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Abstract

We consider a Markov kernel on a measurable space, satisfying a minorization condi-
tion and a modulated drift condition. Then we show that there exists a solution to the
so-called Poisson equation whose norm can be bounded from above using the modulated
drift condition. This new bound is very simple and can be easily computed. This re-
sult is obtained using the submarkov residual kernel given by the minorization condition.
Such a bound allows us to provide new control on the weighted total variation norms
of the deviation between the invariant probability measure πθ0 of a Markov kernel Pθ0

and the invariant probability measure πθ of some perturbation Pθ of Pθ0 . From the stan-
dard connexion between Poisson’s equation and the central limit theorem, a simple and
computable bound on the asymptotic variance is also derived.

AMS subject classification :

Keywords : Asymptotic variance; drift conditions; Invariant probability measure; perturbed
Markov kernels; Poisson’s equation;

1 Introduction

Let (X,X ) be a measurable space. We denote by M+ the set of finite non-negative measures
on (X,X ). For any µ ∈ M+ and any µ-integrable function g : X→R, we set µ(g) =∫
X gdµ. Let M+

∗ be the set of positive measures, i.e. M+
∗ := {µ ∈ M+ : µ(1X) > 0}.

If V : X→[1,+∞) is measurable, then for every measurable function g : X→R, we define
∥g∥V := supx∈X |g(x)|/V (x) ∈ [0,+∞], and the space

BV := {g : X→R,measurable such that ∥g∥V < ∞}.

Recall that a non-negative kernel P (x, dy) ∈ M+, x ∈ X is said to be a Markov (respectively
submarkov) kernel if P (x,X) = 1 (respectively P (x,X) ≤ 1) for any x ∈ X. We denote by P
its functional action defined by

∀x ∈ X, (Pg)(x) :=

∫
X
g(y)P (x, dy),
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where g : X→R is any P (x, ·)−integrable function. Let P be a Markov kernel on (X,X )
satisfying the following standard minorization and modulated drift conditions

∃S ∈ X , ∃ν ∈ M+
∗ , ∀x ∈ X, ∀A ∈ X , P (x,A) ≥ ν(1A) 1S(x) (S)

∃b > 0, PV0 ≤ V0 − V1 + b1S (D(V0, V1))

where S in D(V0, V1) is the set given in (S), and where V0 and V1 are measurable functions
from X to [1,+∞) which are usually called Lyapunov functions for P . Under these condi-
tions it was proved in Theorem 2.3 from [GM96] that there exists a P−invariant probability
measure π such that π(V1) < ∞, and that there exists a positive constant c0 such that, for
any g ∈ BV1 satisfying π(g) = 0, the Poisson equation

(I − P )ĝ = g (1)

admits a solution ĝ ∈ BV0 such that π(ĝ) = 0 and

∥ĝ∥V0 ≤ c0 ∥g∥V1 . (2)

Note that the function g is not assumed to be π−centred in the original Glynn-Meyn’s
statement. Throughout our paper, the condition π(g) = 0 will be used to simplify the
statements. Simply apply the results to the function g−π(g)1X to restore the general context.
Under the aperiodicity condition, Glynn-Meyn’s theorem is related to point-wise convergence
of the series

∑+∞
k=0 P

kg, see Theorem 14.0.1 from [MT09]. We point out that the constant c0
in (2) is unknown in general. In Section 2, the following theorem is proved (Theorem 2.4).

Theorem 1 Assume that P satisfies Conditions (S)-D(V0, V1). Then P admits an invariant
probability measure π such that π(1S) > 0 and π(V1) < ∞. Moreover let us introduce the
submarkov residual kernel R := P − ν(·)1S. Then, for every g ∈ BV1 such that π(g) = 0,
the function g̃ :=

∑+∞
k=0R

kg belongs to BV0 and satisfies the Poisson equation (1), that is
(I − P )g̃ = g, with

∥g̃∥V0 ≤ a∥g∥V1 where a := 1 + max

(
0 ,

b− ν(V0)

ν(1X)

)
. (3)

Let us comment on the conclusions of Theorem 1 and the main ideas of its proof. The
P−invariant probability measure π satisfying π(1S) > 0 has a Nummelin-type representation,
that is: π = µ(1X)

−1µ with µ :=
∑+∞

k=0 νR
k ∈ M+

∗ . This representation is classical under
various hypotheses, see Theorem 5.2 and Corollary 5.2 from [Num84]. Here we use the version
recently proved in [HL23a] under the sole minorization condition (S), see Recall 2.1. Next
the original trick in the present work is that, under Assumption D(V0, V1), the submarkov
residual kernel R := P − ν(·)1S satisfies the following drift condition

RV0,d ≤ V0,d − V1 (4)

where V0,d := V0+d1X with d := max{0, (b−ν(V0))/ν(1X)}, see Lemma 2.3. Then the residual-
type drift condition (4) enables us to define the function g̃ and to obtain the bound (3), while
the above representation of π is proved to be crucial here to obtain that g̃ is a solution to
the Poisson equation. The innovative point in Theorem 1 is that the bound (3) is simple and
explicit.

Beyond Theorem 1 which has its own interest, we are also interested in the following four
applications of the bound (3).
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� Bound for a π−centred solution to Poisson’s equation (Corollary 2.6). Let g ∈ BV1

be such that π(g) = 0. Then ĝ = g̃ − π(g̃)1X is a π−centred function in BV0 solution
to Poisson’s equation (I − P )ĝ = g, and it satisfies ∥ĝ∥V0 ≤ a (1 + π(V0)) ∥g∥V1 from
(3). The condition π(V0) < ∞ is here required. This result is particularly relevant in
the case when two solutions to Poisson’s equation in BV0 are known to differ from an
additive constant. Indeed, in this case, for any π−centred function ξ ∈ BV0 solution
to Poisson equation (I − P )ξ = g, we have ξ = ĝ, so that the previous bound applies
to ξ. Of course such a solution ξ may be obtained independently of the function g̃.
For instance use ξ given by Theorem 2.3 from [GM96], in particular ξ =

∑+∞
k=0 P

kg
whenever this series point-wise converges and defines a function of BV0 .

� Bound for the asymptotic variance (Corollary 2.7). If g ∈ BV1 is such that π(g) = 0,
then the so-called asymptotic variance γ2g = π((g̃)2 − (P g̃)2), which is involved in the
central limit theorem for Markov chains, satisfies γ2g ≤ 2 a2 π(V 2

0 ) ∥g∥2V1
thanks to (3).

Here the condition π(V 2
0 ) <∞ is assumed to hold.

� The geometrically ergodic case (Corollary 2.8). The so-called V−geometrical ergodicity
property is based on the geometric drift condition PV ≤ δV + K1S for some δ ∈
(0, 1), K ∈ (0,+∞). In this specific geometric case, the bounds obtained in [HL24] for
solutions to Poisson’s equation involve the constant (1 − δα0)−1 for some α0 ∈ (0, 1].
This constant derived from the geometric drift condition and the spectral theory is
very large when α0 is close to zero. Since the geometric drift condition is a special case
of modulated drift condition D(V0, V1), Property (3) can then be used to obtain an
alternative bound for solutions to Poisson’s equation in such a case.

� Bound in perturbation issues (Section 3). Here the weighted total variation norm is
used, that is: If (µ1, µ2) ∈ (M+)2 is such that µi(V ) <∞, i = 1, 2 for some measurable
function V : X→[1,+∞), then the V -weighted total variation norm ∥µ1 − µ2∥V is
defined by

∥µ1 − µ2∥V := sup
|g|≤V

∣∣µ1(g)− µ2(g)
∣∣. (5)

When P and P ′ are two Markov kernels on (X,X ) with respective invariant probability
measures π and π′, the following formula is of interest to control π′(g)− π(g):

π′(g)− π(g) = π′
(
(P ′ − P )ξ

)
(6)

where the function ξ is any solution to Poisson equation (I − P )ξ = g. Accordingly,
using in Formula (6) the solution ξ :=

∑+∞
k=0R

k(g − π(g)1X) provided by Theorem 1,
the explicit bound (3) is of great interest. This perturbation issue is addressed in
Section 3 for a general family {Pθ}θ∈Θ of Markov kernels, each of them satisfying a
minorization condition and a modulated drift condition w.r.t. some Lyapunov functions
V0 and V1 (independent of θ). Thus, denoting by πθ the Pθ−invariant probability
measure provided by Theorem 1, and fixing some θ0 ∈ Θ, it is proved in Theorem 3.2
that ∥πθ − πθ0∥V1 → 0 when θ→ θ0, provided that for every x ∈ X we have ∆θ,V0(x) :=
∥Pθ(x, ·)−Pθ0(x, ·)∥V0 → 0 when θ→ θ0. Moreover a bound for ∥πθ − πθ0∥V1 is given in
terms of the quantity πθ(∆θ,V0). Here Pθ0 may be considered as the Markov kernel of
interest, and the Pθ’s for θ ̸= θ0 must be thought of some perturbed Markov kernels
which are more tractable than Pθ0 . In particular the term πθ(∆θ,V0) is expected to be
known or at least computable for θ ̸= θ0.
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Condition D(V0, V1) is the so-called V1-modulated drift condition, e.g. see Condition
(V3) in Chapter 14 of [MT09]. Although the functions V0, V1 in D(V0, V1) satisfy V0 ≥ V1
in general, this condition is not useful in the present work. Condition D(V0, V1) has been
widely used to analyse the geometric or sub-geometric rate of convergence in total variation
norms of the Markov chain to its invariant probability measure π (e.g. see Chapters 16, 17
of [DMPS18] for an overview and various examples, and [Del17] for an alternative operator-
type approach). To the best of our knowledge, an estimate of the constant c0 in (2) is
only provided in Proposition 1 in [LL18] for a discrete state-space X and in [Mas19] for a
continuous-time Markov chain with a general state-space X. In both [LL18] and [Mas19] the
existence of an atom is assumed, and standard regeneration approach is then applied under the
V1−modulated drift condition to obtain the existence and a bound of a π−centred solution
to Poisson’s equation. Here, we use a quite different approach that does not require the
existence of an atom. The perturbation theory for Markov chains has been widely developed
in the last decades. Formula (6) was first used in [Sch68] for finite irreducible stochastic
matrices, see also [Sen93]. This formula can be subsequently used in any problem which
can be thought of as a perturbation problem of Markov kernels (e.g. see [GM96, LL18]
and Section 17.7 in [MT09]). Recall that the strong continuity assumption introduced in
[Kar86] is suitable when Pθ = Pθ0 + θD where θ ∈ R and D is a real-valued kernel satisfying
D(x, 1X) = 0 for every x ∈ X, e.g. see [AANQ04, Mou21]. Note that neither the specific
investigation of uniformly ergodic Markov chains as in [Mit05, MA10, AFEB16, JMMD], nor
that of reversible transition kernels as in [MALR16, NR21], are addressed here. Recently
the approach from [Kel82] for perturbed dynamical systems involving a weak continuity
assumption has been adapted to V -geometrically ergodic Markov models, either using the
Keller-Liverani perturbation theorem from [KL99] (see [FHL13, HL14, HL23b]), or using an
elegant idea of [HM11] based on Wasserstein distance as in [SS00] or in [RS18, MARS20].
These works only concern the geometrically ergodic case.

To the best of our knowledge, the bound (3) for solution to Poisson’s equation, as well
as the results obtained in the four applications above, are new. As in the recent work
[HL23a] providing a P−invariant probability measure under Condition (S), the proof of
Theorem 1 is self-contained. In particular there is no need to study the atomic case first
and then to apply the splitting technique to encompass the general case, i.e. to introduce an
appropriate enlargement of the state space in order to get a new Markov kernel which has
an atom, see Section 4.4 in [Num84] for details. All the bounds in this work apply whenever
explicit modulated drift condition D(V0, V1) is known: for such examples, e.g. see [FM00,
FM03, DFM16] in the context of the Metropolis algorithm, [TT94, DFM16] for autoregressive
models, [LH07, LH12] for queueing systems, [JT02] for Markov chains associated with the
mean of Dirichlet processes. Classical instances of V−geometrically ergodic Markov chains
can be found in [MT09, RR04, DMPS18].

Theorem 1 is detailed and proved in Section 2, together with Corollaries 2.6–2.8 which
concern the first three applications above. Then Section 3 is devoted to the last application
above (perturbation issue). In the specific context of V−geometrically ergodic Markov ker-
nels, the perturbation results of Section 3 can be compared with those in [HL14] and [RS18],
see Example 3.7. Finally, in Example 3.8, our results are made explicit for perturbed random
walks on the half line.
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2 The drift conditions and Poisson’s equation

Let P be a Markov kernel on (X,X ). The following statement proved in [HL23a] provides a
P−invariant probability measure under the minorization Condition (S) (i.e. when P admits
a small set, e.g. see [MT09]). The positive measure ν in (S) is often written in the literature
as ν = εp for some probability measure p on (X,X ) and some ε ∈ (0, 1]. This formulation is
not used here (note that the positive real number ν(1X) used in some bounds below equals
to ε). Actually, the main property derived from Condition (S) here is that the following
so-called residual kernel R is a submarkov kernel

∀x ∈ X, R(x, ·) := P (x, ·)− ν(·)1S(x). (7)

For any non-negative kernel K(x, dy) ∈ M+, x ∈ X, recall that the n−th iterate kernel of
K(x, dy) with n ≥ 1 is denoted by Kn(x, dy), x ∈ X, and Kn stands for its functional action.
As usual K0 is the identity map I by convention.

Under Condition (S), the following statement from [HL23a] provides a simple characteri-
zation for P to have an invariant probability measure π such that π(1S) > 0. For convenience
of the reader, the analytic proof from [HL23a] is reported in Annex A.

Recall 2.1 If P satisfies the minorization condition (S), then the following assertions are
equivalent.

1. There exists a P−invariant probability measure π on (X,X ) such that π(1S) > 0.

2.
+∞∑
k=1

ν(Rk−11X) <∞ with R given in (7).

Under any of these two conditions

π ≡ πν,R := µ(1X)
−1 µ with µ :=

+∞∑
k=1

νRk−1 ∈ M+
∗ (8)

is a P−invariant probability measure on (X,X ) with µ(1S) = 1 and π(1S) = µ(1X)
−1 > 0.

Assume that P satisfies Condition (S) and that V0 : X→[1,+∞) is a measurable function
such that the function PV0 is everywhere finite, i.e. ∀x ∈ X, (PV0)(x) < ∞. Then we have
ν(V0) ≤ (PV0)(x) < ∞ for any x ∈ S from (S), so that the non-negative function RV0 is
well-defined. Now, given another measurable function V1 : X→[1,+∞), let us introduce the
following residual-type drift condition:

RV0 ≤ V0 − V1. (R(V0, V1))

Note that Condition D(V0, V1) when b = ν(V0) reduces to R(V0, V1). Moreover Condi-
tion R(V0, V1) implies that V1 ≤ V0 since RV0 ≥ 0, and that PV0 ≤ (1 + ν(V0))V0, hence
∥PV0∥V0 <∞.

Assuming the residual-type drift conditionR(V0, V1) and using Formula (8) for the P−invariant
probability measure π, we can derive the next statement which will be central for obtaining
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the bound (3) under the general V1−modulated drift condition D(V0, V1) (see Theorem 2.4).
It states that, for any g ∈ BV1 the series

∑+∞
k=0R

kg pointwise converges in X and defines
a function g̃ in BV0 satisfying the nice bound ∥g̃∥V0 ≤ ∥g∥V1 . Moreover g̃ is a solution to
Poisson’s equation when π(g) = 0.

Proposition 2.2 Assume that P satisfies Condition (S) and that V0 : X→[1,+∞) is a
measurable function such that PV0 is everywhere finite. If the residual kernel R given in (7)
satisfies the drift condition R(V0, V1) for some measurable function V1 : X→[1,+∞), then
the following assertions hold.

1. For any g ∈ BV1, the function g̃ :=
∑+∞

k=0R
kg is well-defined on X and g̃ ∈ BV0 with

∥g̃∥V0 ≤ ∥g∥V1 . (9)

2. The P−invariant probability measure π ≡ πν,R in (8) is well-defined and satisfies π(V1) <
∞.

3. For any g ∈ BV1 such that π(g) = 0, the function g̃ satisfies Poisson’s equation

(I − P )g̃ = g. (10)

Proof. Let x ∈ X. From R(V0, V1), we derive that V1 ≤ V0 −RV0 and we obtain

∀n ≥ 1,

n∑
k=0

(RkV1)(x) ≤ V0(x), (11)

so that
∑+∞

k=0(R
kV1)(x) ≤ V0(x). Now let g ∈ BV1 . Using |g| ≤ ∥g∥V1V1, it follows that

+∞∑
k=0

∣∣(Rkg)(x)
∣∣ ≤ ∥g∥V1 V0(x).

This proves Assertion 1. Next it follows from 1X ≤ V1 and
∑+∞

k=0R
kV1 ≤ V0 that

+∞∑
k=0

ν(Rk1X) ≤
+∞∑
k=0

ν(RkV1) ≤ ν(V0) <∞.

Hence the positive measure µ :=
∑+∞

k=0 νR
k is such that

0 < ν(1X) ≤ µ(1X) ≤ µ(V1) ≤ ν(V0) <∞.

Then Assertion 2 follows from Recall 2.1.

Let g ∈ BV1 . Since π(V1) = µ(1X)
−1µ(V1) <∞, we have π(|g|) <∞. Now define

∀n ≥ 1, g̃n :=
n∑

k=0

Rkg.

Then, using P = R+ ν(·)1S and setting µn(g) := ν(g̃n) =
∑n

k=0 ν(R
kg) we have

(I − P )g̃n = g̃n −Rg̃n − µn(g)1S = g −Rn+1g − µn(g)1S . (12)
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We know that limnR
n+1g = 0 (pointwise convergence) from the convergence of the series∑+∞

k=0R
kg. Moreover, using µ(V1) < ∞, we obtain that limn→+∞ µn(g) = µ(g). Finally,

for every x ∈ X, we have limn(P g̃n)(x) = (P g̃)(x) from Lebesgue’s theorem applied to the
sequence (g̃n)n w.r.t. the probability measure P (x, dy) since limn g̃n = g̃, |g̃n| ≤ ∥g∥V1V0 and
(PV0)(x) <∞. Taking the limit when n goes to infinity in (12), we obtain

(I − P )g̃ = g − µ(g)1S . (13)

Next, if we assume that π(g) = 0, then Equality (13) rewrites as Equality (10) since µ(g) =
π(g)/π(1S) = 0 from the representation of π. The proof of Proposition 2.2 is complete. □

Now assume that P satisfies the minorization condition (S) and the V1−modulated drift
condition D(V0, V1) for some couple (V0, V1) of Lyapunov functions. This implies that the
function PV0 is everywhere finite. Then we have ν(V0) < ∞ from (S). Thus the non-
negative function RV0 is well-defined where R is the residual kernel defined in (7). If Condi-
tion D(V0, V1) holds with an atom S (i.e. ∀x ∈ S, P (x, ·) = ν(·)) and with V0 ≥ V1 on S, then
b = ν(V0) may be chosen in D(V0, V1), so that Condition R(V0, V1) holds too. In the non-
atomic case, the drift condition D(V0, V1) on P may not directly provide the residual-type
condition R(V0, V1) since the constant b may be strictly larger than ν(V0). However, starting
from Assumption D(V0, V1), the next lemma shows that the slight change of the Lyapunov
function V0 into V0,d = V0 + d1X, with some suitable positive constant d, does provide the
residual-type drift condition R(V0,d, V1).

Lemma 2.3 Assume that P satisfies Conditions (S) and D(V0, V1) w.r.t. some couple (V0, V1)
of Lyapunov functions. Let c ≥ (b− ν(V0))/ν(1X). Then the residual kernel R defined in (7)
satisfies Condition R(V0,d, V1), where V0,d := V0 + d1X ≥ V0 with d = max(0, c).

Proof. We already know that the function RV0 is well-defined and is finite from Assumptions
D(V0, V1) and (S). Set d := max(0, c) and V0,d := V0 + d1X. Note that ν(V0,d) = ν(V0) +
dν(1X) <∞ and that PV0,d = PV0 + d1X <∞. We have

RV0,d = PV0,d − ν(V0,d)1S = PV0 + d1X −
(
ν(V0) + d ν(1X)

)
1S

≤ V0 − V1 + b1S + d1X −
(
ν(V0) + d ν(1X)

)
1S

≤ V0,d − V1 +
(
b− ν(V0)− d ν(1X)

)
1S

from the definitions of R and V0,d, and from Assumption D(V0, V1). The proof is complete.
□

Under the standard V1-modulated drift condition D(V0, V1) on P , the following theorem
is derived from Lemma 2.3 and Proposition 2.2. It can be thought of as an extension of
Theorem 2.3 in [GM96] (and Theorem 17.7.1 in [MT09]) in that it provides an explicit
and simple bound on the V0−norm of a solution to Poisson’s equation. To the best of our
knowledge, the joint use of Lemma 2.3 and Proposition 2.2, as well as the bound (14) below,
are new.

Theorem 2.4 Assume that P satisfies the minorization Condition (S) and the V1−modulated
drift condition D(V0, V1) w.r.t. some couple (V0, V1) of Lyapunov functions.

Then the conclusions stated in Assertions 1−3 of Proposition 2.2 hold true with the following
bound in place of (9)

∀g ∈ BV1 , ∥g̃∥V0 ≤ a∥g∥V1 with a := 1 + max

(
0 ,

b− ν(V0)

ν(1X)

)
(14)
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where g̃ :=
∑+∞

k=0R
kg, ν ∈ M+

∗ is given in (S) and b is the positive constant given in
D(V0, V1).

Recall that, if the set S in Conditions (S)-D(V0, V1) is an atom and if V0 ≥ V1 on S,
then Condition D(V0, V1) holds with b = ν(V0), so that a = 1. Moreover mention that,
when g ∈ BV1 is such that π(g) ̸= 0, the centred function g0 := g − π(g)1X is such that
g̃0 :=

∑+∞
k=0R

kg0 is a solution in BV0 to Poisson’s equation (I−P )g̃0 = g0 = g−π(g)1X. The
bound (14) is similar to those in Proposition 1 in [LL18] and in [Mas19], which have been
obtained under V1-modulated drift conditions and assuming the existence of an atom. In this
work, we do not assume the existence of an atom. Nor do we use the splitting method for
passing from the atomic case to the general one. Actually the atomic case is encompassed by
the assumptions of Proposition 2.2.

Proof. Let V0,d := V0 + d1X where d := max(0, ĉ ) with ĉ := (b − ν(V0))/ν(1X). Note
that V0 and V0,d are equivalent functions in the sense that V0 ≤ V0,d ≤ (1 + d)V0. Then
Proposition 2.2 applied with the drift condition of Lemma 2.3 shows that, for any g ∈ BV1 ,
the function g̃ :=

∑+∞
k=0R

kg belongs to BV0,d
with

∥g̃∥V0,d
≤ ∥g∥V1 ,

and that g̃ satisfies (I−P )g̃ = g when π(g) = 0. Next (14) holds since ∥ · ∥V0 ≤ (1+d)∥ · ∥V0,d

from the inequality V0,d ≤ (1 + d)V0. □

Remark 2.5 Assume that Conditions (S) and D(V0, V1) are satisfied for the Markov kernel
P ℓ with some ℓ ≥ 2. Moreover assume that π is the unique invariant probability measure for
both P and P ℓ. Recall that M := ∥PV0∥V0 < ∞ from D(V0, V1). Set Rℓ := P ℓ − ν(·)1S.
Then, for every g ∈ BV1 such that π(g) = 0, the function

g̃ :=
ℓ−1∑
k=0

P kg̃ℓ with g̃ℓ =
+∞∑
k=0

Rℓ
kg

belongs to BV0 and satisfies the Poisson equation (I − P )g̃ = g. Moreover we have

∥g̃∥V0 ≤
a
(
M ℓ − 1

)
M − 1

∥g∥V1 with a := 1 + max

(
0 ,

b− ν(V0)

ν(1X)

)
where ν ∈ M+

∗ and b are here given in Conditions (S)-D(V0, V1) related to P ℓ. Indeed
Theorem 2.4 applied to the Markov kernel P ℓ shows that, for every g ∈ BV1 such that π(g) = 0,
the function g̃ℓ belongs to BV0 and satisfies (I − P ℓ)g̃ℓ = g, with moreover

∥g̃ℓ∥V0 ≤ a ∥g∥V1 .

The claimed statements then follow from (I − P )g̃ = (I − P ℓ)g̃ℓ = g and from the inequality
∥g̃∥V0 ≤ ∥g̃ℓ∥V0(M

ℓ−1)/(M−1). The interest of this remark is essentially theoretical because
the constant M ℓ degrades when ℓ is large.

Note that the invariant probability measure π ≡ πν,R in (8), which is involved in Propo-
sition 2.2 and Theorem 2.4, only satisfies the moment condition π(V1) < ∞, and there is
no guarantee that π(V0) < ∞. For a Markov model satisfying Assumption D(V0, V1), it is
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worth noticing that the condition π(V0) <∞ holds provided that P satisfies any preliminary
V0−modulated drift condition, that is: PW ≤ W − V0 + b1S for some Lyapunov function
W (apply Theorem 2.4 to the couple (W,V0)). Recall that such nested modulated drift
conditions D(W,V0) and D(V0, V1) occur in most of the analysis of polynomial or subgeo-
metric convergence rate of Markov models, e.g. see [JR02, FM03, AFV15] and in particular
Lemma 3.5 in [JR02] in the polynomial case and [DFMS04, DMPS18] in the subgeometric
case.

In Corollary 2.6 below, we prove that, if the invariant probability measure π ≡ πν,R in (8)
is such that π(V0) < ∞, then it is the unique one integrating V0. This statement is suitable
to the perturbation results of the next Section 3, in which the moment condition π(V0) <∞
is involved.

Corollary 2.6 Let P satisfying the assumptions of Theorem 2.4. Assume that the invariant
probability measure π ≡ πν,R in (8) is such that π(V0) <∞. Then

1. π is the unique P−invariant probability measure which integrates V0.

2. For any g ∈ BV1 such that π(g) = 0, let g̃ :=
∑+∞

k=0R
kg. Then the function ĝ =

g̃−π(g̃)1X is a π−centered solution on BV0 to Poisson’s equation (I−P )ĝ = g. Moreover
we have

∥ĝ∥V0 ≤ a (1 + π(V0)) ∥g∥V1 (15)

where the positive constant a is given in (14).

Note that, when Poisson’s equation has a unique solution up to an additive constant, In-
equality (15) gives a bound for the norm of the solution in Glynn-Meyn’s theorem.

Proof. Let g ∈ BV1 . We know from Theorem 2.4 and Equality (13) that the associated
function g̃ :=

∑+∞
k=0R

kg is in BV0 and satisfies Equation (I − P )g̃ = g − µ(g)1S with µ :=∑+∞
k=0 νR

k ∈ M+
∗ . Recall that π = µ(1X)

−1µ. Consequently, if η is a P−invariant positive
measure on X such that η(V0) <∞, then we have η((I − P )g̃) = 0 = η(g)− µ(g)η(1S), thus
η = η(1S)µ = η(1S)µ(1X)π. This proves the first assertion of Corollary 2.6.

To prove the second one, first note that ĝ ∈ BV0 and the property π(ĝ) = 0 (under π(V0) <
∞) are obvious. Moreover, if g is such that π(g) = 0, then we have (I − P )ĝ = (I − P )g̃ = g
from Theorem 2.4 and (I − P )1X = 0. Finally we have

∥ĝ∥V0 ≤
(
1 + π(V0) ∥1X∥V0

)
∥g̃∥V0 ≤ a (1 + π(V0))∥g∥V1

using the definition of ĝ, the triangular inequality and |g̃| ≤ ∥g̃∥V0V0 for the first inequality,
and finally ∥1X∥V0 ≤ 1 and the bound (14) applied to g̃ for the second one. □

For Markov kernels satisfying a modulated drift condition, the existence and uniqueness of
the P−invariant probability measure is investigated in many works under various hypothesis,
e.g. see [MT09, DMPS18] and Theorem 1 in [FM03]. For instance, if P is ψ−irreducible for
some positive measure ψ on (X,X ) and satisfies Condition D(V0, V1), then P has a unique
invariant probability measure, e.g. see Theorem 6.12 in [Mey22].

The next proposition provides a computable bound for the so-called asymptotic variance
involved in the central limit theorem for Markov chains, e.g. see Chapter 17 in [MT09],
Chapter 21 in [DMPS18] and [Jon04]. To the best of our knowledge, this bound is new,
and this is achieved thanks to the simple bound (14) of Theorem 2.4, since the asymptotic
variance is known to be closely related to Poisson’s equation.
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Corollary 2.7 Assume that P satisfies Conditions (S)-D(V0, V1) and that the invariant
probability measure π ≡ πν,R given in (8) is such that π(V 2

0 ) < ∞. For any g ∈ BV1

such that π(g) = 0, set γ2g = π((g̃)2 − (P g̃)2) where g̃ is the solution to Poisson’s equation
(I − P )g̃ = g provided by Theorem 2.4. Then we have

γ2g ≤ 2 a2 π(V 2
0 ) ∥g∥2V1

where a is the positive constant given in (14).

Proof. From Theorem 2.4, we obtain that

γ2g ≤ π(g̃2) + π((P g̃)2) ≤ a2∥g∥2V1

(
π(V 2

0 ) + π((PV0)
2)
)

≤ 2 a2π(V 2
0 ) ∥g∥2V1

using successively |g̃| ≤ a∥g∥V1V0 from (14), the Cauchy-Schwarz inequality (PV0)
2 ≤ PV 2

0

and finally the P−invariance of π. □

To conclude this section let us apply all the previous statements to the case when P
satisfies Condition (S) and the following so-called V−geometric drift condition

∃δ ∈ (0, 1), ∃K ∈ (0,+∞), PV ≤ δV +K1S (G(δ, V ))

for some Lyapunov function V , where S ∈ X is the set in (S). Then rewriting Condi-
tion G(δ, V ) as PV ≤ V − (1 − δ)V +K1S , we obtain that P satisfies the following Condi-
tion D(V0, V )

PV0 ≤ V0 − V + b1S with V0 :=
V

1− δ
and b :=

K

1− δ
. (16)

In addition to Conditions (S) and G(δ, V ), we assume as in [Bax05] that ν(1S) > 0 (strong
aperiodicity condition), so that P is V−geometrically ergodic. In particular we know that
π(V ) <∞ and that two solutions to Poisson’s equation in BV differ by a constant. Observing
that ∥ · ∥V0 = (1 − δ)∥ · ∥V and that π(V0) ∥1X∥V0 = π(V ) ∥1X∥V , the next statements are
easily deduced from Theorem 2.4, Corollary 2.6 and Corollary 2.7.

Corollary 2.8 Assume that P satisfies the minorization Condition (S) with ν(1S) > 0 and
the V−geometric drift condition G(δ, V ) w.r.t. some Lyapunov function V . Then

1. The conclusions stated in Assertions 1−3 of Proposition 2.2 hold true with the following
bound in place of (9):

∀g ∈ BV , ∥g̃∥V0 ≤ a∥g∥V with here a := 1 + max

(
0 ,

K − ν(V )

ν(1X)(1− δ)

)
where g̃ :=

∑+∞
k=0R

kg, so that

∀g ∈ BV , ∥g̃∥V ≤ a

1− δ
∥g∥V (17)

where ν ∈ M+
∗ is given in (S) and δ,K are the constants given in G(δ, V ).
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2. For every g ∈ BV such that π(g) = 0, the function ĝ =
∑+∞

k=0 P
kg is the unique

π−centered function in BV solution to Poisson’s equation (I − P )ĝ = g, with

∥ĝ∥V ≤ a (1 + π(V ))

1− δ
∥g∥V . (18)

3. If π(V 2) < ∞ then, for any g ∈ BV such that π(g) = 0, the asymptotic variance
γ2g = π((g̃)2 − (P g̃)2) with g̃ :=

∑+∞
k= Rkg solution of Poisson’s equation (I − P )g̃ = g,

satisfies

γ2g ≤ 2 a2π(V 2)

(1− δ)2
∥g∥2V .

For every g ∈ BV such that π(g) = 0, the V−weighted norm of the unique π−centered
solution ĝ =

∑+∞
k=0 P

kg to Poisson equation (I − P )ĝ = g can be directly bounded using
the V−geometric ergodicity, i.e. ∃C > 0, ∃ρ ∈ (0, 1), ∥P kg∥V ≤ Cρk∥g∥V . However the
constants C and ρ are often unknown or badly estimated. By contrast the bound (17) is
explicit. In this geometric ergodicity context, bounds (17) and (18) are similar to those in
Equations (35) and (36a) in [HL24] obtained for the norm ∥ · ∥V α0 for some α0 ∈ (0, 1].
Actually the method from [HL24] consists in converting the V−geometric drift condition
G(δ, V ) into the following residual-type geometric drift condition RV α0 ≤ δα0 V α0 . When
the positive constant K in G(δ, V ) is such that K ≤ ν(V ) (in particular in the atomic case),
the previous residual-type drift condition holds with α0 = 1: in this case the bounds obtained
in Equations (35) and (36a) in [HL24] for ∥g̃∥V and ∥ĝ∥V are exactly (17) and (18) with a = 1.
By contrast, if α0 is close to zero (i.e. δα0 is close to one), then the bounds in [HL24] degrade
since they depend on (1− δα0)−1. In this case, (17) and (18) are alternative bounds for ∥g̃∥V
and ∥ĝ∥V .

3 General perturbation results

In this section we deal with the quantitative control of the deviation between the invariant
probability measures of Markov kernels. Let us first present a preliminary statement based
on Theorem 2.4.

Proposition 3.1 Assume that P satisfies Conditions (S)-D(V0, V1), and let π ≡ πν,R be the
P−invariant probability measure given in (8). Let P ′ be another Markov kernel on (X,X )
with some invariant probability measure π′ such that ∥P ′V0∥V0 <∞ and π′(V0) <∞. Finally
assume that the non-negative function ∆V0 defined by

∀x ∈ X, ∆V0(x) := ∥P (x, ·)− P ′(x, ·)∥V0

is measurable on (X,X ). Then

∥π′ − π∥V1 ≤ a(1 + π(V1))π
′(∆V0) (19)

where the positive constant a is defined in (14).

Under the assumptions of Proposition 3.1, the function ∆V0 is well-defined and everywhere
finite on X since so are PV0 and P ′V0. Moreover, if the σ−algebra X is countably generated,
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then ∆V0 is measurable on (X,X ). Indeed, for every x ∈ X we have ∥P (x, ·) − P ′(x, ·)∥V0 =
|ηx|(V0) where |ηx| is the total variation measure of the finite signed measure ηx = P (x, ·)−
P ′(x, ·). Moreover the map x 7→ |ηx|(V0) is measurable since so is x 7→ ηx(V0), see [DF64].

Proof. Recall that ∥PV0∥V0 < ∞ from D(V0, V1), so that ∆V0 and π′(∆V0) are well-defined
under the assumptions of Proposition 3.1.

Let g ∈ BV1 such that ∥g∥V1 ≤ 1. Since π(V1) <∞ from Theorem 2.4, π(g) is well-defined.
Define g0 = g−π(g)1X and g̃0 :=

∑+∞
k=0R

kg0 with the residual kernel R := P − ν(·)1S . Then
we have

π′
(
(P ′ − P

)
g̃0) = π′(g̃0)− π′(g̃0 − g0) = π′(g0) = π′(g)− π(g) (20)

using the P ′−invariance of π′, the Poisson equation (I − P )g̃0 = g0 from Theorem 2.4, and
finally the definition of g0. It follows from the definition of ∆V0 that

|π′(g)− π(g)| ≤
∫
X

∣∣(P ′g̃0)(x)− (P g̃0)(x)
∣∣ dπ′(x) ≤ ∥g̃0∥V0

∫
X
∆V0(x) dπ

′(x).

Finally we know from Theorem 2.4 that ∥g̃0∥V0 ≤ a∥g0∥V1 with a defined in (14), so that

∥g̃0∥V0 ≤ a ∥g − π(g)1X∥V1 ≤ a
(
1 + π(V1)∥1X∥V1

)
from which we deduce (19) since ∥1X∥V1 ≤ 1. □

Now let {Pθ}θ∈Θ denote a family of transition kernels on (X,X ), where Θ is an open
subset of some metric space. Let us introduce the following minorization and modulated
drift conditions w.r.t. this family {Pθ}θ∈Θ:

∀θ ∈ Θ, ∃Sθ ∈ X , ∃νθ ∈ M+
∗ , ∀x ∈ X, ∀A ∈ X , Pθ(x,A) ≥ νθ(1A) 1Sθ

(x), (SΘ)

and there exists a couple (V0, V1) of Lyapunov functions such that

∀θ ∈ Θ, ∃bθ > 0, PθV0 ≤ V0 − V1 + bθ1Sθ
. (DΘ(V0, V1))

Let us fix some θ0 ∈ Θ. The family {Pθ, θ ∈ Θ \ {θ0}} must be thought of as a family of
transition kernels which are perturbations of Pθ0 and converge (in a certain sense) to Pθ0

when θ→ θ0. To that effect, under the Conditions (SΘ)-DΘ(V0, V1) we define

∀θ ∈ Θ, ∀x ∈ X, ∆θ,V0(x) := ∥Pθ(x, ·)− Pθ0(x, ·)∥V0 . (21)

Finally, under the additional conditions supθ∈Θ bθ <∞ and infθ∈Θ νθ(1X) > 0, we define the
following positive constant

a := 1 + max
(
0, c

)
with c := sup

θ∈Θ

bθ − νθ(V0)

νθ(1X)
. (22)

In Theorem 3.2 and Corollary 3.3 below, each Markov kernel Pθ is assumed to satisfy the
assumptions of Theorem 2.4. Accordingly, the Pθ−invariant probability measure denoted by
πθ in these two statements is πθ ≡ πθ,ν,R, i.e. the probability measure given by (8) with ν = νθ
and Rθ := Pθ−νθ(·)1Sθ

). Since πθ is assumed below to satisfy πθ(V0) <∞, we know from the
first assertion of Corollary 2.6 that there is no ambiguity about what πθ is in Theorem 3.2
and Corollary 3.3. To avoid any measurability problems for the functions ∆θ,V0 in the next
theorem, the σ−algebra X is assumed to be countably generated.
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Theorem 3.2 Assume that the family {Pθ}θ∈Θ satisfies Conditions (SΘ)-DΘ(V0, V1) with
b := supθ∈Θ bθ < ∞ and infθ∈Θ νθ(1X) > 0. Moreover assume that, for every θ ∈ Θ, the
Pθ−invariant probability measure πθ ≡ πθ,ν,R provided by (8) satisfies πθ(V0) <∞.

Then we have
∥πθ − πθ0∥V1 ≤ amin

{
cθ0 πθ(∆θ,V0) , cθ πθ0(∆θ,V0)

}
(23)

with a defined in (22) and with

∀θ ∈ Θ, cθ := 1 + πθ(V1)∥1X∥V1 ≤ 1 + b. (24)

If the following additional assumption holds

∀x ∈ X, lim
θ→ θ0

∆θ,V0(x) = 0, (∆V0)

then we have
lim

θ→ θ0
∥πθ − πθ0∥V1 = 0.

It may seem surprising to obtain such a statement without any assumption on the rate
of convergence of the iterates of Pθ. But actually, under the conditions of Theorem 3.2
combined with the standard aperiodicity and irreducibility assumptions, it is well-known
from Theorem 14.0.1 in [MT09] that, for every θ ∈ Θ and for every x ∈ X, the series∑

k≥0 ∥P k
θ (x, ·) − π∥V1 converges. However note that this result is not used in the proof of

Theorem 3.2.

Proof. Let θ ∈ Θ. We have PθV0 ≤ (1 + b)V0 from DΘ(V0, V1) and the definition of
the positive constant b. Thus Proposition 3.1 can be applied to (P, P ′) := (Pθ0 , Pθ) and to
(P, P ′) := (Pθ, Pθ0). This provides Inequality (23). Also observe that the bound in (24)
follows from the inequality πθ(V1) ≤ bθ ≤ b which is easily deduced from DΘ(V0, V1) using
πθ(PθV0) = πθ(V0) (recall that πθ(V0) <∞ by hypothesis). Next we have

lim
θ→ θ0

πθ0(∆θ,V0) = lim
θ→ θ0

∫
X
∆θ,V0(x)dπθ0(x) = 0 (25)

from Lebesgue’s theorem using ∆θ,V0 ≤ 2(1 + b)V0, πθ0(V0) < ∞ and Assumption (∆V0).
Then we obtain that limθ→ θ0 ∥πθ − πθ0∥V1 = 0 from the second bound in (23) and from the
inequality (24). □

When Condition DΘ(V0, V1) is satisfied, so is Condition DΘ(V0, 1X) since V1 ≥ 1X. Thus,
when Theorem 3.2 applies, then it also applies with V1 := 1X and then provides the control
of the total variation error since ∥πθ −πθ0∥TV = ∥πθ −πθ0∥1X . Using πθ(1X) = 1, ∥1X∥1X = 1,
so that we have here cθ := 1 + πθ(1X)∥1X∥1X = 2, we obtain the following estimate for
∥πθ − πθ0∥TV .

Corollary 3.3 Under the assumptions of Theorem 3.2 we have

∥πθ − πθ0∥TV ≤ 2 a min
{
πθ(∆θ,V0) , πθ0(∆θ,V0)

}
(26)

with a defined in (22). If moreover {Pθ}θ∈Θ satisfies Assumption (∆V0), then we have
limθ→ θ0 ∥πθ − πθ0∥TV = 0.
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The convergence of πθ0(∆θ,V0) to 0 when θ→ θ0 in (25) is of theoretical interest: it is
used to prove that limθ→ θ0 ∥πθ − πθ0∥V1 = 0 in Theorem 3.2. Indeed it is worth noticing
that this term πθ0(∆θ,V0) in the bounds (23) and (26) is not computable in practice since
the probability measure πθ0 may be considered as unknown in our perturbation context. By
contrast, the value of πθ(∆θ,V0) in bounds (23) and (26) is expected to be known or at least
computable for θ ̸= θ0, so that the bounds of interest in (23) and (26) are

∥πθ − πθ0∥V1 ≤ a cθ0 πθ(∆θ,V0) and ∥πθ − πθ0∥TV ≤ 2 a πθ(∆θ,V0) (27)

with cθ0 given in (24). However the bounds in (27) are relevant only if limθ→ θ0 πθ(∆θ,V0) = 0,
which is not guaranteed under the conditions of Theorem 3.2. For this purpose note that, in
the proof of Theorem 3.2, the conditions (SΘ) and DΘ(V0, V1) for Pθ with θ ̸= θ0 are only
used for obtaining the inequality ∥πθ − πθ0∥V1 ≤ acθ πθ0(∆θ,V0) of (23). Consequently, if we
are only interested in the two bounds in (27), then the assumptions of Theorem 3.2 can be
relaxed as follows.

Proposition 3.4 Assume that the (unperturbed) Markov kernel P := Pθ0 satisfies Condi-
tions (S) and D(V0, V1). Moreover assume that, for every θ ∈ Θ \ {θ0}, we have ∥PθV0∥V0 <
∞ and that there exists a Pθ−invariant probability measure πθ on (X,X ) such that πθ(V0) <
∞. Then the two bounds in (27) hold.

Indeed, under the assumptions of Proposition 3.4, the first bound in (27) directly follows
from Proposition 3.1 applied to (P, P ′) := (Pθ0 , Pθ) with θ ̸= θ0. The second bound in (27)
is obtained by replacing V1 with 1X. In Proposition 3.4, the existence of a Pθ−invariant
probability measure πθ is required when θ ̸= θ0 since we do not assume that Pθ satisfies
minorization and modulated drift condition for θ ̸= θ0. Actually, πθ may be any Pθ−invariant
probability measure when θ ̸= θ0, while πθ0 is the Pθ0−invariant probability measure given
by (8). In any case the assumption πθ(V0) < ∞ is required for every θ ∈ Θ \ {θ0}. Finally
let’s stress once again that the bounds in (27) are of interest only when the term πθ(∆θ,V0)
is computable and can be proved to converge to 0 when θ→ θ0. To simply illustrate what
the function ∆θ,V0 and Condition (∆V0) are in a concrete case, let us consider the standard
issue of truncation of an infinite stochastic matrix P = (P (x, y))x,y∈N. For any k ≥ 1 let
Bk := {0, . . . , k} and Bk

c := N\Bk. Recall that the k-th truncated and arbitrary augmented
stochastic matrix Pk of the (k+ 1)× (k+ 1) north-west corner truncation of P is defined by
(e.g. see [LL18]):

∀(x, y) ∈ Bk ×Bk, Pk(x, y) := P (x, y) + P (x,Bk
c)ψx,k(y)

where ψx,k(·) is some probability measure on Bk. Define the following extended Markov

kernel P̂k of Pk on N:

∀(x, y) ∈ N× N, P̂k(x, y) := Pk(x, y) 1Bk×Bk
(x, y) + 1B c

k×{0}(x, y).

The problem is to approximate the invariant probability measure of P by that of the stochastic
matrix P̂k, that is roughly speaking, by that of the finite stochastic matrix Pk. This can be
thought of as a perturbation issue introducing the family {Pθ}θ∈Θ of Markov kernels with
θ0 = +∞: Θ :=

(
N \ {0}

)
∪ {+∞}, P+∞ := P and ∀θ ≥ 1, Pθ := P̂k. Let us specify the

quantity ∆k,V0(x) defined in (21) for some function V0 ≥ 1. From the definitions of Pk and
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P̂k, we have for every x ∈ Bk

∆k,V0(x) =
∑
y∈N

∣∣P (x, y)− P̂k(x, y)
∣∣V0(y) = P (x,Bk

c)
∑
y∈Bk

ψx,k(y)V0(y) +
∑

y∈Bk
c

P (x, y)V0(y).

When V0 is non-decreasing, the following control of ∆k,V0(x) for x ∈ Bk is then easily obtained:

∀x ∈ Bk, ∆k,V0(x) ≤ P (x,Bk
c)V0(k) +

∑
y∈Bk

c

P (x, y)V0(y)

≤
∑

z∈Bk
c

P (x, z)V0(z) +
∑

y∈Bk
c

P (x, y)V0(y) ≤ 2
∑

y∈Bk
c

P (x, y)V0(y).

Let x ∈ N be fixed. Using this control for any k > x, we obtain the convergence limk→+∞∆k,V0(x) =
0 from (PV0)(x) =

∑
y∈N P (x, y)V0(y) < ∞, i.e. Condition (∆V0) holds true. Finally note

that the P̂k−probability measure πk is supported in Bk and computable using the finite
matrix Pk, so that the term πθ(∆θ,V0) =

∑
x∈Bk

πk(x)∆k,V0(x) used in (27) can be easily
bounded using the previous inequality on ∆k,V0(x).

Remark 3.5 (Stability issue) In some classical perturbation schemes, as the standard
truncations of infinite stochastic matrices or the state space discretization procedure of non-
discrete models, the whole family {Pθ}θ∈Θ satisfies Conditions (SΘ)-DΘ(V0, V1) provided
that the unperturbed Markov kernel P := Pθ0 satisfies Conditions (S)-D(V0, V1). More-
over the set S and the constant b involved for P := Pθ0 in (S)-D(V0, V1) can often be used
for the perturbed Markov kernels Pθ. In this case the conditions b := supθ∈Θ bθ < ∞ and
infθ∈Θ νθ(1X) > 0 of Theorem 3.2 and Corollary 3.3 are straightforward. In the context of
geometric drift conditions, the previous facts are proved to hold in many papers for trunca-
tions of infinite stochastic matrices (e.g. see [LL18, HL14] and references therein), in [HL21]
for the state space discretization procedure. The case of Markov models satisfying modulated
drift conditions can be addressed similarly.

Remark 3.6 If Pθ is replaced with iterate P ℓ
θ for some ℓ ≥ 2 in Conditions (SΘ)-DΘ(V0, V1)

and if for every θ ∈ Θ both Pθ and P ℓ
θ admit a unique invariant probability measure πθ, then

all the previous perturbation results still hold replacing πθ(∆θ,V0) with πθ(∆ℓ,θ,V0), where

∀x ∈ X, ∆ℓ,θ,V0(x) := ∥P ℓ
θ (x, ·)− P ℓ

θ0(x, ·)∥V0 .

Indeed, under the previous assumptions, Theorem 3.2 and Corollary 3.3 obviously apply to
the family {P ℓ

θ }θ∈Θ. The same remark is valid in Proposition 3.4 when P ℓ
θ0

satisfies Condi-
tions (S) and D(V0, V1) for some ℓ ≥ 2.

Our perturbation results are discussed through the two following examples.

Example 3.7 (Geometric drift conditions) In the perturbation context, under Condi-
tion (SΘ), the standard geometric drift conditions for some Lyapunov function V are the
following ones:

∀θ ∈ Θ, Kθ := sup
x∈Sθ

(PθV )(x) <∞ and δθ := sup
x∈Sc

θ

(PθV )(x)

V (x)
∈ (0, 1). (28)
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In addition to Assumptions (SΘ) and (28), we assume that, for every θ ∈ Θ, we have
νθ(1Sθ

) > 0 where (Sθ, νθ) ∈ X ×M+
∗ is given in (SΘ), so that each Pθ is V−geometrically

ergodic, with unique Pθ−invariant probability measure denoted by πθ satisfying πθ(V ) < ∞
(e.g. see [Bax05]). Moreover assume that K := supθ∈ΘKθ < ∞ and δ := supθ∈Θ δθ < 1.
Then

∀θ ∈ Θ, PθV ≤ δV +K1Sθ
≤ V − (1− δ)V +K1Sθ

.

Note that the second inequality reads as the Condition D(V0, V ), PθV0 ≤ V0 − V + b1S, with
V0 = V/(1 − δ), V1 = V and b = K/(1 − δ), so that Theorem 3.2 could be applied here to
control ∥πθ − πθ0∥V . Mention that the bound of Theorem 3.2 then provides a generalization
of the bound (10) in [LL18] to the truncation of a transition kernel defined on a general
state-space X without assuming the existence of an atom. Similarly the bound of Theorem 3.2
extends the bound (16) in [LL18] (with m = 1) to a general state-space X without assuming
that the residual kernel is a contraction on BV , i.e. RV ≤ βV for some β < 1.

The focus here is on the comparison of our results with Proposition 2.1 in [HL14] and
Equation (3.19) in [RS18], so that it only concerns the geometric case. We only apply Corol-
lary 3.3 in order to control the total variation norm ∥πθ − πθ0∥TV . Hence, we only use the
following Condition D(V0, 1X) derived from D(V0, V ) using V ≥ 1X:

∀θ ∈ Θ, PθV0 ≤ V0 − 1X + b 1Sθ
with V0 =

V

1− δ
and b :=

K

1− δ
.

Therefore, if m := infθ∈Θ νθ(1X) > 0, then {Pθ}θ∈Θ satisfies the assumptions of Theorem 3.2
and we have from Corollary 3.3

∥πθ − πθ0∥TV ≤ 2 a

1− δ
min

{
πθ(∆θ,V ) , πθ0(∆θ,V )

}
with a = 1 +max

(
0,
b

m

)
(29)

using the fact that ∆θ,V0(x) = ∆θ,V (x)/(1−δ). Moreover we have limθ→ θ0 ∥πθ−πθ0∥TV = 0,
provided that Condition (∆V0) is satisfied here with V0 := V (see Corollary 3.3). Recall that,
if the term πθ(∆θ,V ) can be computed and is proved to converge to 0 when θ→ θ0, then the
bound of interest in (29) is

∥πθ − πθ0∥TV ≤ 2 a

1− δ
πθ(∆θ,V ) (30)

and that (30) can be obtained under less restrictive assumptions focussing on Pθ0 by using
Proposition 3.4 (see also Remark 3.5).

Now, let us compare Inequality (30) with the bound obtained in Proposition 2.1 in [HL14]
and in Equation (3.19) in [RS18] (see also [HL23b] for the iterated function systems), that is

∥πθ − πθ0∥TV ≤ C γθ
∣∣ ln γθ∣∣ with γθ := sup

x∈X

∆θ,1X(x)

V (x)
(31)

where the positive constant C depends on the above constants δ,K and on the V−geometric
rate of convergence of the iterates P n

θ to the invariant distribution πθ.

� The interest of the bound (31) is that it uses ∆θ,1X(x) rather than ∆θ,V (x) in (30). Note
that the supremum bound over x ∈ X in the definition of γθ only requires to consider
this supremum on a level set {x ∈ X : V (x) ≤ c}, observing that the supremum on the
complementary set is arbitrarily small when c is large enough (use ∆θ,1X(x)/V (x) ≤ 2/c
when V (x) > c).
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� The drawback of (31) is that it involves a logarithm term, but above all that the constant
C in (31) depends on the V−geometric rate of convergence of P n

θ to πθ, which is
unknown in general or badly estimated.

In conclusion, to prove that limθ→ θ0 ∥πθ − πθ0∥TV = 0, it is more relevant to use the results
in [HL14, RS18]. However, if the term πθ(∆θ,V ) can be computed for θ ̸= θ0 and if πθ(∆θ,V )
converges to 0 when θ→ θ0, then the bound (30) is much more relevant than (31) since the
multiplicative constant in (30) is simple and easily computable, in contrast to that in (31).

Example 3.8 (Perturbed random walk on the half line) Let Θ be some open metric

space. For any θ ∈ Θ, let us consider the random walk {X(θ)
n }n∈N on the half line X :=

[0,+∞) given by

X
(θ)
0 ∈ X and ∀n ≥ 1, X(θ)

n := max
(
0, X

(θ)
n−1 + ε(θ)n

)
(32)

where {ε(θ)n }n≥1 is a sequence of i.i.d. R-valued random variables assumed to be independent

of X
(θ)
0 , and to have a common parametric probability density function pθ w.r.t. the Lebesgue

measure on R. The transition kernel associated with {Xθ
n}n∈N is given by

∀x ∈ X, ∀A ∈ X , Pθ(x,A) = 1A(0)

∫ −x

−∞
pθ(y) dy +

∫ +∞

−x
1A(x+ y) pθ(y) dy. (33)

Assume that

m1 := sup
θ∈Θ

E
[
|ε(θ)1 |

]
<∞, ∀θ ∈ Θ, m2,θ := E

[
|ε(θ)1 |2

]
<∞, E

[
ε
(θ)
1

]
< 0, (34a)

and

∃x0 > 0 such that c0 := − sup
θ∈Θ

∫ +∞

−x0

y pθ(y) dy > 0. (34b)

Under the negative moment condition E
[
ε
(θ)
1

]
< 0, there always exists a positive scalar x0(θ) >

0 such that
∫ +∞
−x0(θ)

y pθ(y) dy < 0. Thus Assumption (34b) means that a scalar x0 > 0,
uniform w.r.t. θ ∈ Θ, can be chosen. Moreover, under the second order moment condition
in (34a), we know from Proposition 3.5 in [JT03] that Pθ has a unique invariant probability
measure πθ and that πθ(L0) < ∞ where L0(x) := 1 + x for any x ∈ X. Let us introduce the
following functions on X:

∀x ∈ X, V0(x) :=
L0(x)

c
=

1 + x

c
and V1(x) := 1

where c := min(1, c0). Next, assume that the function defined by

∀y ∈ R, h(y) := inf
θ∈Θ

inf
x∈[0,x0]

pθ(y − x)

with x0 given by (34b), is positive on some open interval of R. Then,

1. Condition (SΘ) is satisfied with Sθ := [0, x0] and νθ := ν, where ν is the positive
measure on R defined by

∀A ∈ X , ν(1A) :=

∫
X
1A(y)h(y) dy.
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2. Condition DΘ(V0, V1) holds with Sθ = [0, x0] and b0 = (m1 + c0)/c. In particular it
follows from Theorem 2.4 that the unique Pθ−invariant probability measure πθ derived
from [JT03] has the representation (8).

3. Let us fix θ0 ∈ Θ. Define

∀θ ∈ Θ, ∀y ∈ R, ρθ(y) := |pθ(y)− pθ0(y)|, (35a)

eθ :=

∫
R
ρθ(y) dy and e1,θ :=

∫
R
|y| ρθ(y) dy. (35b)

Then Condition (∆V0) of Corollary 3.3 holds provided that

lim
θ→ θ0

(
eθ + e1,θ

)
= 0

and we have

∀θ ∈ Θ, πθ(∆θ,V0) ≤
eθ(1 + c πθ(V0)) + e1,θ

c
. (36)

The details of the checking are postponed to Appendix B. Thus, Corollary 3.3 apply under

Assumptions (34a)-(34b) on the noise process {ε(θ)n }n≥1, and the following bound (see (27))

∥πθ − πθ0∥TV ≤ 2 (1 + d) πθ(∆θ,V0) with d = max

(
0,
b0 − ν(V0)

ν(1X)

)
is of interest, provided that the quantities eθ, e1,θ and πθ(V0) are computable for θ ̸= θ0 and
that both eθ and e1,θ converge to 0 when θ→ θ0.

Let m ≥ 2. Under conditions (34a) expressed in terms of moments of order (m− 1) and
m on the noise process and under Condition (34b), it can be shown that Conditions (SΘ)-
DΘ(V0, V1) also hold for an appropriate set S and the functions V1(x) = (1+x)m−2, V0(x) =
L0(x)/c where L0(x) = (1 + x)m−1. The proof follows similar lines than that for m = 2
in Appendix B. From such extensions, it can be proved that the term πθ(V0) in (36) satisfies
supθ∈Θ πθ(V0) <∞, provided that the condition m1 <∞ in (34a) is replaced with the stronger

one: m2 := supθ∈Θ E[|ε(θ)1 |2] <∞.

A P−invariant probability measure under Condition (S)

The analytic proof of Recall 2.1 from [HL23a] is reported below. Note that it does not need
to introduce the concepts of irreducibility, recurrence, atom or splitted chain associated with
the Markov kernel.

Let P satisfy Condition (S) and T be the following kernel

∀x ∈ X, ∀A ∈ X , T (x,A) := ν(1A) 1S(x)

so that R = P − T . Note that, for every k ≥ 1, we have ν Rk−1 ∈ M+. Recall that for
two nonnegative kernels K1 and K2, the inequality K1 ≤ K2 means that for any measurable
nonnegative function g, K1g ≤ K2g. Set T0 := 0 and Tn := Pn −Rn for n ≥ 1. Then

∀n ≥ 1, 0 ≤ Tn ≤ Pn, Tn − Tn−1P = (Pn−1 − Tn−1)T and Tn =
n∑

k=1

ν(Rk−1·)Pn−k1S . (37)
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The first property follows from 0 ≤ R ≤ P . The second one is deduced from Pn − Tn =
(Pn−1 − Tn−1)(P − T ). Finally, the last one is clear for n = 1 and it holds for n ≥ 2 by an
easy induction based on Tn = Pn−1T + Tn−1R.

Now, let us prove Recall 2.1. Assume that Assertion 1 holds. We deduce from (37) that
0 ≤ π

(
(Pn − Tn)1X

)
= 1− π(Tn1X) = 1− π(1S)

∑n
k=1 ν(R

k−11X) from which it follows that∑+∞
k=1 ν(R

k−11X) ≤ π(1S)
−1 < ∞ since π(1S) > 0 by hypothesis. This gives Assertion 2.

Conversely, if Assertion 2 holds, then µ :=
∑+∞

k=1 νR
k−1 ∈ M+

∗ since µ(1X) ≥ ν(1X) > 0.
Moreover we have

∀A ∈ X , µ(P1A) =

+∞∑
k=1

ν
(
P k1A − Tk−1P1A

)
from Rk−1 = P k−1 − Tk−1

=
+∞∑
k=1

ν
(
P k1A − Tk1A

)
+

+∞∑
k=1

ν
(
P k−1T1A − Tk−1T1A

)
from (37)

= µ(1A) + µ(T1A)− ν(1A)

= µ(1A) + ν(1A)µ(1S)− ν(1A) from the definition of T .

With A = X we obtain that 0 = ν(1X)µ(1S) − ν(1X), thus µ(1S) = 1 since ν(1X) > 0.
Consequently µ is P−invariant, so that π := µ(1X)

−1 µ is an P−invariant distribution such
that π(1S) = µ(1X)

−1 > 0.

B Conditions (SΘ)−DΘ(V0, V1) for perturbed random walks on
the half line

Let us assume that Conditions (34a)-(34b) hold, and that the function h(·) defined by

∀y ∈ R, h(y) := inf
θ∈Θ

inf
x∈[0,x0]

pθ(y − x)

with x0 given by (34b), is positive on some open interval of X = [0,+∞) . Then, using the
definition (33) of the kernel Pθ , we can write

∀θ ∈ Θ,∀x ∈ [0, x0], ∀A ∈ X , Pθ(x,A) = 1A(0)

∫ −x

−∞
pθ(y) dy +

∫ +∞

0
1A(y) pθ(y − x) dy

≥
∫ +∞

0
1A(y) pθ(y − x) dy ≥

∫ +∞

0
1A(y)h(y) dy

so that Condition (SΘ) is satisfied with Sθ ≡ [0, x0] and the positive measure defined by
ν(1A) :=

∫
X 1A(y)h(y) dy for any A ∈ X .

Next, recall that the functions L0, V0 and V1 are defined as : for any x ∈ X, L0(x) :=
1 + x, V0(x) := L0(x)/c with c := min(1, c0) (see (34b)) and V1(x) = 1. Then we have from
the definition (33) of Pθ:

∀x ∈ X, (PθL0)(x)− L0(x) =

∫ −x

−∞
pθ(y) dy +

∫ +∞

−x
(1 + x+ y) pθ(y) dy − (1 + x)

= −x
∫ −x

−∞
pθ(y) dy +

∫ +∞

−x
y pθ(y) dy

≤
∫ +∞

−x
y pθ(y) dy. (38)
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Then we obtain from (38) and (34b)

∀x > x0, (PθL0)(x)− L0(x) ≤ −c0V1(x)
and ∀x ∈ [0, x0], (PθL0)(x)− L0(x) + c0V1(x) ≤ c0V1(x) +m1 = c0 +m1,

that is
PθL0 ≤ L0 − c0V1 + (c0 +m1) 1[0,x0]

or
PθV0 ≤ V0 − V1 + b01[0,x0] (39)

with b0 := (c0 +m1)/c. Thus the familly of kernels {Pθ}θ∈Θ satisfies Condition DΘ(V0, V1).

Next, we investigate the function ∆θ,V0(x) and the quantity πθ(∆θ,V0). To that effect, fix
some θ0 ∈ Θ and use the quantities ρθ, eθ, e1,θ in (35a)-(35b). Note that eθ ≤ 2. Let g ∈ BV0

be such that |g| ≤ V0. Then we have

∀x ∈ X,
∣∣(Pθg)(x)− (Pθ0g)(x)

∣∣ ≤ V0(0)

∫ −x

−∞
ρθ(y) dy +

∫ +∞

−x
V0(x+ y) ρθ(y) dy

≤ eθ
c
+

1

c

∫
R

(
1 + x+ |y|

)
ρθ(y) dy

≤ eθ
c
+ eθV0(x) +

e1,θ
c
.

Thus

∀x ∈ X, ∆θ,V0(x) ≤
eθ(1 + c V0(x)) + e1,θ

c
. (40)

Therefore Condition (∆V0) of Corollary 3.3 holds provided that

lim
θ→ θ0

(
eθ + e1,θ

)
= 0.

Such a condition ensures that limθ→ θ0 ∥πθ − πθ0∥TV = 0. Finally we have from (40)

∀θ ∈ Θ, πθ(∆θ,V0) ≤
eθ(1 + c πθ(V0)) + e1,θ

c
.

Recall that πθ(V0) <∞ under Assumptions (34a)-(34b) for the noise process {ε(θ)n }θ∈Θ.
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