ ≤
∥∥µk,k+n+m − µk,k+n(1X)π

∥∥+
∥∥(µk,k+n(1X)− 1

)
π
∥∥

≤ ‖µk,k+n+m − µk,k+n(1X)π‖+ 1− µk,k+n(1X)

≤ di0 (1− α0)
n+m +mγn + 2 di0 (1− α0)

n + c βm

from which we deduce that

‖Kk:k+n+m − π‖ ≤ ‖Kk:k+n+m − µk,k+n+m‖+ ‖µk,k+n+m − π‖
≤ 2 di0 (1− α0)

n+m +mγn + 2 di0 (1− α0)
n + c βm. (25)

This proves (23). Now let ε > 0. First fix m0 ≥ 1 such that c βm0 ≤ ε/2. Then

∃n0 ≥ i0, ∀n ≥ n0, 2 di0 (1− α0)
n+m0 +m0 γn + 2 di0 (1− α0)

n ≤ ε/2

since α0 ∈ (0, 1] and limn γn = 0 by the assumption limn ‖Kn − K‖ = 0. It follows that:
∀q ≥ m0 + n0, ∀k ≥ 1, ‖Kk:k+q − π‖ ≤ ε. This proves (22). �

Remark 4.4 If Assumption (21) of Theorem 4.3 is replaced with the following one

∃s ≥ 1, ∃i0 ≥ 1, inf
i≥i0

α(Kis+1 · · ·Kis+s) > 0,

then the results of Theorem 4.3 can be extended by considering suitable block-products. More
precisely the proof of Theorem 4.3 applies to the sequence (K ′j)i≥0 defined by K ′j := Kis+1:is+s

since Ks is strongly ergodic and limn ‖K ′n −Ks‖ = 0.
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Remark 4.5 When (Kn)n≥1 is a sequence of infinite stochastic matrices (i.e. X = N), a
qualitative control of supk≥1 ‖Kk:k+n − π‖ was obtained in [HIV76]. Theorem 4.3 not only
extends this result to general Markov kernels, but Inequality (23) also provides an accurate
(uniform in k ≥ 1) control of ‖Kk:k+n+m − π‖. In particular, if the Markov kernel K in
Theorem 4.3 satisfies K ≥ a ν for some (a, ν) ∈ (0, 1] × P, then Condition (20) holds with
c = 2 and β = 1 − a, see Remark 4.2. In this case, Inequality (23) holds true with explicit
constants only depending on the data a, i0, α0 and γn. Note that Assumption (21) is not
assumed in [HIV76] because it is automatically fulfilled in case X = N. Indeed, in this case,
the map α(·) is easily proved to be lower semi-continuous on the metric space (K, d), with
d defined by: ∀(K,K ′) ∈ K2, d(K,K ′) = ‖K − K ′‖. Therefore if α := α(K) > 0, then
Assumption (21) holds true for any α0 ∈ (0, α) from the assumption limn ‖Kn −K‖ = 0 and
from the lower semi-continuity of the map α(·) since lim infn α(Kn) ≥ α(K). If α(K) = 0,
the proof of Theorem 4.3 can be adapted by considering suitable block-products of some (fixed)
length. Indeed it follows from the strong ergodicity of K that limn α(Kn) = 1. Thus: ∃s ≥
1, α(Ks) ≥ 1/2. From the assumption limn ‖Kn − K‖ = 0, there exists i0 ≥ 1 such that,
for every i ≥ i0, α(Kis+1 · · ·Kis+s) ≥ 1/4 since limi ‖Kis+1 · · ·Kis+s − Ks‖ = 0 and α(·)
is lower semi-continuous. Then, as already mentioned in the previous remark, the proof of
Theorem 4.3 can be applied to the sequence (K ′j)i≥0 defined by K ′j := Kis+1:is+s.

5 Applications to products of random Markov kernels

Let (Kj)j≥1 be a sequence of random variables (r.v.) defined on some probability space
(Ω,F ,P) and taking their values in K. For the sake of simplicity, if n ≥ k ≥ 1, we still denote
by Kk:n and Kn:k the following K-valued random variables:

∀ω ∈ Ω, Kk:n(ω) :=
n∏
j=k

Kj(ω) and Kn:k(ω) =
k∏
j=n

Kj(ω).

If ω ∈ Ω is such that α(Kk:n(ω)) > 0, then it follows from the definition of α(Kk:n(ω))
that, for every a ∈ (0, α(Kk:n(ω)), there exists ak:n(ω) ∈ [a, α(Kk:n(ω))] and νk:n(ω) ∈ P
such that Kk:n(ω) ≥ ak:n(ω)νk:n(ω). The previous proofs are compatible with the present
random context assuming that a choice may be done so that the maps ω 7→ ak:n(ω) and
ω 7→ νk:n(ω) define random variables from (Ω,F) to [0, 1] and to P respectively. Note that
these assumptions hold in the finite state space case.

The use of Doeblin’s coefficient seems to be quite relevant in this random context, as
shown by the next theorem which provides necessary and sufficient conditions for the conver-
gence of the forward/backward random products when the sequence (Kj)j≥1 is assumed to
be independent and identically distributed (i.i.d.).

Theorem 5.1 If (Kj)j≥1 is i.i.d. then

1. (forward products) the two following statements are equivalent

(a) there exists an integer number q ≥ 1 such that P
(
α(K1:q) > 0

)
> 0

(b) for every k ≥ 1, there exists a sequence (mk:n)n≥k of E-valued r.v. such that we have
P−almost surely: ∀n ≥ k, mk:n ≤ Kk:n, and limn ‖Kk:n −mk:n‖ = 0.
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2. (backward products) the two following statements are equivalent

(a) there exists an integer number q ≥ 1 such that P
(
α(Kq:1) > 0

)
> 0,

(b) There exists a sequence (πk)k≥1 of P-valued r.v. such that we have P−almost surely:
∀k ≥ 1, limn ‖Kn:k − πk‖ = 0.

To the best of our knowledge, the results in Theorem 5.1 and in Proposition 5.2 below are new,
even in the finite case. When the Kj ’s are r.v. taking their values in the set Kd of stochastic
d × d−matrices for some d ≥ 1, Assertion (1b) is a well-known result under the following
stronger assumptions, see for instance [CL94, McK14]: the Kj ’s are i.i.d and P(K1 ∈ K∗d) > 0,
where K∗d denotes the subset of Kd composed of matrices with strictly positive entries. Note
that the assumption P(K1 ∈ K∗d) > 0 in [CL94, McK14] is more restrictive than P(α(K1) >
0) > 0 since K1 ∈ K∗d ⇒ α(K1) > 0.

Proof. Assume that (1a) holds true: for some q ≥ 1, P
(
α(K1:q) > 0

)
> 0. For every j ∈ N∗

define: Qj = Kq(j−1)+1 : qj . The sequence (Qj)j≥1 is i.i.d. and we have P
(
α(Q1) > 0

)
> 0 by

hypothesis. From P(α(Q1) > 0) > 0, there exists p ≥ 1 such that P(α(Q1) ≥ 1/p) > 0. Thus∑
j≥1 P(α(Qj) ≥ 1/p) = +∞ since the Qj ’s are i.d.. Let Ω0 = ∩n≥1∪j≥n [α(Qj) ≥ 1/p]. From

the independence of the events [α(Qj) ≥ 1/p], j ≥ 1, the Borel-Cantelli lemma ensures that
P(Ω0) = 1 so that

∑
j≥1 α(Qj) = +∞ P−a.s. Then Property (1b) follows from Theorem 3.2.

Now assume that ∀q ≥ 1, α(K1:q) = 0 P−a.s.. Define Ω1 := ∩q≥1
[
α(K1:q) = 0

]
. Then

P(Ω1) = 1, and ∀ω ∈ Ω1, ∀q ≥ 1, α(K1:q)(ω) = 0. It follows from Assertion (c) of Theorem 3.2
that Assertion (1b) of Theorem 5.1 does not hold (in fact, for every ω ∈ Ω1, the expected
conclusion for the sequence (Kk:n(ω))n does not hold).

Equivalence (2a)⇔ (2b) can be proved similarly from Theorem 3.3. �

Let us propose alternative assumptions to obtain that
∑

j≥1 α(Kj) = +∞ P−a.s., so that
the statements (1b) and (2b) of Theorem 5.1 hold true.

Proposition 5.2 Statements (1b) and (2b) of Theorem 5.1 hold true when any of the two
following conditions is fulfilled:

(i) the r.v. (Kj)j≥1 are pairwise independent and i.d., and P(α(K1) > 0) > 0.

(ii) (Kj)j≥1 is stationary, (α(Kj))j≥1 is ergodic, and P(α(K1) > 0) > 0.

Proof. From Theorems 3.2-3.3 it is sufficient to prove that any of the two sets of assumption
(i) or (ii) ensures that

∑
j≥1 α(Kj) = +∞ P−a.s. Under Assumption (i) such a convergence

can be obtained as in the proof of (1a)⇒ (1b) in Theorem 5.1: replace Qj with Kj and apply
the Borel-Cantelli lemma for pairwise independent r.v.. Under Assumption (ii) note that
the sequence (α(Kj))j≥1 is stationary and ergodic. Then we obtain that

∑
j≥1 α(Kj) = +∞

P−a.s. under the assumption P(α(K1) > 0) > 0 from the strong law of large numbers for
ergodic stationary sequences. �
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