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Abstract

The Markov kernels on general measurable space are studied under a first-order mi-
norization condition and a modulated drift condition. The following issues are addressed:
Existence and uniqueness of invariant measures, recurrence/transience properties includ-
ing Harris-recurrence property, convergence in total variation of iterates, Poisson’s equa-
tion, perturbation schemes and rate of convergence of iterates including the so-called
geometric ergodicity. Extensions under higher order minorization conditions are also
discussed with a focus on solutions to Poisson’s equation. All the material on Markov
kernels provided here is based on a residual kernel approach. This is a simple and effi-
cient way to deal with all mentioned issues. It turns out that this document is essentially
self-contained.
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1 Introduction

The purpose of this work is to study Markov kernels on a general measurable space under the
so-called Minorization and modulated Drift conditions, generically denoted here by M & D
conditions. The following issues are addressed: Existence and uniqueness of invariant mea-
sures, recurrence/transience properties including Harris-recurrence property, convergence in
total variation of iterates of the Markov kernel in the aperiodic and periodic cases, Poisson’s
equation, perturbation schemes, and finally rates of convergence in weighted total variation
norms of iterates including the so-called geometric ergodicity. In this document, the focus
is on non-negative kernels, adopting in this sense the point of view in Seneta’s book [Sen06]
where discrete Markov chains are studied via non-negative matrices. It can also be thought
of as a tribute to Nummelin’s book [Num84] from which the idea of the treatment of Markov
kernels via a residual kernel approach is borrowed. However, we decide here to keep a total
focus on this kernel framework from the beginning to the end. This turns out to be a simple
and efficient way to deal with all mentioned issues on Markov kernels.

The M & D conditions are nowadays well known, widely illustrated and used in the lit-
erature on Markov chains via the splitting technique for extending the materials on atomic
Markov chains to the non-atomic case, or via the coupling technique to derive convergence
rates. Both techniques are based on a minorization condition. The reference books on this
topic are [Num84, MT09] and more recently [DMPS18]. Here we use neither the splitting
technique, nor the coupling construction. This also implies that no regeneration type-method
is used here. Actually, with the exception of Sections 6 and 9 which contain a few fairly el-
ementary spectral theory arguments to deal with geometric ergodicity, the only prerequisite
for this work is the handling of non-negative kernels. Indeed, the choice to consider Markov
kernels satisfying a minorization condition allows us to work immediately with the residual
kernel, from which the issues on invariant measures, recurrence/transience including Harris-
recurrence and convergence of iterates, can be treated simply. Then additional modulated
drift conditions enable us to investigate series of residual kernel iterates, from which solu-
tions to Poisson’s equation and the perturbation issue as a by-product are easily deduced.
Also mention that the recent book [BH22] proposes a relevant and interesting study under
additional weak topological conditions, such as the weak Feller condition. For an approach
based on ergodic theory, the reader can consult for example the book [HLL03] as well as the
manuscript [Hai06]. These points of view are not addressed in our work.

The theory in [Num84, MT09, DMPS18] is developed under general minorization condi-
tions involving, either the so-called definition of small-set (or small-function), or the more
general definition of petite sets. Both definitions are based on some n−th iterate of the
transition kernel. In our work the focus is on the first-order minorization condition with
small-function, which corresponds to the definition [Num84, Def. 2.3] at first order (n := 1).
This choice provides a relatively simple, straightforward, homogeneous and self-contained
presentation, dealing first with the residual kernel, then with the Markov kernel. Note that
using small-functions instead of small-sets requires here no additional effort. The choice of
the order one for small-functions or small-sets is also motivated by the fact that most of clas-
sical examples of Markov chains verifying a minorization condition satisfy it at the first order.
Therefore, we found relevant to emphasise the order one, as long as the results are complete
and the first-order minorization condition does not need to be strengthened by artificial as-
sumptions. Further M & D conditions including the case of higher order small-functions are
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introduced in the final section of this work, showing that series of residual kernel iterates may
have an interest at least for the study of Poisson’s equation.

All the results in this work apply to any discrete-time homogeneous Markov chain, pro-
vided that the M & D conditions are fulfilled. For such examples, readers can consult the
reference books [Num84, MT09, DMPS18, BH22], as well as the following more special-
ized works: [FM00, FM03b, AF10, DFM16] in the context of the Metropolis algorithm,
[TT94, DFM16] for autoregressive models, [LH07, LH12] for queueing systems, [JT02] for
Markov chains associated with the mean of Dirichlet processes, [Mey08] for Markov models
in control. Classical instances of V−geometrically ergodic Markov chains can be found in
e.g [MT09, RR04, DMPS18]. To make concrete checking M & D conditions, two specific
examples are discussed in Section 10.

Although our method differs substantially from the splitting or coupling based methods,
the conditions sometimes added to the M & D assumptions are related to the classic ones
(e.g. irreducibility, period). Here these additional assumptions can be directly introduced
under their simplified form, i.e. expressed with the small-function. Other conditions, such
as reversibility, only concern the form of the Markov kernel and correspond to standard
assumptions. Finally, as previously quoted, the central point is that a non-negative kernel
approach is used for deriving all the proposed material. All the needed prerequisites are
recalled in Subsection 2.1. The few probabilistic material you need (see Subsection 2.2) is
applying well-known formulas on the marginal laws of the Markov chain and on the iterates
of its transition kernel to deal with Harris-recurrence in Subsection 4.2. Of course, most of
statements expressed in terms of Markov kernels in this work can be translated into a purely
probabilistic form for discrete-time homogeneous Markov chains with general state space.
To facilitate a comparative reading with the statements in reference probabilistic works as
[Num84, MT09, DMPS18], the probabilistic interpretation of the main quantities used in
this paper is reported in Appendix A. Further discussions are included in bibliographical
comments at the end of each section.

Without using of modulated drift conditions, the first chapters of the reference books
[MT09, DMPS18] present numerous sufficient conditions for P to be recurrent or transient,
positive recurrent or Harris recurrent. Here the characterizations of these properties presented
in Sections 3-4 only focus on two objects linked to the minorization condition: the positive
measure µR and the function h∞

R introduced in Section 3. Then the modulated drift condition
introduced in Section 5 allows us to directly and simply apply the results of Sections 3-4
to obtain that P admits an invariant probability measure and is Harris recurrent. Since
modulated drift conditions are involved from Section 5 onwards, Sections 6-9 as well as
the examples in Section 10 only concern Harris recurrent kernels with invariant probability
measure.

The approach in Sections 3-5 is inspired by a part of [Num84] devoted to the so-called
potential theory, which was fully developed in the seventies, e.g. see [Nev72, Twe74a, Twe74b,
Rev75]. Chapter 2 of Revuz’s book [Rev84] provides a full development of this theory, with
additional detailed historical commentary and numerous references to early works in discrete
state space case. As usually pointed out, the degree of generality and abstraction of the poten-
tial theory is high in the works cited above, which makes their access difficult. We have tried
to show that the potential theory, i.e. the use of power series associated with a non-negative
kernel, is in fact simple and effective when applied to the residual kernel of a transition kernel
satisfying a minorization condition. Thus, the potential theory here only concerns the resid-
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ual kernel, with a direct application to classical probabilistic statements, e.g. see Formula (28)
used to prove the recurrence/transience dichotomy, and the definitions (40) used to study
the convergence in total variation of the iterates. Similarly, in Section 6 based on spectral
theory, and even in Section 9 where geometric ergodicity is introduced on a general Banach
space (including the L2−case ), only power series with the residual kernel are used, see (74).

Starting from Section 5, in which the modulated drift condition is introduced, a large part
of the results are derived from the papers [HL23a, HL24, HL25a, HL25b]. However, they
are revisited and sometimes upgraded/completed to take into account the new material of
Subsection 3.3, Section 4, Subsection 8.4, Section 9 (excepted Subsection 9.2), Section 11.
Each section ends with a detailed bibliographic discussion, excepted Section 10 on examples

¯where some references are given directly in the development of the models and computations.
Most of statements presented in Subsection 3.4 and 5.4 serve to prepare the bibliographic
discussion of Sections 3 and 5. The appendices contain the proofs of expected extensions
(e.g., convergence in periodic case) and technical complements concerning the truncation
procedure illustrating the perturbation results.

This document is expected to offer an interesting alternative to the numerous works de-
voted to the asymptotic study of Markov kernels, in particular thanks to the direct and
self-contained approach provided by the residual kernel. Indeed, ignoring bibliographic com-
ments and the specific Section 11, all the topics addressed from Section 3 to Section 9 are
covered in less than 80 pages, namely: Existence and uniqueness of invariant measures; Recur-
rence/Transience; Harris-recurrence; Convergence in total variation of the iterates; Poisson’s
equation; V−geometric ergodicity; Perturbation schemes; Polynomial ergodicity; Geometric
ergodicity on a Banach space including the L2−case.

2 Main notations and prerequisites

The main notations and definitions used throughout this document are gathered in this
section. Most of them are concerned with non-negative kernel calculus. They are standard
and the material of this section can be omitted in a first reading.

Let (X,X ) be a measurable space and X ∗ := X \{∅} be the subset of non-trivial elements
of X . For any A ∈ X ∗, we denote by 1A the indicator function of A defined by 1A(x) := 1 if
x ∈ A, and 1A(x) := 0 if x ∈ Ac, where Ac := X \A.

2.1 Measures and kernels

� We denote by B the sets of bounded measurable real-valued functions on (X,X ). The
subset of non-zero and non-negative functions in B is denoted by B∗

+.

� Non-negative measures on (X,X ). We denote by M+ (resp. M∗
+,b) the set of

non-negative (resp. finite positive) measures on (X,X ). For any µ ∈ M+ and any
µ-integrable function g : X→R, µ(g) denotes the integral

∫
X g(x)µ(dx). Let µ be a

positive measure on (X,X ). Then a set A ∈ X is said to be µ−full if µ(1Ac) = 0.

For µ ∈ M+ and any non-negative measurable function f , we denote by f · µ the
non-negative measure on (X,X ) defined by: ∀A ∈ X , (f ·µ)(1A) :=

∫
X 1A(x)f(x)µ(dx).
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� Non-negative kernel on (X,X ). A non-negative kernel K on (X,X ) is a map K :
X×X →[0,+∞] satisfying the two following properties:

(i) For every A ∈ X , the function x 7→ K(x,A) from X into [0,+∞] is a measurable
function on (X,X ),

(ii) For every x ∈ X, the set function A 7→ K(x,A) from X into [0,+∞] is a non-
negative measure on (X,X ), denoted by K(x, dy) or K(x, ·).

The set of non-negative kernels on (X,X ) is denoted by K+. An element K ∈ K+ is
said to be bounded if the function x 7→ K(x,X) is bounded on X.

� Product of two non-negative kernels. If K1 and K2 are in K+, then K2K1 is the
element of K+ defined by

∀x ∈ X, ∀A ∈ X , (K2K1)(x,A) :=

∫
X
K1(y,A)K2(x, dy). (1)

The above term (K2K1)(x,A) is well-defined in [0,+∞]: indeed y 7→ K1(y,A) is a
measurable function from X into [0,+∞], and its integral is then computed w.r.t. the
non-negative measure K2(x, dy). If K1 and K2 are both bounded, then so is K2K1.

� Product of a non-negative measure by a non-negative measurable function.
For any µ ∈ M+ and any measurable function f : X→[0,+∞], we define the following
non-negative kernel, denoted by f ⊗ µ,

∀x ∈ X, ∀A ∈ X , (f ⊗ µ)(x,A) := f(x)µ(1A). (2)

� Product of a non-negative kernel by a non-negative measure. Any µ ∈ M+

may be obviously considered as a non-negative kernel (i.e. ∀x ∈ X, µ(x,A) := µ(1A)). If
µ ∈ M+ and K ∈ K+, then the product µK is given as a special case of Definition (1),
that is

∀x ∈ X, ∀A ∈ X , (µK)(x,A) :=

∫
X
K(y,A)µ(dy). (3)

Note that µK ∈ M+ since it does not depend on x ∈ X. The measure µ is said to be
K−invariant if µK = µ.

� Iterates of a non-negative kernel. Let K ∈ K+. For every n ≥ 1 the n−th iterate
kernel of K, denoted by Kn, is the element of K+ defined by induction using the above
formula (1). By convention K0 is defined by: ∀x ∈ X, ∀A ∈ X , K0(x,A) = 1A(x)
(i.e. K0(x, ·) is the Dirac measure at x).

� Functional action of a non-negative kernel. Let K ∈ K+. We also denote by K
its functional action defined by

∀x ∈ X, (Kg)(x) :=

∫
X
g(y)K(x, dy), (4)

where g : X→R is any measurable function assumed to be K(x, ·)−integrable for every
x ∈ X. For such a function g, we have

|Kg| ≤ K|g|, i.e. ∀x ∈ X, |(Kg)(x)| ≤ (K|g|)(x), (5)
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where |g| denotes the absolute value of g (or its modulus if g is C−valued). Obviously
K is a linear action.

If K1,K2 ∈ K+ and if g : X→R is a measurable function such that g1 := K1g is
well-defined as well as K2g1, then

(K2K1)(g) = (K2 ◦K1)(g)

where the first term (K2K1)(g) denotes the functional action on g of the product kernel
K2K1 given in (1), while K2 ◦K1 denotes the usual composition of maps. In particular,
for every n ≥ 1, the functional action of the n−th iterate kernel of Kn of K is the n−th
iterate for composition of the functional action of K. Finally note that the functional
action of the kernel K0 is the identity map I (i.e. (K0g)(x) = g(x) for any x ∈ X),
which corresponds to the standard convention for linear operators.

Most questions involving a non-negative kernel can be addressed through its functional
action, and this is the choice that will generally be made in this document. In particular
Inequality (5) will be used repeatedly in this work.

� Functional action of a non-negative measure. If µ ∈ M+ (thus µ ∈ K+), then
its functional action (see (4)) is given by

∀x ∈ X, (µg)(x) :=

∫
X
g(y)µ(dy),

that is µg := µ(g)1X, provided that g is µ−integrable.

� Order relation for non-negative kernels. If K1 and K2 are in K+, the inequality
K1 ≤ K2 means that

∀g : X→[0,+∞) measurable, 0 ≤ K1g ≤ K2g

provided that K1g and K2g are well-defined (if not, this inequality still holds but in
[0,+∞]). In particular, this implies that

∀x ∈ X, K1(x, dy) ≤ K2(x, dy), i.e. ∀x ∈ X, ∀A ∈ X , K1(x, 1A) ≤ K2(x, 1A).

In connection with this order relation, we shall often write K ≥ 0 for recalling that
K ∈ K+. When K1,K2 are bounded non-negative kernels, the inequality K1 ≤ K2

holds true if, and only if, K := K2 −K1 is a non-negative kernel, where K is defined
by K(x,A) := K2(x,A)−K1(x,A) for any x ∈ X and A ∈ X .

Recall that
K1,K2 ∈ K+ =⇒ K1K2 ∈ K+ and K2K1 ∈ K+

from the definition of the products of two elements ofK+ (see (1)). From this, the follow-
ing expected rules for sum and product can be easily deduced for any K,K1,K2,K

′
1,K

′
2

in K+ (i.e. each element in (6a)-(6c) is a non-negative kernel):

K1 ≤ K2, K
′
1 ≤ K ′

2 =⇒ K1 +K ′
1 ≤ K2 +K ′

2 (6a)

K1 ≤ K2, K ∈ K+ =⇒ KK1 ≤ KK2 and K1K ≤ K2K (6b)

K1 ≤ K2 =⇒ ∀n ≥ 0, K n
1 ≤ K n

2 . (6c)

Properties (6a)–(6c) will be used repeatedly hereafter, mainly through the functional
action of the involved non-negative kernels.
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� Series of kernels. For any (Ki)i∈I ∈ K I
+ where I is any countable set I, the element

K :=
∑

i∈I Ki is defined in K+ by

∀x ∈ X, ∀A ∈ X , K(x,A) :=
∑
i∈I

Ki(x,A).

The following formula holds for all sequences (Kn)n≥0 ∈ K N
+ and (K ′

n)n≥0 ∈ K N
+ :

+∞∑
k,n=0

KnK
′
k = KK ′ with K :=

+∞∑
n=0

Kn and K ′ :=
+∞∑
k=0

K ′
k. (7)

Since this formula is repeatedly used in this work, let us give a proof. Let x ∈ X and
A ∈ X . Then (7) is obtained from the following equalities in [0,+∞]:

+∞∑
k,n=0

(KnK
′
k)(x,A) =

+∞∑
k,n=0

∫
X
K ′
k(y,A)Kn(x, dy)

=
+∞∑
n=0

( +∞∑
k=0

∫
X
K ′
k(y,A)Kn(x, dy)

)

=
+∞∑
n=0

∫
X

( +∞∑
k=0

K ′
k(y,A)

)
Kn(x, dy)

=

+∞∑
n=0

∫
X
K ′(y,A)Kn(x, dy) =

∫
X
K ′(y,A)K(x, dy).

Indeed the first equality is just the definition of KnK
′
k, the second one is due to Fubini’s

theorem for double series of non-negative real numbers, the third one follows from the
monotone convergence theorem w.r.t. each non-negative measure Kn(x, dy), and finally
the fourth and fifth ones are due to the definition of K ′(y,A) and K(x, dy) respectively.

� Markov and submarkov kernels. A non-negative kernel K is said to be Markov
(respectively submarkov) if K(x,X) = 1 (respectively K(x,X) ≤ 1) for any x ∈ X. In
both cases, K is obviously a bounded kernel.

If K is a Markov kernel, then an element A ∈ X is said to be K−absorbing if K(x,A) =
1 for any x ∈ A. An element A ∈ X is said to be an atom forK if the following condition
holds: ∀(x1, x2) ∈ A×A, K(x1, dy) = K(x2, dy) (such a set is sometimes called a proper
atom too, e.g. see [Num84, Def. 4.3]).

IfK is a submarkov kernel, thenK(B) ⊂ B. A function g ∈ B is said to beK−harmonic
if Kg = g on X. When K is Markov, then the function 1X is always K−harmonic.

� Restriction of functions, measures ans kernels to a subset. For any E ∈ X we
denote by XE the σ−algebra induced by X on the set E, i.e. XE := {A ∩ E,A ∈ X}.
For any g ∈ B, the restriction gE to E of g is the bounded XE−measurable function
defined on E by: ∀x ∈ E, gE(x) = g(x). If η ∈ M+, then the restriction ηE to E of η is
the non-negative measure on (E,XE) defined by: ∀A′ ∈ XE , ηE(1A′) = η(1A∩E) where
A is any element in X such that A′ = A∩E. If K ∈ K+, then the restriction KE of K to
E is the non-negative kernel on (E,XE) defined by: ∀x ∈ E, ∀A′ ∈ XE , KE(x,A

′) =
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K(x,A ∩ E) where A is any element in X such that A′ = A ∩ E. When the notation
of the function/measure/kernel on X involves an index, the restriction to E is denoted
by ·|E to avoid confusion (for instance, if ηi ∈ M+, the restriction of ηi to E is denoted
by ηi|E). Finally observe that, if K is Markov on (X,X ) and E is K−absorbing, then
KE is a Markov kernel on (E,XE).

� V−weighted space and V−weighted total variation norm. Let V : X→(0,+∞)
be any measurable function. For every measurable function g : X→R, we set

∥g∥V := sup
x∈X

|g(x)|
V (x)

∈ [0,+∞],

and we define the V−weighted space

BV :=
{
g : X→R,measurable such that ∥g∥V < ∞

}
.

Note that B1X = B. The following obvious fact will be repeatedly used hereafter:

∀g ∈ BV , |g| ≤ ∥g∥V V (i.e. ∀x ∈ X, |g(x)| ≤ ∥g∥V V (x)).

If (µ1, µ2) ∈ (M∗
+,b)

2 is such that µi(V ) < ∞, i = 1, 2, then the V -weighted total
variation norm ∥µ1 − µ2∥′V is defined by

∥µ1 − µ2∥′V := sup
∥g∥V ≤1

∣∣µ1(g)− µ2(g)
∣∣. (8)

If V = 1X, then ∥ · ∥′1X = ∥ · ∥TV is the standard total variation norm.

� The Lebesgue space Lp(η) and Lp(η). Let η be a positive measure on (X,X ).
For p ∈ [1,+∞) we denote by Lp(η) the space of all the measurable complex-valued
functions on X such that η(|f |p) < ∞. Moreover (Lp(η), ∥ · ∥p) denotes the standard
Banach space composed of the classes modulo η of the functions in Lp(η) with norm
defined by

∥f∥p ≡ ∥f∥p,η := (η(|f |p))1/p.
As usual the space (L∞(η), ∥·∥∞) is the Banach space composed of the classes modulo η
of complex-valued measurable functions f on X such that ∥f∥∞ <∞ where

∥f∥∞ ≡ ∥f∥∞,η := inf
{
c ∈ [0,+∞) : |f | ≤ c η-a.e. on X

}
. (9)

2.2 Markov chain

A Markov chain (Xn)n≥0 on the state space X with transition/Markov kernel P is a family
of random variables (r.v.) on a probability space (Ω,F ,P) such that

∀f ∈ B, E[f(Xn+1) | σ(X0, . . . , Xn)] = (Pf)(Xn)

where σ(X0, . . . , Xn) is the sub-σ−algebra of F generated by the r.v’s X0, . . . , Xn. In par-
ticular, for any A ∈ X ,

E[1A(Xn+1) | σ(X0, . . . , Xn)] = (P1A)(Xn) =

∫
A
P (x, dy) = P (x,A).

Assertions a)-b) below are relevant to link iterated kernels and the Markov chain. The
classical statements c)-d) are prerequisites on occupation and hitting times of a set A, which
are only used in Subsection 4.2 to study the Harris-recurrence property.
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a) We have for any k ≥ 0, E[f(Xn+k) | σ(X0, . . . , Xn)] = (P kf)(Xn).

b) The probability P when P{X0 = x} = 1, is denoted by Px, and Ex is the expectation
under Px.

c) Let A ∈ X . Then the function defined by

∀x ∈ X, g∞
A (x) := Px

{ +∞∑
n=1

1{Xn∈A} = +∞
}

(10)

is bounded on X and P−harmonic, see Appendix A.

d) Let A ∈ X and let gA be the function on X defined by

∀x ∈ X, gA(x) = Px{TA <∞} (11)

where TA := inf{n ≥ 0 : Xn ∈ A} is the hitting time of the set A. Then gA is superhar-
monic, i.e. PgA ≤ gA, and we have (see Appendix A):

g∞
A = lim

n→+∞
↘ PngA. (12)

3 Minorization condition, invariant measure and recurrence

In this section a standard first-order minorization condition on the Markov kernel P is in-
troduced: P ≥ ψ ⊗ ν where ν ∈ M∗

+,b and ψ ∈ B∗
+. This allows us to decompose P as the

sum of two submarkovian kernels R := P −ψ⊗ ν, called the residual kernel, and ψ⊗ ν. Two
quantities of interest are defined from the residual kernel and its iterates: first the positive
measure µR :=

∑+∞
k=0 νR

k, second the R−harmonic function h∞
R := limnR

n1X. Then the ex-
istence of a P−invariant positive measure and the classical recurrence/transience dichotomy
are studied according that µR(ψ) = 1 or not (equivalently ν(h∞

R ) = 0 or not). The elements
µR and h∞

R defined quite simply from the minorization condition, may seem abstract at first
glance. They turn out to be extremely effective tools for proving, in this section and the next
one, classical properties on the transition kernel P . Of course, even though the statements
under the ad hoc assumptions on µR and h∞

R have their own interest, this approach would
be unattractive without the possibility of deriving results under more standard assumptions.
This is for example done in Theorem 3.14 and Subsection 4.5, and definitively accomplished
from Section 5 with the introduction of the modulated drift condition.

3.1 The minorization condition (M ν,ψ) and the residual kernel

Recall that B∗
+ is the set of non-negative and non-zero measurable bounded functions on X

and that M∗
+,b is the set of finite positive measures on (X,X ). Let P be a Markov kernel

on (X,X ). Let us introduce the minorization condition which is in force throughout this
document:

∃(ν, ψ) ∈ M∗
+,b × B∗

+ : P ≥ ψ ⊗ ν (i.e. ∀x ∈ X, P (x, dy) ≥ ψ(x) ν(dy)). (M ν,ψ)

The function ψ is called a first-order small-function in the literature on the topic of Markov
chains. That the non-negative function ψ in (Mν,ψ) is bounded is required since ψ(x) ν(1X) ≤
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P (x,X) = 1 for any x ∈ X and ν(1X) > 0. Moreover for any (ψ, ϕ) ∈ B∗
+ × B∗

+ such that
ψ ≥ ϕ, if (Mν,ψ) is satisfied then so is (Mν,ϕ).

Under (M ν,ψ), let us introduce the following submarkov kernel, called the residual kernel,
which is central in the analysis here of the Markov kernel P :

R ≡ Rν,ψ := P − ψ ⊗ ν (i.e. ∀x ∈ X, R(x, dy) := P (x, dy)− ψ(x)ν(dy)). (13)

The most classical instance of minorization condition is when ψ := 1S for some S ∈ X ∗,
that is

∃(ν, S) ∈ M∗
+,b ×X ∗ : P ≥ 1S ⊗ ν (i.e. ∀x ∈ X, P (x, dy) ≥ 1S(x) ν(dy)), (Mν,1S )

in which case the residual kernel is:

R ≡ Rν,1S := P − 1S ⊗ ν.

Such a set S is called a first-order small-set.

The following statement provides a general framework for Condition (Mν,ψ) to hold.
Moreover this proposition shows that, even if the minorizing measure ν is defined from
(Mν,1S ) with some set S, this condition (Mν,1S ) is not the only one possible.

Proposition 3.1 Assume that

∀x ∈ X, P (x, dy) ≥ q(x, y)λ(dy) (14)

where q(·, ·) is a non-negative measurable function on X2 and λ is a positive measure on X.
Let S ∈ X ∗ be such that the measurable non-negative function qS defined by

∀y ∈ X, qS(y) := inf
x∈S

q(x, y)

is not λ−null, that is: λ(1A) > 0 where A := {y ∈ X : qS(y) > 0}. Let ν ∈ M∗
+,b and

ψS ≥ 1S be defined by

ν(dy) := qS(y)λ(dy) and ∀x ∈ X, ψS(x) := 1S(x) inf
y∈A

q(x, y)

qS(y)
. (15)

Then P satisfies Condition (Mν,ψS
) and so (M ν,1S ).

Proof. For any fixed x ∈ S, we have ν(1X) ≤
∫
X q(x, y)λ(dy) ≤ P (x,X) = 1 from the

definition of ν, qS and from (14). Thus ν is finite and ν(1A) > 0, so that ν ∈ M∗
+,b. Next, from

the definition of ψS we obtain the following property: ∀(x, y) ∈ S×A, q(x, y) ≥ qS(y)ψS(x).
In fact this inequality holds for every (x, y) ∈ X2 since q(x, y) ≥ 0. Finally it follows from
(14) that, for every x ∈ X, we have P (x, dy) ≥ ψS(x)qS(y)λ(dy), i.e. P satisfies (M ν,ψS

).
Note that ψS ≥ 1S from the definition of the function qS , so that (Mν,1S ) is satisfied. □

The next kernel identity (17) is the first key formula of this work. Recall that the residual
kernel R := P −ψ⊗ ν is a submarkov kernel, so that the n−th iterate kernel Rn of R defined
by induction using Formula (1) is a submarkov kernel too. Also recall that by convention
R0(x, ·) is the Dirac measure at x. Finally note that, for every k ≥ 1, we have ν Rk ∈ M+,b

(see (3)).
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Lemma 3.2 Let P satisfy Condition (Mν,ψ). Then we have

∀n ≥ 1, 0 ≤ Rn ≤ Pn, (16)

Pn = Rn +

n∑
k=1

Pn−kψ ⊗ νRk−1, (17)

and the kernel identity

+∞∑
n=0

Pn =

+∞∑
n=0

Rn +

( +∞∑
n=0

Pnψ

)
⊗
( +∞∑
k=0

νRk
)
. (18)

Proof. We have 0 ≤ R ≤ P , thus 0 ≤ Rn ≤ Pn using (6c). Set T0 := 0 and Tn := Pn − Rn

for n ≥ 1. Note that Property (17) is equivalent to

∀n ≥ 1, Tn =
n∑
k=1

Pn−kψ ⊗ νRk−1. (19)

Equality (19) is clear for n = 1 since T1 = P −R = ψ ⊗ ν. Next we have for any n ≥ 2

Rn = Rn−1R = (Pn−1 − Tn−1)(P − T1) = Pn − Pn−1T1 − Tn−1R,

so that Tn = Pn−1T1 + Tn−1R. Then (19) holds for n ≥ 2 by an easy induction based on the
previous equality for Tn: For instance use the functional action of kernels to check that, for
every g ∈ B, if Tn−1g =

∑n−1
k=1 ν(R

k−1g)Pn−1−kψ, then Tng =
∑n

k=1 ν(R
k−1g)Pn−kψ.

From (17) and the convention for P 0 = R0 we obtain that (see (7))

+∞∑
n=0

Pn =
+∞∑
n=0

Rn +
+∞∑
n=1

n∑
k=1

Pn−kψ ⊗ νRk−1 =
+∞∑
n=0

Rn +
+∞∑
k=1

+∞∑
n=k

Pn−kψ ⊗ νRk−1

=
+∞∑
n=0

Rn +

( +∞∑
n=0

Pnψ

)
⊗
( +∞∑
k=0

νRk
)

Thus (18) holds and the proof of Lemma 3.2 is complete. □

Under Condition (M ν,ψ), we have 0 ≤ R1X ≤ 1X. Since R is a non-negative kernel, we
get 0 ≤ Rn+11X ≤ Rn1X for any n ≥ 0. Thus the sequence (Rn1X)n≥0 is non-increasing so
that it converges point-wise. Consequently we can define the following measurable function
h∞

R : X→[0, 1]:
h∞

R := lim
n

↘ Rn1X. (20)

Note that h∞
R is R−harmonic: indeed, for every x ∈ X, we have (Rn+1h∞

R )(x) = (RRnh∞
R )(x),

so that h∞
R (x) = (Rh∞

R )(x) from Lebesgue’s theorem applied to the finite non-negative mea-
sure R(x, dy) observing that Rnh∞

R ≤ Rn1X ≤ 1X.

Under Condition (Mν,ψ) let µR denote the positive measure on (X,X ) (not necessarily
finite) defined by

µR :=
+∞∑
k=0

νRk. (21)

Note that the measure µR is positive from µR(1X) ≥ ν(1X) > 0. The measure µR as well as
the function h∞

R are used throughout this section.
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3.2 P−invariant measure

First prove the following simple lemma.

Lemma 3.3 Assume that P satisfies Conditions (M ν,ψ). Let g be a P−harmonic function.
Then we have

∀n ≥ 0, ν(g)
n∑
k=0

Rkψ = g −Rn+1g. (22)

In particular we have

∀n ≥ 0, 0 ≤ ν(1X)
n∑
k=0

Rkψ = 1X −Rn+11X ≤ 1X. (23)

Proof. Let g ∈ B be such that Pg = g. We have ν(g)ψ = (I − R)g from the definition (13)
of R. Then Property (22) follows from

∀n ≥ 0, ν(g)

n∑
k=0

Rkψ =

( n∑
k=0

Rk
)
(I −R)g =

n∑
k=0

Rkg −
n+1∑
k=1

Rkg = g −Rn+1g.

Since P1X = 1X, Property (22) with g := 1X is nothing else than (23). □

Recall that the positive measure ν in (Mν,ψ) is finite (i.e. ν(1X) <∞).

Proposition 3.4 Let P satisfy Condition (Mν,ψ). Then the function series
∑+∞

k=0R
kψ

point-wise converges and is bounded on X. More precisely we have

0 ≤ ν(1X)
+∞∑
k=0

Rkψ = 1X − h∞
R ≤ 1X. (24)

Moreover we have µR(ψ) =
∑+∞

k=0 ν(R
kψ) ∈ [0, 1], and the following equivalences hold

µR(ψ) = 1 ⇐⇒ ν(h∞
R ) = 0 ⇐⇒ µR(h

∞
R ) = 0. (25)

Note that the property µR(ψ) ≤ 1 implies that there exists A ∈ X ∗ such that µR(1A) <∞.

Proof. It follows from (23) that the series of non-negative functions
∑+∞

k=0R
kψ point-wise

converges. When n growths to +∞ in (23), we get the equality in (24) from the definition (20)
of h∞

R .

Next integrate w.r.t. the measure ν in (24) and apply the monotone convergence theorem to
get 0 ≤ ν(1X)µR(ψ) = ν(1X)− ν(h∞

R ) ≤ ν(1X). Since ν(1X) > 0, it follows that µR(ψ) ∈ [0, 1]
and the first equivalence in (25) holds. Since Rh∞

R = h∞
R , we have from (21) that ν(h∞

R ) = 0
implies that µR(h

∞
R ) = 0. Finally, we have µR(h

∞
R ) ≥ ν(h∞

R ) ≥ 0 from the definition (21) of
µR so that µR(h

∞
R ) = 0 implies that ν(h∞

R ) = 0. The proof of the second equivalence in (25)
is complete. □

Theorem 3.5 (P−invariant positive measure) Assume that P satisfies Condition (M ν,ψ).
Then the following assertions hold.

1. If µR(ψ) = 1 (or equivalently ν(h∞
R ) = 0), then µR is a P−invariant positive measure.
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2. If there exists ζ ∈ B∗
+ such that ν(ζ) > 0 and µR(Pζ) = µR(ζ) < ∞, then we have

µR(ψ) = 1.

In particular, if ν(ψ) > 0, then

µR is P−invariant ⇐⇒ µR(ψ) = 1 ⇐⇒ ν(h∞
R ) = 0 ⇐⇒ µR(h

∞
R ) = 0.

Recall that the condition ν(ψ) > 0 is the so-called strong aperiodicity property.

Proof. From the definitions (13) of R and (21) of µR, the following equalities hold in [0,+∞]:

∀A ∈ X , µR(P1A) = µR(R1A) + ν(1A)µR(ψ) = µR(1A) + ν(1A)
(
µR(ψ)− 1

)
since we have µR(R1A) = µR(1A) − ν(1A) in [0,+∞]. Consequently, if µR(ψ) = 1, then µR

is a P−invariant positive measure and Assertion 1. is proved. Next, if ζ ∈ B∗
+ satisfies the

assumptions in Assertion 2., then we deduce from µR(ζ) = µR(Pζ) = µR(ζ)+ν(ζ)
(
µR(ψ)−1

)
that µR(ψ) = 1. In the last assertion, that µR(ψ) = 1 implies the P−invariance of µR is just
Assertion 1. Next, if ν(ψ) > 0 and µR is P−invariant, then Assertion 2. can be applied to
ζ := ψ since we know that µR(ψ) <∞ from Proposition 3.4, so that we have µR(ψ) = 1. The
two last equivalences are (25). □

Theorem 3.6 (P−invariant probability measure) If P satisfies Condition (Mν,ψ), then
the following assertions are equivalent.

1. There exists a P−invariant probability measure η on (X,X ) such that η(ψ) > 0.

2. µR(1X) =
∑+∞

k=0 ν(R
k1X) <∞.

3. There exists a probability measure σ on (X,X ) such that lim inf
n→+∞

σ(Pnψ) > 0.

Under any of these three conditions, the following probability measure on (X,X )

πR := µR(1X)
−1 µR with µR :=

+∞∑
k=0

νRk ∈ M+
∗,b (26)

is P−invariant with µR(ψ) = 1 and πR(ψ) = µR(1X)
−1 > 0.

Proof. We prove the implications: 2. ⇒ 1. ⇒3. ⇒2. If Assertion 2. holds, then Assertion 2. of
Theorem 3.5 can be applied with ζ := 1X. Indeed, ν(1X) > 0 and µR(P1X) = µR(1X) < ∞
since P is Markov. Hence we have µR(ψ) = 1, so that µR is P−invariant from Assertion 1. of
Theorem 3.5. Thus πR := µR(1X)

−1 µR is a P−invariant probability measure such that
πR(ψ) = µR(1X)

−1 > 0. The implication 2. ⇒ 1. is proved. Next, if Assertion 1. is fulfilled,
then Assertion 3. obviously holds with σ := η. Finally assume that Assertion 3. holds. Then
apply Formula (17) to 1X and integrate w.r.t. the probability measure σ to get

∀n ≥ 1,
+∞∑
k=1

ν(Rk−11X)σn(k) ≤ σ(1X) = 1 with σn(k) := σ(Pn−kψ) 1[1,n](k)

from σ(Rn1X) ≥ 0. Since for every k ≥ 1 we have m := lim infj σ(P
jψ) = lim infn σn(k)

and m > 0 by hypothesis, we deduce from Fatou’s lemma w.r.t. discrete measure that
m
∑+∞

k=1 ν(R
k−11X) ≤ 1. Thus µR(1X) ≤ 1/m <∞, i.e. Assertion 2. holds true. □
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The following standard example of uniform ergodicity illustrates Theorem 3.6. More-
over, the well-known rate of convergence below of ∥Pn(x, ·) − πR(·)∥TV is obtained from
Formula (17).

Example 3.7 (Uniform ergodicity) Let P satisfy Condition (Mν,1X), that is there exists
ν ∈ M∗

+,b such that P ≥ 1X ⊗ ν. In other words the whole state space X is a first-order
small-set for P . Then Condition 2. of Theorem 3.6 holds and we have

∀n ≥ 1, ∀x ∈ X, ∥Pn(x, ·)− πR(·)∥TV ≤ 2(1− ν(1X))
n

where πR is the P−invariant probability measure given by (26). Indeed the residual kernel
R ≡ Rν,1X is here R = P − 1X ⊗ ν so that we have R1X = (1 − ν(1X))1X. Consequently we
obtain that

∀n ≥ 1, Rn1X = (1− ν(1X))
n1X.

Thus µR(1X) =
∑+∞

k=0 ν(R
k1X) = 1, and it follows from Theorem 3.6 that the probability

measure πR given in (26) is P−invariant (πR = µR here). Moreover Formula (17) gives

∀n ≥ 1, Pn = Rn + 1X ⊗ µn with µn :=
n∑
k=1

νRk−1.

Consequently we have

∀n ≥ 1, Pn − 1X ⊗ πR = Rn − 1X ⊗
+∞∑

k=n+1

νRk−1,

from which we derive that

∀n ≥ 1, ∀x ∈ X, ∥Pn(x, ·)− πR∥TV ≤ ∥Rn(x, ·)∥TV +

∥∥∥∥ +∞∑
k=n+1

νRk−1

∥∥∥∥
TV

= Rn(x, 1X) +
+∞∑

k=n+1

ν(Rk−11X)

= 2(1− ν(1X))
n.

3.3 Recurrence/Transience

If P satisfies Condition (Mν,ψ), then P is said to be recurrent if the following condition
holds:

∀A ∈ X : µR(1A) > 0 =⇒
+∞∑
k=0

P k1A = +∞ on X (i.e. ∀x ∈ X,
+∞∑
k=0

P k(x,A) = +∞), (27)

where µR is the positive measure on (X,X ) defined in (21). Note that if A ∈ X is such that
ν(1A) > 0 then µR(1A) > 0. Moreover observe that Equality (18) reads as

+∞∑
n=0

Pn =
+∞∑
n=0

Rn +

( +∞∑
n=0

Pnψ

)
⊗ µR. (28)
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This potential-type formula is here the key point to obtain the Recurrence/Transience di-
chotomy. It also shows that µR may be thought of as the ideal measure for studying this issue
under the minorization condition (Mν,ψ). To get a complete picture of recurrence/transience
property for P satisfying Condition (Mν,ψ) in the next statement, let us introduce the fol-
lowing definition. The Markov kernel P is said to be irreducible if

+∞∑
n=1

Pnψ > 0 on X, i.e. ∀x ∈ X, ∃q ≡ q(x) ≥ 1, (P qψ)(x) > 0. (29)

Recall that under (Mν,ψ), we have µR(ψ) ∈ [0, 1] from Proposition 3.4, and that µR is a
P−invariant positive measure when µR(ψ) = 1, or equivalently ν(h∞

R ) = 0 (see (25)), from
Theorem 3.5. Finally, recall that ∥ · ∥1X denotes the supremum norm on B (i.e. ∥g∥1X :=
supx∈X |g(x)|).

Theorem 3.8 Let P satisfy Condition (Mν,ψ). Then the following assertions hold.

1. Case µR(ψ) = 1 (or equivalently ν(h∞
R ) = 0). The Markov kernel P is recurrent if and

only if P is irreducible (see (29)). When P is recurrent, µR is the unique P−invariant
positive measure η (up to a multiplicative positive constant) such that η(ψ) < ∞, and µR

is σ−finite.

2. Case µR(ψ) < 1 (or equivalently ν(h∞
R ) > 0). The non-negative function series

∑+∞
k=0 P

kψ
is bounded from above by ν(h∞

R )−1 on X. If P is irreducible, then P is not recurrent, more
precisely P is said to be transient in the following sense: Defining for every integer k ≥ 1
the set Ak := {x ∈ X :

∑k
j=0(R

jψ)(x) ≥ 1/k} we have

X = ∪+∞
k=1Ak and ∀k ≥ 1, ck := ∥

+∞∑
n=0

Pn1Ak
∥1X <∞.

Actually we have: ∀k ≥ 1, ck ≤ k(k + 1)(ν(1X)
−1 + ν(h∞

R )−1).

When P is irreducible, we have the following characterization of recurrence.

Corollary 3.9 Assume that P satisfies Conditions (Mν,ψ) and is irreducible. Then

P is recurrent ⇐⇒ µR(ψ) = 1 ⇐⇒ ν(h∞
R ) = 0 ⇐⇒ µR(h

∞
R ) = 0.

Proof. Assume that µR(ψ) ∈ [0, 1). Then P is not recurrent from the second assertion of
Theorem 3.8. This proves the first direct implication. The converse one follows from the first
assertion of Theorem 3.8. The two last equivalences are (25). □

The proof of Theorem 3.8 is based on the the two following lemmas.

Lemma 3.10 Let P satisfy Condition (Mν,ψ). If P is irreducible then the following state-
ments hold:

1.
∑+∞

n=0R
nψ > 0 on X and µR(ψ) > 0.

2. If µR(ψ) = 1 (or equivalently ν(h∞
R ) = 0) then

∑+∞
n=0 P

nψ = +∞ on X.
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Proof. We prove Assertion 1. by contradiction. Assume that there exists x ∈ X such that∑+∞
n=0(R

nψ)(x) = 0. Then we have h∞
R (x) = 1 from (24). From the definition of h∞

R (x) and
Rn1X ≤ 1, it then follows that: ∀n ≥ 1, (Rn1X)(x) = 1. Hence we deduce from Formula (17)
and (Pn1X)(x) = 1 that

∀n ≥ 1,
n∑
k=1

(Pn−kψ)(x) ν(Rk−11X) = 0.

In particular the first term of this sum of non-negative real numbers is zero, that is we
have: ∀n ≥ 1, (Pn−1ψ)(x) ν(1X) = 0. Since P is irreducible (see (29)), we know that there
exists q ≡ q(x) ≥ 1 such that (P qψ)(x) > 0. Then the previous equality with n = q + 1
implies that ν(1X) = 0: Contradiction. This proves the first part of Assertion 1. Next,
since µR(ψ) =

∑+∞
n=0 ν(R

nψ) = ν(
∑+∞

n=0R
nψ) from monotone convergence theorem, we have

µR(ψ) > 0. Assertion 1. is proved. Next, if µR(ψ) = 1, then Equality (28) applied to ψ and
Assertion 1. imply that

∑+∞
n=0 P

nψ = +∞ on X. □

Lemma 3.11 Let P satisfy Condition (Mν,ψ) with µR(ψ) > 0. If P is recurrent, then∑+∞
k=0 P

kψ = +∞ on X.

Proof. Since µR(ψ) > 0, there exists ε > 0 such that the set Fε := {x ∈ X : ψ(x) ≥ ε}
satisfies µR(1Fε) > 0 (otherwise we would have µR({x ∈ X : ψ(x) > 0}) = 0, thus µR(ψ) = 0).
From recurrence and 1Fε ≤ ψ/ε, we obtain that

∑+∞
n=0 P

nψ = +∞ on X. □

Now, let us provide a proof of Theorem 3.8.

Proof of Theorem 3.8. Assume that µR(ψ) = 1. If P is irreducible, then
∑+∞

k=0 P
kψ = +∞ on

X from Assertion 2. of Lemma 3.10. It follows from (28) applied to 1A that
∑+∞

k=0 P
k1A = +∞

for every A ∈ X such that µR(1A) > 0, i.e. P is recurrent. Conversely, if P is recurrent, then
it follows from µR(ψ) = 1 and Lemma 3.11 that

∑+∞
n=0 P

nψ = +∞ on X. Thus P satisfies
(29), i.e. P is irreducible. Now assume that P is recurrent, thus irreducible. Let η be a
P−invariant positive measure on (X,X ) such that η(ψ) <∞. Then η is σ−finite due to the
following well-known argument. Let Q :=

∑+∞
n=0 2

−(n+1)Pn be the Markov resolvent kernel
associated with P . Then Qψ > 0 on X from (29). Hence we have X = {Qψ > 0} = ∪k≥1Ek
with Ek := {Qψ ≥ 1/k}, and η(1Ek

) ≤ k η(Qψ) = k η(ψ) < ∞ from Markov’s inequality.
Thus η is σ−finite. Next prove by contradiction that η(ψ) > 0. Assume that η(ψ) = 0. Then
we obtain that η(1Ek

) = 0 for any k ≥ 1 from the last inequality above, so that η(1X) = 0
since X = ∪k≥1Ek: This is impossible since η is a positive measure on (X,X ). Now recall that
µR is P−invariant under the assumption µR(ψ) = 1 due to Theorem 3.5, and prove that η =
η(ψ)µR. From (17) and the P−invariance of η we obtain that: ∀n ≥ 1, η ≥ η(ψ)

∑n
k=1 νR

k−1.
Thus η ≥ η(ψ)µR from the definition (21) of µR. Next, since both η and µR are σ−finite
from the above, it follows from the Radon-Nikodym theorem that there exists a measurable
function v on X such that η(ψ)µR = v · η with 0 ≤ v ≤ 1X η−a.e.. Let λ be the non-negative
measure on (X,X ) defined by: λ := (1X − v) · η. Since η(Qψ) = η(ψ) < ∞ by hypothesis
with Q defined above, we obtain that the function v × (Qψ) is η−integrable too, so that

λ(Qψ) =

∫
X
(Qψ)(x) η(dx)−

∫
X
(Qψ)(x) v(x) η(dx) = η(Qψ)− η(ψ)µR(Qψ) = 0

from the P−invariance of both η and µR and from the assumption µR(ψ) = 1. It follows that
λ = 0 since Qψ > 0 on X. Thus we have v = 1X η−a.e., so that η(ψ)µR = η. Assertion 1. of
Theorem 3.8 is proved.
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Now assume that µR(ψ) < 1. Thus we have ν(h∞
R ) > 0 from (25). Recall that Rh∞

R = h∞
R .

Then, Formula (17) applied to h∞
R and the equality Rh∞

R = h∞
R give

∀n ≥ 1, Pnh∞
R = h∞

R + ν(h∞
R )

n−1∑
k=0

P kψ,

from which we deduce that: ∀n ≥ 1,
∑n−1

k=0 P
kψ ≤ ν(h∞

R )−11X since h∞
R ≥ 0 and Pnh∞

R ≤ 1X
from h∞

R ≤ 1X. Consequently we have the following inequality on X:

0 ≤
+∞∑
k=0

P kψ ≤ ν(h∞
R )−11X.

Now assume that P is irreducible. Recall that µR(ψ) > 0 from Lemma 3.10. Thus, as
in the proof of Lemma 3.11, there exists ε > 0 and a set Fε such that µR(1Fε) > 0 and
1Fε ≤ ψ/ε. We deduce that

∑+∞
n=0 P

n1Fε is bounded on X. Consequently P is not recurrent.
Next let us prove that P is transient as defined in Theorem 3.8. We have X = ∪+∞

k=1Ak.

Indeed, otherwise there would exist x ∈ X such that: ∀k ≥ 1,
∑k

j=0(R
jψ)(x) < 1/k, so

that
∑+∞

j=0(R
jψ)(x) = 0: This contradicts Lemma 3.10. Finally let k ≥ 1. Observing that

1Ak
≤ k

∑k
j=0R

jψ, we obtain that (see (7))

+∞∑
n=0

Rn1Ak
≤ k

+∞∑
n=0

Rn
( k∑
j=0

Rjψ

)
= k

k∑
j=0

Rj
( +∞∑
n=0

Rnψ

)

≤ k ν(1X)
−1

k∑
j=0

Rj1X ≤ k(k + 1)ν(1X)
−11X (using (24) and R1X ≤ 1X).

Moreover, integrating the previous inequality w.r.t the positive measure ν, it follows from the
monotone convergence theorem that µR(1Ak

) ≤ k(k+1). Then the last inequalities combined
with Formula (28) applied to 1Ak

provide

+∞∑
n=0

Pn1Ak
≤ k(k + 1)

[
ν(1X)

−1 + ν(h∞
R )−1

]
1X.

The proof of Theorem 3.8 is complete. □

Recall that P is irreducible (see (29)) if, and only if, the function series
∑+∞

k=0 P
kψ takes

its values in (0,+∞]. Thus, when P is irreducible, the recurrence/transience dichotomy can
also be addressed focusing solely on this function series.

Corollary 3.12 Assume that P satisfies Condition (Mν,ψ) and is irreducible. Then the
following alternative holds:

1. There exists some x ∈ X such that
∑+∞

k=0(P
kψ)(x) = +∞: In this case P is recurrent, and

µR is the unique P−invariant positive measure η (up to a multiplicative positive constant)
such that η(ψ) <∞. Moreover we actually have

∑+∞
k=0 P

kψ = +∞ on X. This corresponds
to the case µR(ψ) = 1 of Theorem 3.8.
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2. There exists x ∈ X such that
∑+∞

k=0(P
kψ)(x) <∞: In this case the non-negative function

series
∑+∞

k=0 P
kψ is bounded from above on X, and P is transient in the sense given in

Assertion 2. of Theorem 3.8.

Proof. Recall that µR(ψ) ∈ (0, 1] from Proposition 3.4 and Lemma 3.10. In Case 1., the
function series

∑+∞
k=0 P

kψ is not bounded on X, so that P satisfies Case 1. of Theorem 3.8.
It follows from Lemma 3.11 that

∑+∞
k=0 P

kψ = +∞ on X. In Case 2., P is not recurrent from
Lemma 3.11, so that Case 2. of Theorem 3.8 applies. □

When the positive measure µR is finite (i.e. µR(1X) < ∞), then we have µR(ψ) = 1 from
Theorem 3.6. Moreover any P−invariant probability measure π is such that π(ψ) <∞ since
ψ is bounded. Therefore, the following statement is a direct consequence of Assertion 1. of
Theorem 3.8.

Corollary 3.13 Assume that P satisfies Condition (Mν,ψ) with µR(1X) < ∞ and is irre-
ducible. Then P is recurrent, and the probability measure πR given in (26) is the unique
P−invariant probability measure.

In conclusion, we can now present a statement synthesizing the results of Theorem 3.6 and
Corollary 3.13. It provides a classical recurrence criterion that involves neither the positive
measure µR nor the function h∞

R . To this end, recall that, depending on the nature of the state
space X and the particular form of the Markov kernel P , many classical results guarantee
the existence of a P−invariant probability measure (see Subsection 3.5). This is even the
starting point in Markov chain Monte Carlo algorithms. Formula (17) again plays a crucial
role in the proof of the following theorem.

Theorem 3.14 Assume that P satisfies Condition (Mν,ψ) and is irreducible. If P admits
an invariant probability measure η, then η(ψ) > 0. Moreover η is the unique P− invariant
probability measure, it is equal to πR given in (26), and P is recurrent.

Proof. Let η be a P−invariant probability measure. If η(ψ) = 0 then for every n ≥ 1 we
have η(Rn1X) = 1 using (17) applied to 1X and integrating w.r.t. the P−invariant probability
measure η. Hence it follows from Lebesgue’s theorem w.r.t. η that η(h∞

R ) = 1 with h∞
R given

in (20). Thus η(h∞
R ) = η(1X), from which we deduce that h∞

R = 1X η−a.s. since h∞
R ≤ 1X.

Hence there exists x ∈ X such that h∞
R (x) = 1. This provides

∑+∞
k=0(R

kψ)(x) = 0 from
(24), which contradicts Assertion 1. of Lemma 3.10. We have proved that η(ψ) > 0, so that
µR(1X) < ∞ from Theorem 3.6. Then the recurrence of P and Equality η = πR follow from
Corollary 3.13. □

3.4 Further statements

The first proposition concerns the P−absorbing sets and is used in the next section, as well
as in the proof of Propositions 5.11 and 5.12 related to discussion on drift conditions. The
second one concerns the condition µR(1A) > 0 and is used in the bibliographic discussions of
Subsection 3.5. The last proposition facilitates the transition to the next section, where the
central assumption is h∞

R = 0.

Proposition 3.15 If P satisfies Condition (Mν,ψ) and is irreducible, then every non-empty
P−absorbing set is µR−full.
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Proof. Let B ∈ X ∗ be a P−absorbing set, i.e.: ∀n ≥ 1, ∀x ∈ B, Pn(x,Bc) = 0. Let x ∈ B.
Then it follows from (28) applied to 1Bc and from P 0(x,Bc) = R0(x,Bc) that µR(1Bc) = 0
since

∑+∞
n=0(P

nψ)(x) > 0 from the irreducibility condition (29). □

Proposition 3.16 Let P satisfy Condition (Mν,ψ). Then we have

∀A ∈ X : µR(1A) = 0 =⇒
+∞∑
n=0

Pn1A = 0 ν−a.s. on X. (30)

Moreover the Markov kernel P is irreducible (see (29)) if, and only if, µR(ψ) > 0 and

∀A ∈ X : µR(1A) > 0 =⇒
+∞∑
n=1

Pn1A > 0 on X. (31)

From this proposition, it follows that, if P satisfies Condition (Mν,ψ) and is irreducible, then
the following property holds

∀A ∈ X : µR(1A) > 0 ⇐⇒
+∞∑
n=1

Pn1A > 0 on X. (32)

Proof. Let A ∈ X be such that µR(1A) = 0, i.e. ν(Rk1A) = 0 for any k ≥ 0 from the definition
of µR. From (17) we have: ∀n ≥ 0, Pn1A = Rn1A. Thus

ν
( +∞∑
n=0

Pn1A
)
= µR(1A) = 0

from the monotone convergence theorem and the definition of µR. This proves (30). Now
assume that P is irreducible (see (29)). Then we have µR(ψ) > 0 from Lemma 3.10. Moreover
Equality (28) reads also as

∑+∞
n=1 P

n =
∑+∞

n=1R
n+

(∑+∞
n=0 P

nψ
)
⊗µR since P 0 = R0. Thus,

we have

∀A ∈ X , ∀x ∈ X,
+∞∑
n=1

Pn(x,A) ≥ µR(1A)
+∞∑
n=0

(Pnψ)(x),

from which we deduce that (31) holds true. Conversely assume that µR(ψ) > 0 and Condi-
tion (31) is satisfied. Since there exists ε > 0 such that µR(1{ψ≥ε}) > 0 from µR(ψ) > 0, it

follows from (31) that
∑+∞

n=1 P
nψ ≥ ε

∑+∞
n=1 P

n1{ψ≥ε} > 0 on X, i.e. (29) holds. □

The main assumption in the next Section 4 is h∞
R = 0, which obviously implies that

each of the equivalent conditions in (25) holds. Simple arguments can be used for specific
Markov models to check Condition h∞

R = 0. This is illustrated in the following proposition
for discrete state space case. Recall that in this case the minorization Condition (Mν,ψ) is
natural considering each state s ∈ X as an atom: ψ := 1S with S := {s} and ν := P (s, ·).
Another simple illustration of Property h∞

R = 0 is given in Subsection 10.2.1 for random walk
Metropolis-Hastings Markov kernels on a non-discrete state space X.

Proposition 3.17 Let P be a Markov kernel on a discrete state space X. If P admits a
unique invariant probability measure π which is positive on X (i.e. ∀x ∈ X, π(1{x}) > 0),
then the function h∞

R in (20) is zero on X, whatever the minorization Condition (M ν,ψ)
considered for P .

22



Proof. From Condition (Mν,ψ) and Theorem 3.6 we deduce that µR(ψ) = 1 since π(ψ) > 0
using the positivity of π. Thus µR(h

∞
R ) = 0 from (25). Since π = µR(1X)

−1µR (i.e. π = πR)
from Theorem 3.6 and uniqueness of π, we have π(h∞

R ) = 0, so that h∞
R = 0 using again the

positivity of π. □

3.5 Further comments and bibliographic discussion

Here we discuss point by point the definitions and results concerning the classical concepts
of this section, i.e. irreducibility, recurrence/transience properties and invariant measures, in
link with the books [Num84, MT09, DMPS18]. A detailed historical background on these
properties can be found in [Num84, pp. 141-144], [MT09, Sec. 4.5, 8.6,10.6] and [DMPS18,
Sec. 9.6,10.4,11.6]. In discrete state space, we refer for example to [Nor97, Bré99, Gra14] (see
also [Mey08, App. A] for an overview on Markov chains in modern terms).

A) Small-set and small-functions. Let ℓ ≥ 1. Recall that a set Sℓ ∈ X ∗ is said to be a
ℓ−order small-set for P in the standard literature on the topic of Markov chains (e.g. see
[Num84, MT09, DMPS18]), if the following condition holds

∃νℓ ∈ M∗
+,b : P ℓ ≥ 1Sℓ

⊗ νℓ (i.e. ∀x ∈ X, P ℓ(x, dy) ≥ 1Sℓ
(x) νℓ(dy)). (33)

The existence of small-sets under the irreducibility condition (see Item C)) was proved in
[JJ67]. The extension to ℓ−order small-functions writes as (see [Num84, Def. 2.3, p. 15])

∃(νℓ, ψℓ) ∈ M∗
+,b × B+

∗ : P ℓ ≥ ψℓ ⊗ νℓ (i.e. ∀x ∈ X, P ℓ(x, dy) ≥ ψℓ(x) νℓ(dy)). (34)

Our minorization condition (Mν,ψ) is nothing other than [Num84, Def. 2.3] with order
one. Finally recall that S ∈ X ∗ is said to be petite (e.g. see [MT92]) if it is a small-
set of order one for the Markov resolvent kernel

∑+∞
n=0 anP

n for some (an)n ∈ [0,+∞)N

such that
∑+∞

n=0 an = 1. The notion of petite sets is not used in this work. The specific
resolvent kernel

∑+∞
n=0 2

−(n+1)Pn is only used to prove that µR is σ−finite in Assertion 1.
of Theorem 3.8 and in Corollary 4.20 to provide a sufficient condition for having h∞

R = 0.

B) Residual kernels and invariant measure. The representation (21) of P−invariant measure
via the residual kernel was introduced in [Num78, Th. 3] under the Harris recurrence
condition and extended to the recurrent case in [Num84, Th. 5.2, Cor. 5.2], so that
the positive measure µR necessarily satisfies µR(ψ) = 1 there. The P−invariance of
µR under the sole Condition (Mν,ψ) was proved in [HL23a] in the specific case when
µR(1X) <∞: This corresponds to Theorem 3.6. This result is extended to the general case
in Theorem 3.5, that is: under the sole minorization Condition (Mν,ψ), the P−invariance
of µR is actually guaranteed when µR(ψ) = 1, and is even equivalent to this condition
under the additional strong aperiodicity assumption ν(ψ) > 0. Consequently, contrary
to the statement [Num84, Th. 5.2, Cor. 5.2, p. 73-74], the P−invariance of µR is here
related directly to the condition µR(ψ) = 1, which makes it possible to carry out this study
independently of the recurrence property, and even independently of any irreducibility
condition on P . Recall that the key point in the proof of Theorem 3.5 is the kernel
identity (17).

C) Accessibility and irreducibility conditions. Recall that if P satisfies Condition (Mν,1S )
then the set S is said to be a first-order small set. Let us comment Condition (29)
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in case ψ := 1S . This condition then means that the set S is accessible according to
[DMPS18, Def. 3.5.1, Lem. 3.5.2]. On the other hand recall that a Markov kernel P
is said to be irreducible according to [DMPS18, Def. 9.2.1] if it admits an accessible
small set. Thus our definition (29) of irreducibility for a Markov kernel P satisfying
Condition (M ν,1S ) coincides with that of [DMPS18] in case of a first-order small set.
Now, thanks to Proposition 3.16, let us recall the link with the irreducibility notion
used in [Num84, MT09]. First, in connection with the condition µR(1S) = 0 which is
not addressed in Proposition 3.16, observe that this condition implies the transience of
P from Theorem 3.8. Moreover this condition cannot hold under Condition (29) from
Assertion 1. of Lemma 3.10. Finally, nor can this condition be satisfied under the strong
aperiodicity condition ν(1S) > 0 since µR ≥ ν. Thus the discussion may be conducted
assuming that P satisfies Condition (Mν,1S ) with µR(1S) > 0 (i.e. ∃k ≥ 0, ν(Rk1S) ̸= 0).
Then it follows from Proposition 3.16 that our definition of P irreducible (see (29))
is equivalent to the µR−irreducibility of P as defined in [Num84, p. 11] and [MT09,
p. 82], that is (31). Finally, if P satisfies Condition (M ν,1S ) and is irreducible (see (29)),
then Equivalence (32) reads as follows for every A ∈ X : A is accessible if, and only if,
µR(1A) > 0.

D) Maximal irreducibility measures. Although the notion of maximal irreducibility measures
is not explicitly addressed in this work, it has to be discussed since it plays an important
role in [Num84, MT09, DMPS18]. First note that, if P satisfies Conditions (Mν,1S )
and (29), then µR is an irreducibility measure using the classical terminology in [MT09,
DMPS18] (see Item C)). Actually, from the above remark on accessible sets, µR is a
maximal irreducibility measure according to the definition [DMPS18, Def. 9.2.2], that is:
Every accessible set A ∈ X is such that µR(1A) > 0. Of course Conditions (Mν,1S ) and
(29) also ensure that the minorizing measure ν is an irreducibility measure since ν(1A) > 0
implies that µR(1A) > 0. However ν is not maximal a priori. As is well known, any
irreducibility measure η is absolutely continuous w.r.t. the maximal irreducibility measure
µR. Indeed the condition η(1A) > 0 implies that

∑+∞
n=1 P

n1A > 0 on X from the definition
of η−irreducibility, so that µR(1A) > 0 from (32) (thus: µR(1A) = 0 ⇒ η(1A) = 0).

E) Recurrence/transience and uniqueness of invariant measure in recurrence case. Our def-
inition (27) of recurrence corresponds to that in [Num84, pp. 27-28] and [MT09, p. 180]
with µR as maximal irreducibility measure. From the discussion in Item C), this also
corresponds to the recurrence definition [DMPS18, Def. 10.1.1]. The transience prop-
erty used in Theorem 3.8 is that provided in [MT09, p. 171 and 180] and [DMPS18,
Def. 10.1.3]. The Recurrence/Transience dichotomy stated in Theorem 3.8 is a well-
known result for irreducible Markov chains, e.g. see [Num84, Th. 3.2, p. 28], [MT09,
Th. 8.0.1] and [DMPS18, Th. 10.1.5]. The novelty in Theorem 3.8 is that this dichotomy
can be simply declined according to whether µR(ψ) = 1 or µR(ψ) ∈ [0, 1) under the
minorization condition (M ν,ψ). Under the minorization condition (Mν,ψ) and the irre-
ducibility assumption, the equivalence between recurrence and Condition µR(ψ) = 1 (or
ν(h∞

R ) = 0) was already highlighted in [Rio00, Prop. 9.2].

As indicated in Item B), the existence of P−invariant positive measures is obtained in our
work under the minorization Condition (M ν,ψ) and independently of any irreducibility
condition on P (Theorem 3.5). Existence of P−invariant positive measures is classically
proved under the recurrence assumption. In fact this is usually done together with the
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uniqueness issue. Under the recurrence assumption the existence and uniqueness (up
to a positive multiplicative constant) of a P−invariant positive measure is obtained in
[Num84, Th. 5.2, Cor. 5.2, p. 73-74] using the representation (21). This result is proved
in [MT09, Th. 10.4.9] and [DMPS18, Th. 11.2.5] via splitting techniques, providing the
classical regeneration-type representation of P−invariant positive measures.

Note that Theorem 3.14 does not extend to infinite invariant measures, as illustrated in
[DMPS18, Ex. 9.2.17] where the irreducible Markov kernel of a random walk on X := Z
(the set of integers) is shown to admit at least two infinite and not proportional invariant
positive measures. Such a Markov kernel is transient: Otherwise, Case 1 of Theorem 3.8
would apply, and irreducibility property would imply uniqueness for invariant measures
(up to a multiplicative positive constant).

F) On Condition 3. of Theorem 3.6. Under Condition (Mν,ψ) the following equivalence
is proved in Theorem 3.6: There exists a P−invariant probability measure η such that
η(ψ) > 0 if, and only if, lim infn σ(P

nψ) > 0 for some probability measure σ. To the
best of our knowledge, this result is new. Similar but stronger conditions were intro-
duced in [Sza03, Th. 2.1] under further topological assumptions on X and P , also see
[MS04, Hor04]. In [HLL03, Th. 10.5.1] the condition lim infn(P

nf0)(x) > 0 for some
x ∈ X and function f0 : X→(0,+∞) is prove to be a necessary and sufficient condition
for the existence of an invariant probability measure: There, P is a weak-feller Markov
kernel on a locally compact separable space X, and the function f0 is not a small-function
but some strictly positive continuous function vanishing at infinity. Note that the con-
dition lim infn σ(P

nψ) > 0 implies that
∑

n≥0 σ(P
nψ) = +∞, so that the series function∑

n≥0 P
nψ cannot be bounded. This brings us back to the well-known fact that the ex-

istence of a P−invariant probability measure implies recurrence. In case ψ := 1S , i.e. P
satisfies (Mν,1S ), Condition 3. of Theorem 3.6 is equivalent to the existence of a proba-
bility measure σ such that lim supn σ(P

n1Sc) < 1. From Markov’s inequality it can be
easily checked that this condition holds if M := supn≥1 σ(P

nW ) < ∞ for some measur-
able function W : X→[0,+∞) and if there exists some a > M such that Sa := {W ≤ a}
is a first-order small-set for P . When X is a separable metric space, recall that the con-
dition supn≥1 σ(P

nW ) < ∞ for some probability measure σ, or refinements with σ = δx
for some x ∈ X as lim infk(P

kW )(x) < ∞ in [MT09, Th. 12.1.3], are classically used to
obtain the tightness of the family (σn)n≥1 of probability measures defined by

∀n ≥ 1, ∀A ∈ X , σn(1A) :=

n−1∑
k=0

σ(P k1A),

and then to extract a subsequence (σnk
)k≥1 weakly converging to some probability mea-

sure σ∞. Further topological assumptions on P , as Feller property, are however necessary
to conclude that σ∞ is P−invariant, e.g. see [MT09, DMPS18, Chap. 12]. Refinements
on this topic can be found in [HLL95], where a necessary and sufficient condition of ex-
istence of an invariant probability measure for weak Feller Markov kernels is provided,
and similarly in [HLL96] concerning the existence of a bounded invariant probability
density function. In Theorem 3.6 the minorization condition (Mν,ψ) is assumed, but no
topological conditions on X and P are required.

G) Strong aperiodicity condition ν(ψ) > 0. This condition is a particular case of the aperi-
odicity condition introduced in Subsection 4.3.
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H) The splitting construction. To conclude this bibliographic discussion, it is worth re-
membering that the concept of small-set has a natural and crucial probabilistic inter-
est in splitting or coupling techniques: This is the thread and backbone of the books
[Num84, MT09, DMPS18]. Here this probabilistic aspect is not addressed. More pre-
cisely, the minorization condition (Mν,ψ) allows us to write the Markov kernel P as the
sum of two non-negative kernels: the residual kernel R := P − ψ ⊗ ν and the rank-one
kernel ψ⊗ν. That R is non-negative is the crucial point to define all the quantities related
to R in this section, especially the positive measure µR (see (21)) and the function h∞R
(see (20)). Actually one of the key points of the present section and of the next ones is
the kernel identity (17). This formula is already present in Nummelin’s book [Num84,
Eq. (4.12)]. It seems that the sole way to obtain a probabilistic sense of this formula is to
use the split Markov chain introduced in [Num78] and [AN78]. The idea is to introduce
an appropriate enlargement of the state space of the original Markov chain in order to
obtain a new Markov chain - the split chain - which has an atom. Then most of state-
ments on the original chain are derived from applying results (obtained for example by
the regeneration method) on atomic chains to this split chain. Thus, using the splitting
construction requires switching from the original chain to the split chain for assump-
tions, and vice versa for results. The enlargement of the state space consists roughly in
tagging the transitions of the original chain according to the occurrence of a ψ−based
tossing coin in order to reflect the decomposition R + ψ ⊗ ν of P in two submarkovian
kernels. We refer to [Num84, Sec. 4.4], [CMR05, Sec. 14.2], [MT09, Chap. 5] for details.
See also [Num02] for a readable survey on this topic in the case of Markov chain Monte
Carlo (MCMC) kernels. Finally mention the recent work [DG15] (also see [DMPS18,
Chap. 23]), where the splitting construction is used to obtain subgaussian concentration
inequalities for geometrically ergodic Markov chains. Here, the kernel-based point of view
allows us to study the general Markov chains in a single step. There is no need to resort
to an intermediate class of Markov chains, e.g. atomic chains, before dealing with the
general case via what may appear to be a technical device, e.g. the split chain. To turn
back to our key formula (17), [Num84, Eq. (4.24)] provides a probabilistic interpretation
from the splitting construction. What is new here is that we are exploiting Formula (17)
solely as a kernel identity, from which we derive in particular Equality (28) which is the
key potential-type formula in this section. The price to pay for this presentation is that
we only consider Markov kernels satisfying a first-order minorization condition.

Appendix A gives the probabilistic interpretation of the main quantities used in this
document. This should facilitate the comparative reading with the statements in reference
probabilistic works as [Num84, MT09, DMPS18]. And, as for formula (17), all these
probabilistic formulas are obtained from the split chain.

To conclude this section, recall that all the results of this work can be translated or
combined in order to obtain probabilistic statements on Markov chains. As an instance,
observing that Condition (M ν,ψ) with ψ := 1S and the irreducibility condition (29) read
as (∗) below, Theorem 3.14 provides the following statement:

Theorem A. Let (Xn)n≥0 be a Markov chain on (X,X ). Assume that there exist a non-
empty set S ∈ X and a finite positive measure ν on (X,X ) such that

∀x ∈ S, Px(X1 ∈ A) ≥ ν(1A) and ∀x ∈ X, ∃n ≥ 1, Px(Xn ∈ S) > 0. (∗)

If (Xn)n≥0 admits a stationary distribution π, then it is the unique one, and the following
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recurrence property holds: for every set A ∈ X with π−positive measure, the total number of
visits to A, NA =

∑+∞
k=0 1A(Xk), is a random variable with infinite expected value, i.e.:

π(1A) > 0 =⇒ Ex[NA] = +∞.

4 Harris recurrence and convergence of the iterates

Assume that the Markov kernel P satisfies the first-order minorization condition (Mν,ψ)
and recall that h∞

R := limnR
n1X (point-wise convergence, see (20)), where R ≡ Rν,ψ is the

residual kernel given in (13). Condition h∞
R = 0, which is stronger than ν(h∞

R ) = 0 (see
(25)), is central throughout this section. Under this condition, the results of the previous
section are revisited in Theorem 4.1 below with an additional result on the P−harmonic
functions. Next, the Markov kernel P is shown to be Harris-recurrent, and the convergence
in total variation norm of the iterates of P to its unique invariant probability measure is
obtained when µR(1X) < ∞ and P satisfies an aperiodicity condition. Still under condition
µR(1X) <∞ the periodic case is addressed in Subsection 4.4. If Condition h∞

R = 0 is dropped,
then all these results remain true for the restriction of P to the set H := {h∞

R = 0}: This
is relevant because this set is proved to be µR−full and P−absorbing in Lemma 4.6. Thus,
for the above-mentioned statements to hold on the whole state space X, Condition h∞

R = 0
is indeed required. Introducing a drift inequality on P , a sufficient condition for h∞

R = 0 is
presented in Subsection 4.5. For specific Markov models, simpler arguments can be used to
check the condition h∞

R = 0, as illustrated in Proposition 3.17 in discrete state space case
and in Subsection 10.2 in the context of Markov chain Monte Carlo methods. Finally recall
that the condition µR(1X) < ∞, which is required in the convergence results of this section,
is satisfied if, and only if, there exists a P−invariant probability measure w.r.t. which the
small function ψ has a positive integral (see Theorem 3.6).

4.1 Preliminaries on Condition h∞
R = 0

Theorem 4.1 Let P satisfy Condition (Mν,ψ). If h
∞
R = 0, then the following assertions hold.

1. The P−harmonic functions are constant on X.

2. P is irreducible and recurrent.

3. The positive measure µR :=
∑+∞

k=0 νR
k (see (21)) satisfies µR(ψ) = 1, and is the unique

P−invariant positive measure η (up to a multiplicative constant) such that η(ψ) < ∞.
If µR(1X) < ∞, then πR := µR(1X)

−1µR (see (26)) is the unique P−invariant probability
measure on (X,X ).

From Theorem 4.1 it can be seen that Condition h∞
R = 0 provides relevant properties on

the Markov kernel P . The converse holds too. Indeed, if P satisfies Condition (Mν,ψ) with
µR(1X) < ∞ and if limn P

nψ = πR(ψ) (point-wise convergence), then h∞
R = 0. This directly

follows from Formula (17) applied to the function 1X, using Lebesgue’s theorem for discrete
measure and finally formula πR(ψ)µR(1X) = 1 derived from Theorem 3.6. This is implemented
in Corollary 4.8.
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Proof. It follows from (24) and h∞
R = 0 that

+∞∑
k=0

Rkψ = ν(1X)
−11X. (35)

Let g ∈ B be such that Pg = g. Recall that, for every n ≥ 0, we have ν(g)
∑n

k=0R
kψ =

g−Rn+1g from (22). Moreover we have limnR
ng = 0 (point-wise convergence) since |Rng| ≤

Rn|g| ≤ ∥g∥1XRn1X and h∞
R = 0. Thus g = ν(g)

∑+∞
k=0R

kψ. We have proved that g is
proportional to 1X. This proves Assertion 1.

For Assertion 2., apply the kernel identity (28) to ψ to get

+∞∑
n=0

Pnψ =
+∞∑
n=0

Rnψ + µR(ψ)
+∞∑
n=0

Pnψ.

We have µR(ψ) = 1 since h∞
R = 0 (see (25)). Then, we deduce from (35) and the previous

equality that
∑+∞

k=0 P
kψ = +∞. Thus the irreducibility property (29) holds, as well as the

recurrence property from Theorem 3.8.

The first part of Assertion 3. is a direct consequence of Assertion 1. of Theorem 3.8 using
that ν(h∞

R ) = 0 (i.e. µR(ψ) = 1) and that P is recurrent. The second part of Assertion 3. is
Corollary 3.13. The proof of Theorem 4.1 is complete. □

To conclude this preliminary discussion about Condition h∞
R = 0, let us present some

properties on the restriction of the function h∞
R to a P−absorbing set. The notations con-

cerning restriction to a set E ∈ X of functions, measures ans kernels are provided in Section 2.
Lemma 4.2 is repeatedly used in this section.

Lemma 4.2 Assume that P satisfies Condition (Mν,ψ) with µR(ψ) > 0, where R is the
residual kernel given in (13). Let E ∈ X be any µR−full P−absorbing set. Then the Markov
kernel PE on (E,XE) satisfies Condition (MνE ,ψE

). Moreover the associated residual kernel
PE − ψE ⊗ νE is the restriction RE to E of R, and the following equalities hold

∀x ∈ E, h∞RE
(x) := lim

n
Rn
E(x,E) = h∞

R (x) and ∀n ≥ 0, νE(R
n
EψE) = ν(Rnψ).

Proof. Since µR(ψ) > 0 and E is µR−full, we have µR(1Eψ) = µR(ψ) > 0, thus ψE is
non-zero. Moreover we have ν(1E) = ν(1X) > 0 since µR(1Ec) = 0 implies that ν(1Ec) = 0
from the definition of µR. Then Condition (MνE ,ψE

) for the Markov kernel PE on (E,XE)
is deduced from the minorization condition (Mν,ψ) for P since for every A′ ∈ XE and any
A ∈ X such that A′ = A ∩ E we have

∀x ∈ E, PE(x,A
′) = P (x,A ∩ E) ≥ ν(A ∩ E)ψ(x) = νE(A

′)ψE(x).

That PE − ψE ⊗ νE is the restriction of R to the set E is obvious. It follows that

∀x ∈ E, ∀n ≥ 1, Rn
E(x,E) = Rn(x,E) = Rn(x,X)

since Rn(x,Ec) = 0 from 0 ≤ Rn(x,Ec) ≤ Pn(x,Ec) = 0. Consequently we have for every
x ∈ E: limnR

n
E(x,E) = h∞

R (x). Finally we have: ∀n ≥ 0,∀x ∈ E, (RnEψE)(x) = (Rnψ)(x).
Thus νE(R

n
EψE) = ν(Rnψ) since ν(1Ec) = 0. □
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4.2 Harris-recurrence

Let us present a first application of Theorem 4.1 to the so-called Harris-recurrence property.
Let (Xn)n≥0 be a Markov chain with transition kernel P . If P satisfies Condition (Mν,ψ)
and if h∞

R = 0, we know that P is recurrent from Theorem 4.1, that is (see (27))

∀A ∈ X : µR(1A) > 0 =⇒ ∀x ∈ X, Ex
[ +∞∑
k=0

1{Xk∈A}

]
= +∞.

This recurrence property for P is proved below to be reinforced in

∀A ∈ X : µR(1A) > 0 =⇒ ∀x ∈ X, Px
{ +∞∑
n=1

1{Xn∈A} = +∞
}

= 1. (36)

Such a transition kernel P is said to be Harris-recurrent.

Theorem 4.3 Let P satisfy Conditions (Mν,ψ) and h∞
R = 0. Then the Markov chain

(Xn)n≥0 with transition kernel P is Harris-recurrent.

First prove the following lemma.

Lemma 4.4 Let P satisfy Conditions (Mν,ψ) and µR(ψ) = 1. If g ∈ B is such that Pg ≤ g,
then the non-negative function g − Pg is µR-integrable and we have µR(g − Pg) = 0.

Lemma 4.4, which is used below in the proof of Theorem 4.3, has its own interest. Indeed,
from the P−invariance of µR the conclusion of Lemma 4.4 is straightforward under the
assumption µR(1X) < ∞ since, for every g ∈ B, the functions g and Pg are µR-integrable
and µR(Pg) = µR(g). However, if µR is not finite, the conclusion of Lemma 4.4 is no longer
obvious.

Proof of Lemma 4.4. For every n ≥ 1, it follows from Pg = Rg + ν(g)ψ that

n∑
k=0

ν
(
Rk(g − Pg)

)
=

n∑
k=0

ν(Rkg)−
n∑
k=0

ν(Rk+1g)− ν(g)
n∑
k=0

ν(Rkψ)

= ν(g)

(
1−

n∑
k=0

ν(Rkψ)

)
− ν(Rn+1g) (37)

≤ 2∥g∥1Xν(1X) <∞

using 0 ≤
∑n

k=0 ν(R
kψ) ≤ µR(ψ) = 1 and |g| ≤ ∥g∥1X1X. Thus the series

∑+∞
k=0 ν(R

k(g −
Pg)) of non-negative terms converges, that is g − Pg is µR-integrable. Since µR(ψ) = 1
(i.e. limn

∑n
k=0 ν(R

kψ) = 1 from the definition of µR), we know that ν(h∞
R ) = 0 from (25).

Moreover we have |ν(Rn+1g)| ≤ ∥g∥1Xν(Rn+11X) with limn ν(R
n+11X) = ν(h∞

R ) = 0 from the
definition of h∞

R and Lebesgue’s theorem. Thus the property µR(g − Pg) = 0 follows from
(37). The proof of Lemma 4.4 is complete. □

Proof of Theorem 4.3. Let A ∈ X be such that µR(1A) > 0. Recall that the function
defined by g∞

A (x) := Px
{∑+∞

n=1 1{Xn∈A} = +∞
}
for any x ∈ X is a P−harmonic function, see

Appendix A for details. Thus, under Condition h∞
R = 0, we know that g∞

A is constant on X
from Theorem 4.1. We have to prove that g∞

A = 1X, namely that g∞
A (x) = 1 for at least one

x ∈ X.
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Let gA be defined by: ∀x ∈ X, gA(x) := Px{TA < ∞} where TA := inf{n ≥ 0 : Xn ∈ A}
is the hitting time of the set A. Recall that gA is superharmonic, i.e. PgA ≤ gA, and that
g∞
A = limn ↘ PngA, see Appendix A for details. Let n ≥ 0. It follows from P (PngA) ≤ PngA
and Lemma 4.4 applies to PngA that the non-negative function PngA − Pn+1gA is such
that µR(P

ngA − Pn+1gA) = 0. Thus there exists En ∈ X such that µR(1Ec
n
) = 0 and

PngA = Pn+1gA on En. Now let E := ∩n≥0En. Then we have µR(1Ec) = 0 and

∀x ∈ E, ∀n ≥ 0, gA(x) = (Pn+1gA)(x).

Passing to the limit when n→+∞ we obtain that every x ∈ E satisfies g∞
A (x) = gA(x).

Finally we get from µR(1Ec) = 0 that µR(1A∩E) = µR(1A) > 0, and we know that gA = 1
on A from the definition of gA. Therefore there exists a x ∈ X such that g∞

A (x) = 1. Thus
g∞
A = 1X since g∞

A is constant on X. The proof of Theorem 4.3 is complete. □

Corollary 4.5 If P satisfies Condition (Mν,ψ), is irreducible and recurrent, then the re-
striction PH of P to the µR−full P−absorbing set H := {h∞

R = 0} is Harris-recurrent.

The proof of Corollary 4.5 is based on Lemma 4.2 and on the following lemma.

Lemma 4.6 Assume that P satisfies Condition (Mν,ψ) and is irreducible. If ν(h∞
R ) = 0,

then the set H := {h∞
R = 0} is P−absorbing and µR−full.

Proof. Since ν(h∞
R ) = 0 the set H is non-empty. Moreover it follows from ν(h∞

R ) = 0 and
Rh∞

R = h∞
R that Ph∞

R = h∞
R . Then we have

∀x ∈ H, 0 = h∞
R (x) = (Ph∞

R )(x) =

∫
X
h∞

R (y)P (x, dy) =

∫
Hc

h∞
R (y)P (x, dy)

hence P (x,Hc) = 0, i.e. P (x,H) = 1, for any x ∈ H. Thus H is P−absorbing. That H is
µR−full follows from Proposition 3.15. □

Proof of Corollary 4.5. We have ν(h∞
R ) = 0 and µR(ψ) = 1 from Corollary 3.9. It follows

from Lemma 4.6 that H := {h∞
R = 0} is P−absorbing and µR−full. From Lemma 4.2 applied

to the set H, we know that PH satisfies Condition (M νH ,ψH
) and that h∞RH

= 0 on H from
the definition of H. Consequently the last assertion of Corollary 4.5 follows from Theorem 4.3
applied to the Markov kernel PH on (H,XH). □

4.3 Convergence of iterates: the aperiodic case

Set D := {z ∈ C : |z| ≤ 1}. If P satisfies Condition (Mν,ψ), then the following power series

ρ(z) :=

+∞∑
n=1

ν(Rn−1ψ) zn (38)

absolutely converges for every z ∈ D since µR(ψ) =
∑+∞

k=0 ν(R
kψ) <∞ from Proposition 3.4.

If moreover P is irreducible, then this power series ρ is non-zero since ρ(1) = µR(ψ) > 0 from
Assertion 1. of Lemma 3.10.

If P satisfies Condition (M ν,ψ) and is irreducible, then P is said to be aperiodic if ρ(z)
defined in (38) is not a power series in zq for any integer q ≥ 2. From above the set
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{n ≥ 1 : ν(Rn−1ψ) > 0} is non-empty. Then, using the notation g.c.d. for greatest common
divisor, this aperiodicity condition is equivalent to

g.c.d.
{
n ≥ 1 : ν(Rn−1ψ) > 0

}
= 1. (39)

This condition obviously holds when P is strongly aperiodic, i.e. ν(ψ) > 0. In Subsection 4.4,
under Conditions (M ν,ψ) and h

∞
R = 0, various equivalent conditions for aperiodicity are pro-

vided by Theorem 4.14. Actually, Assertion (b) of Theorem 4.14 shows that the aperiodicity
condition does not depend on the choice of the couple (ν, ψ) in Condition (Mν,ψ). More-
over, Assertion (c) of Theorem 4.14 shows that aperiodicity condition is equivalent to the
non-existence of d-cycle sets for P with d ≥ 2.

When P satisfies Condition (Mν,ψ) with µR(1X) < ∞, is irreducible and aperiodic, the
convergence of probability distributions (δxP

n)n≥0 to πR in total variation norm is shown
to be equivalent to the property h∞

R = 0 in the following theorem. As a corollary, the
convergence of the probability distributions (δxP

n)n≥0 to πR holds for πR−almost every
x ∈ X. Recall that under these assumptions, πR is the unique P−invariant probability
measure from Assertion 3. of Theorem 4.1.

Theorem 4.7 Let P satisfy Condition (Mν,ψ) with µR(1X) < ∞. If P is irreducible and
aperiodic, then the following equivalence holds:

h∞
R = 0 ⇐⇒ ∀x ∈ X, lim

n→+∞
∥δxPn − πR∥TV = 0.

Corollary 4.8 Let P satisfy Condition (M ν,ψ) with µR(1X) < ∞. If P is irreducible and
aperiodic, then

lim
n→+∞

∥δxPn − πR∥TV = 0 for πR−almost every x ∈ X.

More precisely the P−absorbing and πR−full set H := {h∞
R = 0} satisfies

H :=
{
x ∈ X : lim

n→+∞
∥δxPn − πR∥TV = 0

}
.

As expected, Corollary 4.8 follows from Theorem 4.7 applied to the restriction of P to the
P−absorbing and µR−full set H := {h∞

R = 0} (Lemma 4.6). The proof of Corollary 4.8 is
detailed at the end of this subsection. Just observe here that, from the end of this proof, the
following fact holds under the sole assumption (M ν,ψ) with µR(1X) < ∞: The convergence
limn(P

nψ)(x) = πR(ψ) for some x ∈ X implies that h∞
R (x) = 0.

Proof of Theorem 4.7. The proof follows from the two next lemmas. Indeed assume that
h∞

R = 0. Then limn P
nψ = πR(ψ)1X (point-wise convergence) from Lemma 4.9, thus the

desired convergence in total variation norm holds from Lemma 4.11. Conversely assume
that, for every x ∈ X, we have limn→+∞ ∥δxPn − πR∥TV = 0. Then it follows from the
definition of ∥ · ∥TV that limn→+∞(Pnψ)(x) = πR(ψ) since ψ is bounded. Thus h∞

R = 0 from
Lemma 4.9. □

Lemma 4.9 Let P satisfy Condition (Mν,ψ) with µR(1X) < ∞. If P is irreducible and
aperiodic, then

h∞
R = 0 ⇐⇒ lim

n→+∞
Pnψ = πR(ψ)1X (point-wise convergence on X).
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Proof. Let D = {z ∈ C : |z| < 1}. The following power series

P(z) :=
+∞∑
n=0

znPnψ and R(z) :=
+∞∑
n=0

znRnψ (40)

are well-defined on D since ψ is bounded. Note that P(z) and R(z) are function series. From
the kernel identity (17) applied to ψ it follows that

∀z ∈ D, P(z) =

+∞∑
n=0

znPnψ =

+∞∑
n=0

znRnψ +

+∞∑
n=1

zn
n∑
k=1

ν(Rk−1ψ)Pn−kψ

= R(z) + ρ(z)P(z).

where ρ(z) is the power series defined in (38). Using µR(ψ) =
∑+∞

k=1 ν(R
k−1ψ) = 1 from

Theorem 3.6, we have: ∀z ∈ D, |ρ(z)| < 1. Thus

∀z ∈ D, P(z) = R(z)U(z) with U(z) :=
1

1− ρ(z)
. (41)

Next, for any k ≥ 1, we have ν(Rk1X) = ν(Rk−11X)−ν(1X)ν(Rk−1ψ) fromR1X = 1X−ν(1X)ψ.
Thus,

∀k ≥ 1, ν(1X)ν(R
k−1ψ) = ν(Rk−11X)− ν(Rk1X)

and

∀n ≥ 1, ν(1X)

n∑
k=1

k ν(Rk−1ψ) =

n∑
k=1

k
[
ν(Rk−11X)− ν(Rk1X)

]
=

n∑
k=1

k ν(Rk−11X)−
n+1∑
k=2

(k − 1) ν(Rk−11X)

=
n∑
k=1

ν(Rk−11X)− n ν(Rn1X).

Hence m :=
∑+∞

k=1 k ν(R
k−1ψ) ≤ µR(1X)ν(1X)

−1 < ∞. Now recall that
∑+∞

k=1 ν(R
k−1ψ) = 1

and that ρ(z) is not a power series in zq for any integer q ≥ 2 since P is assumed to
be aperiodic. Consequently the Erdös-Feller-Pollard renewal theorem [EFP49] provides the
following property for the power series U(z) =

∑+∞
k=0 ukz

k in (41):

lim
k→+∞

uk =
1

m
.

Let x ∈ X. Identifying the coefficients of the power series in Equation (41) (Cauchy product),
we obtain that for every n ≥ 0

(Pnψ)(x) =
n∑
k=0

un−k(R
kψ)(x) =

+∞∑
k=0

vn(k)(R
kψ)(x) with ∀k ≥ 0, vn(k) := un−k1[0,n](k).

For every k ≥ 1, we have limn vn(k) = 1/m, and |vn(k)| ≤ supj |uj | < ∞. Moreover recall

that
∑+∞

k=0(R
kψ)(x) < ∞ from Proposition 3.4. Then it follows from Lebesgue theorem

w.r.t. discrete measure that

∀x ∈ X, lim
n
(Pnψ)(x) =

1

m

+∞∑
k=0

(Rkψ)(x). (42)
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Now we can prove Lemma 4.9. If h∞
R = 0, then we have

∑+∞
k=0(R

kψ)(x) = ν(1X)
−1 from (35).

Hence (42) provides: ∀x ∈ X, limn(P
nψ)(x) = (mν(1X))

−1. Actually the constant (mν(1X))
−1

equals to πR(ψ) from Lebesgue theorem w.r.t. the P−invariant probability measure πR. The
direct implication in Lemma 4.9 is proved. Conversely, assume that limn P

nψ = πR(ψ)1X
(point-wise convergence). Then we deduce from (42) that

∑+∞
k=0R

kψ = c 1X with c :=
mπR(ψ). Thus h

∞
R = d 1X with d = 1− cν(1X) from (24). Finally recall that µR(ψ) = 1, thus

ν(h∞
R ) = 0 from (25). Hence d ν(1X) = 0, from which we deduce that h∞

R = 0. □

Remark 4.10 From the proof of Lemma 4.9 we deduce the following facts. If P satisfies
Condition (Mν,ψ) with µR(1X) < ∞, then m :=

∑+∞
k=1 k ν(R

k−1ψ) < ∞. If moreover P is
irreducible and aperiodic and if h∞

R = 0, then m = (πR(ψ)ν(1X))
−1.

Lemma 4.11 Assume that P satisfies Condition (Mν,ψ) and µR(1X) < ∞. If h∞
R = 0 and

limn P
nψ = πR(ψ)1X (point-wise convergence on X), then limn ∥δxPn − πR∥TV = 0 for every

x ∈ X.

Proof. Using (17) and πR = πR(ψ)
∑+∞

k=1 νR
k−1 (see (26)), we have for every n ≥ 1 and g ∈ B

Png − πR(g)1X = Rng +

n∑
k=1

ν(Rk−1g)
(
Pn−kψ − πR(ψ)1X

)
− πR(ψ)

( +∞∑
k=n+1

ν(Rk−1g)

)
1X.

Thus

∥δxPn−πR∥TV ≤ (Rn1X)(x)+

n∑
k=1

ν(Rk−11X)
∣∣(Pn−kψ)(x)−πR(ψ)

∣∣+πR(ψ)

+∞∑
k=n+1

ν(Rk−11X).

We have limn(R
n1X)(x) = 0 from h∞

R = 0. The term
∑+∞

k=n+1 ν(R
k−11X) also converges to

zero when n→+∞ since
∑+∞

k=0 ν(R
k1X) = µR(1X) <∞. Next note that

n∑
k=1

ν(Rk−11X)
∣∣(Pn−kψ)(x)− πR(ψ)

∣∣ = +∞∑
k=1

ν(Rk−11X)fn(k)

with fn(k) := |(Pn−kψ)(x) − πR(ψ)|1[1,n](k). Then, using
∑+∞

k=1 ν(R
k−11X) < ∞, the above

sum converges to zero when n→+∞ from Lebesgue’s theorem w.r.t. discrete measure since,
for every k ≥ 1, we have fn(k) ≤ 2∥ψ∥1X and limn fn(k) = 0 by hypothesis. Lemma 4.11 is
proved. □

Proof of Corollary 4.8. From Theorem 3.6 we have µR(ψ) = 1, so that ν(h∞
R ) = 0 from (25).

Then we know from Lemma 4.6 that the set H := {h∞
R = 0} is P−absorbing and µR−full.

From Lemma 4.2 applied to E := H, it follows that PH satisfies Condition (MνH ,ψH
) with

h∞RH
= 0 from the definition of H, and that g.c.d. {n ≥ 1 : νH(R

n−1
H ψH) > 0} = 1 since

νH(R
n−1
H ψH) = ν(Rn−1ψ). Thus PH is irreducible from Theorem 4.1 applied to PH , and

PH is aperiodic too. Finally note that the positive measure
∑+∞

k=0 νHR
k
H is the restriction

µR|H of µR to the set H, so that µR|H(ψH) = 1 since µR(ψ) = 1 and H is µR−full. Moreover
the restriction πR|H of πR to H is a PH−invariant probability measure on (H,XH). Hence
Theorem 4.7 applied to PH shows that, for every x ∈ H, we have limn ∥δxPnH −πR|H∥TV = 0.
Finally, since we have for every x ∈ H and A ∈ X

Pn(x,A)− πR(1A) = Pn(x,A ∩H)− πR(1A∩H) = P n
H (x,A ∩H)− πR|H(1A∩H)
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we obtain that: ∀x ∈ H, limn ∥δxPn − πR∥TV = 0. This provides the first assertion of
Corollary 4.8 since πR(1H) = 1 from µR(1Hc) = 0.

It follows from this first assertion that, to obtain the last equality of Corollary 4.8, we just
have to prove that, if x ∈ X is such that limn ∥δxPn−πR∥TV = 0, then x ∈ H, i.e. h∞

R (x) = 0.
Let x ∈ X satisfy the previous condition. Then we have limn(P

nψ)(x) = πR(ψ) since ψ is
bounded. Then, passing to the limit when n→+∞ in (17) applied to the function 1X at this
point x, we have

1 = h∞
R (x) + πR(ψ)

+∞∑
k=1

ν(Rk−11X) = h∞
R (x) + πR(ψ)µR(1X).

The first equality follows from the definition (20) of h∞
R and from limn(P

nψ)(x) = πR(ψ) using
Lebesgue’s theorem for discrete measure; The second equality follows from the definition (21)
of µR. Next, since πR(ψ) = µR(1X)

−1 from Theorem 3.6, we obtain that h∞
R (x) = 0. The

proof of Corollary 4.8 is complete. □

4.4 Convergence of iterates: the periodic case

Assume that P satisfies Condition (M ν,ψ) and is irreducible. Recall that the power series
ρ(z) given in (38), namely

ρ(z) :=

+∞∑
n=1

ν(Rn−1ψ) zn

is defined on D = {z ∈ C : |z| ≤ 1} and is non-zero (see the beginning of Subsection 4.3).
Define

d := g.c.d. {n ≥ 1 : ν(Rn−1ψ) > 0} (43)

where g.c.d. stands for greatest common divisor computed on a non-empty set.

Under the assumptions of Theorem 4.12 below, i.e. P satisfies (Mν,ψ), h
∞
R = 0 and

µR(1X) < ∞, it follows from Theorem 4.1 that P is irreducible, and that πR is the unique
P−invariant probability measure. The convergence in total variation norm of the probability
measures (1/d)

∑d−1
r=0 δxP

nd+r to πR is obtained in Theorem 4.12. Under the assumptions of
Corollary 4.13 below, i.e. P satisfies (Mν,ψ) with µR(1X) < ∞ and is irreducible, it follows
from Corollary 3.13 that πR is the unique P−invariant probability measure. Under these con-
ditions, the above-mentioned convergence in total variation norm is proved to hold πR−a.s. in
Corollary 4.13. In fact these two statements are the natural extensions to the periodic case
of Theorem 4.7 and Corollary 4.8.

In the context of this section, various equivalent characterizations of Integer d in (43)
are presented in Theorem 4.14 below. It turns out that, under the assumptions of both
Theorem 4.12 and Corollary 4.13, the value of d does not depend on the choice of the couple
(ν, ψ): This is proved in Remark 4.18 at the end of this subsection. Therefore, Integer d
in (43) can be called the period of P without any ambiguity. If d = 1, then P is aperiodic
according to the definition of Subsection 4.3. If d ≥ 2, then P is said to be periodic.

Theorem 4.12 Let P satisfy Condition (Mν,ψ) with µR(1X) < ∞ and h∞
R = 0. If P is
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periodic with period d ≥ 2 (see (43)), then the following convergence holds:

∀x ∈ X, lim
n→+∞

∥∥πR − 1

d

d−1∑
r=0

δxP
nd+r

∥∥
TV

= 0.

The proof of Theorem 4.12 is similar to that of the direct implication of Theorem 4.7 (where
d = 1). When d ≥ 2, the proof is just a little more technical, since we have to work with the
sums (1/d)

∑d−1
r=0 δxP

nd+r. This proof is postponed in Appendix B.

Corollary 4.13 Assume that P satisfies Condition (Mν,ψ) with µR(1X) < ∞, and is irre-
ducible. If P is periodic with d ≥ 2 in (43), then the following convergence holds :

lim
n→+∞

∥∥πR − 1

d

d−1∑
r=0

δxP
nd+r

∥∥
TV

= 0 for πR−almost every x ∈ X.

Proof. Using the restriction PH of P to the µR−full P−absorbing set H := {h∞
R = 0} from

Lemma 4.6, Corollary 4.13 is deduced from Theorem 4.12 proceeding as for Corollary 4.8:
Use g.c.d. {n ≥ 1 : νH(R

n−1
H ψH) > 0} = d from νH(R

n−1
H ψH) = ν(Rn−1ψ), and apply

Theorem 4.12 to obtain that

∀x ∈ H,
∥∥πR − 1

d

d−1∑
r=0

δxP
nd+r

∥∥
TV

= 0.

□

In the next statement the space B = B1X is extended to complex-valued functions, i.e.:

B(C) :=
{
g : X→C,measurable such that ∥g∥1X := sup

x∈X
|g(x)| <∞

}
where | · | stands here for the modulus in C. Recall that z ∈ C is said to be an eigenvalue of P
on B(C) if there exists a non-zero function g ∈ B(C) such that Pg = zg. Finally recall that,
under Conditions (Mν,ψ) and h

∞
R = 0, the positive integer d = g.c.d. {n ≥ 1 : ν(Rn−1ψ) > 0}

in (43) is well-defined in the next statement.

Theorem 4.14 Assume that P satisfies Condition (M ν,ψ) and h∞
R = 0. Let ρ(z) be the

power series given in (38), and let d := g.c.d. {n ≥ 1 : ν(Rn−1ψ) > 0}. Then the following
assertions are satisfied:

(a) The complex numbers z of modulus one satisfying ρ(z) = 1 are the d−th roots of unity.

(b) The eigenvalues of modulus one of P on B(C) are the d−th roots of unity.

(c) There exist a µR−full P−absorbing set E ∈ X and d disjoints sets C0, . . . , Cd−1 in X
such that

E =

d−1⊔
ℓ=0

Cℓ with ∀ℓ = 0, . . . , d− 1, ∀x ∈ Cℓ, P (x,Cℓ+1) = 1 (44)

using the convention Cd = C0. Moreover d is the greatest positive integer for which such
a cycle property holds.
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Any of these three conditions characterizes the integer d := g.c.d. {n ≥ 1 : ν(Rn−1ψ) > 0}.

The proof of Theorem 4.14 is based on the following three lemmas.

Lemma 4.15 Let P satisfy Condition (Mν,ψ) and h∞
R = 0. Let d := g.c.d. {n ≥ 1 :

ν(Rn−1ψ) > 0}. Let z ∈ C be such that |z| = 1. Then we have ρ(z) = 1 if, and only
if, z is a d−th root of unity.

Proof. Recall that µR(ψ) =
∑+∞

n=1 ν(R
n−1ψ) = 1 from Theorem 4.1. Let z ∈ C be such that

|z| = 1 and ρ(z) = 1. Then

+∞∑
n=1

ν(Rn−1ψ) zn = 1 =
+∞∑
n=1

ν(Rn−1ψ).

Writing z = eiθ with θ ∈ [0, 2π) we obtain that
∑+∞

n=1

(
1 − cos(nθ)

)
ν(Rn−1ψ) = 0. Define

the set N := {n ≥ 1 : ν(Rn−1ψ) > 0}. Then n ∈ N implies that cos(nθ) = 1. Thus
we have: ∀n ∈ N , zn = 1. Next from the definition of d, for p large enough there exists
{nj}pj=1 ∈ N p such that d =

∑p
j=1 kjnj for some {kj}pj=1 ∈ Zp (Bézout identity). Thus we

have zd =
∏p
j=1 z

kjnj = 1 since znj = 1. Hence z is a d−th root of unity.

Conversely, let z be a d−th root of unity, i.e. zd = 1. From the definition of d it then
follows that ρ(z) =

∑+∞
k=0 ν(R

kd−1ψ) zkd = µR(ψ) = 1. □

Lemma 4.16 Let P satisfy Condition (M ν,ψ) and h∞
R = 0. Let z ∈ C be such that |z| = 1.

Then z is an eigenvalue of P on B(C) if, and only if, we have ρ(z) = 1. Moreover, if any of
these two equivalent conditions holds, then

Ez := {g ∈ B(C) : Pg = zg} = C · ψ̃z with ψ̃z :=
+∞∑
k=0

z−(k+1)Rkψ.

Proof. First note that, for any z ∈ C such that |z| = 1, the above function ψ̃z is well-defined
and belongs to B(C) from Proposition 3.4. Moreover observe that

ν(ψ̃z) =

+∞∑
k=0

z−(k+1)ν(Rkψ) = ρ(z−1), (45)

the exchange between series and ν−integral being valid since
∑+∞

k=0 ν(R
kψ) <∞ from Propo-

sition 3.4. Now, let z ∈ C, |z| = 1, and let g ∈ B(C), g ̸= 0, be such that Pg = zg. Thus we
have ν(g)ψ = (zI −R)g from P = R+ ψ ⊗ ν. Then we have for every n ≥ 0

ν(g)

n∑
k=0

z−(k+1)Rkψ =

( n∑
k=0

z−(k+1)Rk
)
(zI −R)g =

n∑
k=0

z−kRkg −
n∑
k=0

z−(k+1)Rk+1g

= g − z−(n+1)Rn+1g. (46)

Moreover we have |Rng| ≤ ∥g∥1XRn1X, so limnR
ng = 0 (point-wise convergence) from Con-

dition h∞
R = 0. Hence g = ν(g)ψ̃z, with ν(g) ̸= 0 since g ̸= 0 by hypothesis. From (45)

it follows that ν(g) = ν(g)ρ(z−1), thus ρ(z−1) = 1, or equivalently ρ(z) = 1 from z−1 = z
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(the conjugate of z) since |z| = 1 and the coefficients of the power series ρ(·) are real (even
non-negative).

Conversely let z ∈ C, |z| = 1, be such that ρ(z) = 1, thus ρ(z−1) = 1. From (45) we have
ν(ψ̃z) = 1. Using P = R + ψ ⊗ ν and Lebesgue’s theorem w.r.t. R(x, dy) for each x ∈ X we
obtain that

Pψ̃z = z

+∞∑
k=0

z−(k+2)Rk+1ψ + ν(ψ̃z)ψ = z
(
ψ̃z − z−1ψ

)
+ ψ = zψ̃z. (47)

Thus z is an eigenvalue of P on B(C) since ψ̃z ̸= 0 from ν(ψ̃z) = 1. The claimed equivalence
in Lemma 4.16 is proved. The last assertion follows from the first part of the proof, where
we obtained that any g ∈ B(C) such that Pg = zg with |z| = 1 satisfies g = ν(g)ψ̃z. □

Lemma 4.17 Let P satisfy Condition (Mν,ψ) and h∞
R = 0. Assume that, for some integer

d1 ≥ 1, there exist a µR−full P−absorbing set E ∈ X and d1 disjoints sets C0, . . . , Cd1−1 in
X such that

E =

d1−1⊔
ℓ=0

Cℓ with ∀ℓ ∈ {0, . . . , d1 − 1}, ∀x ∈ Cℓ, P (x,Cℓ+1) = 1

using the convention Cd1 = C0. Then every d1−th root of unity is solution to equation
ρ(z) = 1. Moreover d1 divides d with d := g.c.d. {n ≥ 1 : ν(Rn−1ψ) > 0}.

Proof. Let z be any d1−th root of unity and define gE : E→C by

∀ℓ ∈ {0, . . . , d1 − 1}, ∀x ∈ Cℓ, gE(x) = zℓ.

Then we have for every ℓ ∈ {0, . . . , d1 − 1}, and x ∈ Cℓ

(PEgE)(x) =

∫
E
gE(y)P (x, dy) =

∫
Cℓ+1

gE(y)P (x, dy) = zℓ+1 = z gE(x)

since P (x,Cℓ+1) = 1 and gE(x) = zℓ, recalling moreover for the case ℓ = d1 − 1 that
Cd1 = C0 by convention and that 1 = zd1 . Thus PEgE = zgE . Next recall that µR(ψ) = 1
from Theorem 4.1. It then follows from Lemma 4.2 that PE satisfies Condition (MνE ,ψE

) on
(E,XE), that h

∞
RE

= 0 on E from the assumption h∞
R = 0, and finally that

∀z ∈ D, ρE(z) :=

+∞∑
n=1

νE(R
n−1
E ψE) z

n = ρ(z).

We can now conclude. Since z is an eigenvalue of PE , Lemma 4.16 applied to PE ensures
that ρE(z) = 1, so ρ(z) = 1. This proves the first assertion. That d1 divides d follows from
Lemma 4.15. □

Now we prove Theorem 4.14.

Proof. Assertion (a) holds with d given in (43) from Lemma 4.15. Thus so is for Assertion (b)
from Lemma 4.16. Now prove that Assertion (c) holds with d given in (43). Let zd = e2iπ/d,
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ψ̃d :=
∑+∞

k=0 z
−(k+1)
d Rkψ, and let ψ̃d,0 (resp. ψ̃d,1) denote the real (resp. imaginary) part of

the function ψ̃d. Then it follows from (35) that

ψ̃d,0 ≤ |ψ̃d| ≤
+∞∑
k=0

Rkψ = ν(1X)
−11X.

We have ρ(z−1
d ) = 1 from Assertion (a), thus ν(ψ̃d) = 1 from (45). Then we have ν(ψ̃d,0) =

1 = ν(ν(1X)
−11X), so that the following equalities hold ν−a.e. on X: ψ̃d,0 = ν(1X)

−11X and

ψ̃d,1 = 0. Now define gd := ν(1X)ψ̃d. From the above we know that |gd| ≤ 1X and that the set
C0 := {gd = 1} is non-empty. Moreover we have Pgd = zdgd from Lemma 4.16. Let x ∈ C0.
Then

1 = gd(x) =
(Pgd)(x)

zd
=

∫
X

gd(y)

zd
P (x, dy)

with |gd(y)/zd| ≤ 1 for every y ∈ X since |zd| = 1. It follows that P (x,C1) = 1 where
C1 := {x ∈ X : gd(x) = zd}. Replacing the set C0 with C1, we can similarly prove that,
for every x ∈ C1, we have P (x,C2) = 1 where C2 := {x ∈ X : gd(x) = zd

2}. Repeating
this arguments provides the existence of sets C0, . . . , Cd−1 in X satisfying the desired cycle
property: ∀ℓ = 0, . . . , d − 1, ∀x ∈ Cℓ, P (x,Cℓ+1) = 1. These sets are obviously disjoint.
Finally define E :=

⊔d−1
ℓ=0 Cℓ. This set is P−absorbing since, for every x ∈ E, there exists

a (unique) ℓ ∈ {0, . . . , d − 1} such that x ∈ Cℓ, so that 1 = P (x,Cℓ+1) ≤ P (x,E) ≤ 1,
thus P (x,E) = 1. Since P is irreducible from Theorem 4.1, the set E is µR−full from
Proposition 3.15. We have proved that P satisfies the d−cycle property (44) with d defined
in (43). The fact that d is the greatest integer for which such a cycle property holds then
follows from Lemma 4.17. □

Remark 4.18 The fact that, under the assumptions of Theorem 4.12, the value d in (43)
does not depend on the choice of the couple (ν, ψ) directly follows from Assertion (b) of
Theorem 4.14. Now let us prove that the same conclusion holds under the assumptions of
Corollary 4.13. That is, assume that P satisfies the conditions of Corollary 4.13 w.r.t. two
couples (ν, ψ) ∈ M∗

+,b×B∗
+ and (ν ′, ψ′) ∈ M∗

+,b×B∗
+, and prove that the respective integers d

and d′ given by (43) are equal. Recall that P admits a unique invariant probability measure,
say π, from Corollary 3.13. In particular we have πR = πR′ = π. Moreover we have µR(ψ) = 1
and µR′(ψ′) = 1, equivalently ν(h∞

R ) = 0 and ν ′(h∞
R′) = 0, from Theorem 3.6 (see (25)). It

then follows from Lemma 4.6 that the sets H := {h∞
R = 0} and H ′ := {h∞

R′ = 0} are π−full
and P−absorbing.

Now let us consider any d−cycle partition E given by Assertion c) of Theorem 4.14 when
applied to the restriction PH of P to H. Note that E is then a π−full and P−absorbing subset
of H. Restricting this d−cycle partition to the set E′ := E ∩H ′ provides a d−cycle partition
for PH′ since E′ := E ∩ H ′ is a π−full and P−absorbing subset of H ′. Then Lemma 4.17
applied to PH′ shows that d divides d′. Exchanging the role of (ν, ψ) and (ν ′, ψ′) we obtain
that d′ divides d. Thus d = d′.

4.5 Drift criteria for h∞
R = 0

Now, we introduce a drift condition to have the property h∞
R := limnR

n1X = 0, the relevance
of which has been highlighted in Theorems 4.1, 4.3, 4.7, 4.12 and 4.14. Actually, under a
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drift inequality w.r.t. some measurable function W : X→[0,+∞), the property h∞
R = 0 is

characterized in Proposition 4.19 by a control of h∞
R or

∑+∞
k=0R

kψ on any level set Wr := {x ∈
X :W (x) ≤ r} of W . Finally, a condition ensuring this control is provided by Corollary 4.20.

Proposition 4.19 Let P satisfy Condition (Mν,ψ) and the following drift condition for some
measurable function W : X→[0,+∞):

∃b > 0, PW ≤W + b ψ. (48)

For any r > 0 let Wr denote the level set of order r defined by: Wr := {x ∈ X : W (x) ≤ r}.
Then we have the following equivalences

h∞
R = 0 ⇐⇒ ∀r > 0, sup

x∈Wr

h∞
R (x) < 1 ⇐⇒ ∀r > 0, inf

x∈Wr

+∞∑
k=0

(Rkψ)(x) > 0. (49)

Proof. The second equivalence in (49) follows from (24). That h∞
R = 0 implies the sec-

ond condition in (49) is obvious. It remains to prove that the second condition in (49), or
equivalently the third one, implies that h∞

R = 0.

In the sequel, the third condition in (49) is assumed to hold. First prove that we have the
following point-wise convergence on X

∀ρ > 0, lim
n
Rn1Wρ = 0. (50)

Let ρ > 0 and define a ≡ aρ := infx∈Wρ

∑+∞
k=0(R

kψ)(x). By hypothesis we have a > 0 and

1Wρ ≤ a−1
∑+∞

k=0R
kψ, from which we deduce that

∀n ≥ 1, 0 ≤ Rn1Wρ ≤ a−1
+∞∑
k=n

Rkψ

from the monotone convergence theorem w.r.t. Rn(x, dy) for each x ∈ X. Property (50) then
holds since the series

∑+∞
k=0R

kψ converges point-wise from Proposition 3.4.

Next note that ν(W )ψ ≤ PW everywhere on X from (Mν,ψ), so that ν(W ) <∞ and RW
is well-defined. Let d := max(0 , (b− ν(W ))/ν(1X)) and prove that

RWd ≤Wd where Wd :=W + d1X. (51)

Note that ν(Wd) = ν(W ) + dν(1X) < ∞ and that PWd = PW + d1X. It then follows from
RWd = PWd − ν(Wd)ψ and from the drift inequality (48) that

RWd ≤W + bψ + d1X −
(
ν(W ) + d ν(1X)

)
ψ ≤Wd +

(
b− ν(W )− d ν(1X)

)
ψ

so that RWd ≤Wd from the definition of d.

Now let us deduce from (50) and (51) that h∞
R = 0. Let r > d with d given by (51). We

have

1X = 1{x∈X:Wd(x)>r} + 1{x∈X:Wd(x)≤r} ≤
Wd

r
+ 1Wr−d

.

Thus we get

∀n ≥ 1, Rn1X ≤ RnWd

r
+Rn1Wr−d

≤ Wd

r
+Rn1Wr−d
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from the non-negativity of R and from RnWd ≤Wd using (51) and an immediate induction.
Let x ∈ X, ε > 0, and fix r > d large enough so that Wd(x)/r < ε/2. From (50) applied to
ρ = r − d, there exists N ≥ 1 such that, for every n ≥ N , we have 0 ≤ (Rn1Wr−d

)(x) < ε/2.
Thus: ∀n ≥ N, 0 ≤ (Rn1X)(x) < ε. This proves that h∞

R = 0.

□

We conclude this section providing an alternative sufficient condition for h∞
R = 0. Let us

consider the Markov resolvent kernel Q defined by

Q :=

+∞∑
n=0

2−(n+1)Pn.

Corollary 4.20 Let P satisfy Condition (Mν,ψ) and the drift condition (48) for some mea-
surable function W : X→[0,+∞). If the following condition holds

∀r > 0, inf
x∈Wr

(Qψ)(x) > 0, (52)

then h∞
R = 0.

Proof. Below we prove that the third condition in (49) is fulfilled. The claimed conclu-
sion then follows from Proposition 4.19. Recall that ψ ∈ B∗

+, so that Qψ and the series∑+∞
n=0 2

−(n+1)Rnψ are well-defined. From (17) we obtain that

Qψ =
+∞∑
n=0

2−(n+1)Rnψ +
+∞∑
n=1

2−(n+1)
n∑
k=1

ν(Rk−1ψ)Pn−kψ

=

+∞∑
n=0

2−(n+1)Rnψ +

( +∞∑
k=1

2−kν(Rk−1ψ)

)( +∞∑
n=0

2−(n+1)Pnψ

)

=
+∞∑
n=0

2−(n+1)Rnψ + αQψ

where α :=
∑+∞

k=1 2
−kν(Rk−1ψ). Note that, either α = 0, or α < µR(ψ) ≤ 1 from Proposi-

tion 3.4, so that
+∞∑
n=0

2−(n+1)Rnψ = (1− α)Qψ with 1− α > 0.

Now let r > 0 and a ≡ ar := infx∈Wr(Qψ)(x). We have a > 0 from (52), and

∀x ∈ Wr,
+∞∑
k=0

(Rkψ)(x) ≥
+∞∑
k=0

2−(k+1)(Rkψ)(x) = (1− α) (Qψ)(x) ≥ (1− α)a > 0.

The third condition in (49) is proved. □

Condition (52) on Q is obviously satisfied under the following stronger condition

∀r > 0, ∃q ≡ q(r) ≥ 1, inf
x∈Wr

(P qψ)(x) > 0. (53)

Note that requiring Condition (53) means requiring that the irreducibility property for P (see
(29)) holds uniformly on each level set Wr. This condition is relevant only for unbounded

40



functionW . Indeed, otherwise, the set Wr is the whole space X for r large enough, and in this
case Condition (53) is restrictive since it requires that infx∈X(P

qψ)(x) > 0 for some q ≥ 1.
If X is discrete (say X = N) and W = (W (n))n∈N is an unbounded increasing sequence, then
the sets Wr are finite: In this case, Condition (53) holds if, and only if,

∀s ∈ N, ∃q ≡ q(s) ≥ 1, ∀i ∈ {0, . . . , s}, (P qψ)(i) > 0.

If X is a non-discrete topological space, then a natural assumption for Condition (53) to be
fulfilled is that, for every r > 0, the set Wr is compact. However this is not sufficient. An
additional natural assumption is that P is weakly Feller (i.e. if g ∈ B is continuous on X,
then so is Pg). Under these two assumptions, Condition (53) actually holds provided that
there exists a bounded and continuous function ψ0 such that 0 ≤ ψ0 ≤ ψ and

∀r > 0, ∃q ≡ q(r) ≥ 1, ∀x ∈ Wr, (P qψ0)(x) > 0.

Indeed the continuous function P qψ0 then reaches its lower bound on the compact set Wr,
and this lower bound is thus positive under the previous condition.

4.6 Further comments and bibliographic discussion

In the present bibliographic discussion we assume that P is irreducible. The uniqueness
of 1X (up to a multiplicative constant) as P−harmonic functions is classically studied in
link with the Harris-recurrence property, the concept of which was introduced in [Har56].
A nice and comprehensive account of what is Harris recurrence in probabilistic terms is
presented in [Bax11]. The study of P−harmonic functions is done in [Num84, Th. 3.8, p. 44],
[MT09, Th. 17.1.5] and [DMPS18, Th. 10.2.11], essentially using the fact that, for a Markov
chain (Xn)n≥0 on X and for every A ∈ X , the function g∞

A : x 7→ Px{Xk ∈ A i.o.} is a
P−harmonic function, where i.o. stands for infinitely often. Similarly, under the aperiodicity
condition, the Harris-recurrence assumption is classically used to prove the convergence in
total variation of the iterates of P to its (unique) invariant probability measure π (i.e. ∀x ∈
X, limn ∥δxPn − π∥TV = 0). This is proved in [MT09, Ths. 13.0.1, 13.3.5] and [DMPS18,
Th. 11.3.1] via renewal theory and splitting construction, also see [AN78] for a proof based on
the random renewal time approach and [RR04, Th. 4] for a proof based on coupling method.

In this section, assuming that P satisfies the minorization condition (Mν,ψ), we choose a
different approach, first focusing on function h∞

R := limnR
n1X introduced in the previous sec-

tion. Indeed the condition h∞
R = 0 enables us to prove the above conclusion on P−harmonic

functions (Theorem 4.1), from which the Harris-recurrent property can be derived in Theo-
rem 4.3 using the fact that for every A ∈ X the function x 7→ Px{Xk ∈ A i.o.} is P−harmonic
(no surprise there). In the case when measure µR is finite and P is aperiodic, the condition
h∞

R = 0 is proved to be equivalent to the above mentioned iterate convergence in total vari-
ation (Theorem 4.7). So, to put it simply, the presentation in this section and the resulting
statements focus on the condition h∞

R = 0 depending on the residual kernel R, rather than
on the Harris-recurrence property. However note that the proof of Theorem 4.7 is original:
Actually Property (24) and the power series formula (41) simply derived from the key equal-
ity (17) allow us to directly apply the renewal theorem proved in the seminal paper [EFP49]
by Erdös, Feller and Pollard, to the power series ρ(z) in (38) used to define the aperiodicity
condition. Finally mention that, for the direct implication in the equivalence of Lemma 4.9,
the renewal theorem in [Fel67, Th 1, p. 330] can be directly applied too.
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If P is recurrent, then the P−harmonic functions are still constant, but up to a negligible
set w.r.t. to some maximal irreducibility measure, e.g. see [Num84, Prop. 3.13, p. 44]. In
the same way, if P admits an invariant probability measure π, so that P is recurrent from a
classical result (e.g. see [DMPS18, Th. 10.1.6]), then the property limn ∥δxPn−πR∥TV = 0 is
known to hold for π−almost every x ∈ X, e.g. see [DMPS18, Th. 11.3.1] and [RR04, pp. 32-
33]. This is here highlighted using the explicit set H := {h∞

R = 0} which is P−absorbing and
µR−full under the recurrence condition (see Corollary 4.5 and the proof of Corollary 4.8).
Complements using splitting construction can be found in [Num84, Cor. 5.1, p. 71].

Under the irreducibility condition, the d-cycle property for P stated in Assertion (c) of
Theorem 4.14 is the standard definition of the period of P , see [MT09, p. 114] and [DMPS18,
Def. 9.3.5]. In our work, under the minorization Condition (Mν,ψ) and irreducibility con-
dition, Integer d is defined by d := g.c.d. {n ≥ 1 : ν(Rn−1ψ) > 0}. Then the alternative
characterizations of this integer d, in particular the d-cycle property for P , are proved under
the condition h∞

R = 0 in Theorem 4.14. The convergence in total variation norm stated in
Theorem 4.12 corresponds to the standard statements [MT09, Th. 13.3.4] and [DMPS18,
Cor. 11.3.2], except that the condition h∞

R = 0 is used here in Theorem 4.12 instead of the
Harris-recurrence condition in [MT09, DMPS18]. In the same way the πR−a.e. convergence in
total variation norm obtained in Corollary 4.13 corresponds to the standard results in [MT09,
Th. 13.3.4] and [DMPS18, Cor. 11.3.2]. Again the direct use of the µR−full P−absorbing set
H := {h∞

R = 0} provides a short proof of Corollary 4.13. The proofs in [MT09, Th. 13.3.4]
and [DMPS18, Cor. 11.3.2] are based on the d−cyclic decomposition. The proof given in
Appendix B does not rely on the d−cycles property: it adapts the arguments of the di-
rect implication of Theorem 4.7 to the periodic case, thus directly giving the conclusion of
Theorem 4.14.

The sufficient condition provided in Proposition 4.19 for the condition h∞
R = 0 to hold

is the analogue of the standard statements ensuring that P is recurrent or Harris-recurrent
under drift condition, e.g. see [Num84, Prop. 5.10, p. 77], [MT09, Th. 8.4.3, Th. 9.1.8],
[DMPS18, Th. 10.2.13]. As recently proved in [XZZ18] under ϕ−irreducibility condition,
such a drift condition (up to a ϕ−null set) is even a necessary and sufficient condition for
recurrence. The drift inequality (48) in Proposition 4.19 is the same as in the previously cited
works. Moreover Condition (49) in Proposition 4.19 replaces the classical assumption that
W is unbounded off petite set (i.e. each level set Wr := {W ≤ r} is a petite set). This last
condition means that, for every r > 0, there exists a := (an)n≥0 ∈ [0, 1]N with

∑+∞
n=0 an = 1

and a positive measure νr,a such that Qa ≥ 1Wr ⊗ νr,a where Qa :=
∑+∞

n=0 anP
n. Expressed

with an := 2−(n+1), this assumption is clearly stronger than Condition (52) in Corollary 4.20,
which only focusses on the lower bound of the function Qψ on Wr (no minorizing measure
is involved in (52)).

The notion of modulated drift condition is introduced in the next section, where additional
bibliographic discussion is provided (see Subsection 5.5). Before diving into the details of
these modulated drift conditions, let us present some comment on the probabilistic meaning
of the simpler drift condition (48). Let (Xn)n≥0 be a Markov chain with state space X
and transition kernel P . Let W : X→[0,+∞) be measurable. For any r > 0 the set
Wr = {x ∈ X : W (x) ≤ r} must be thought of as the level set of order r in X w.r.t. the
function W . Since (PW )(x) = Ex

[
W (X1)

]
for any x ∈ X, the Markov kernel P satisfies
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Condition (48) with ψ := 1Ws for some s > 0 if, and only if,

sup
x∈Ws

Ex
[
W (X1)

]
<∞ and ∀x ∈ X \Ws, Ex

[
W (X1)

]
≤W (x). (54)

The second condition in (54) means that, for any r > s, each point x ∈ X such thatW (x) = r
transits in mean into Wr. If X := Rd is equipped with some norm ∥ ·∥, then W may be of the
form W = v(∥ · ∥) with unbounded increasing function v : [0,+∞)→[0,+∞). In particular,
if W = ∥ · ∥, then the second condition in (54) means that, starting from x ∈ Rd far enough
from the origin, the state visited after a first transition of the Markov chain admits in mean
a norm less than ∥x∥, namely is closer to the origin. For a random walk on N, it means
that, for i large enough, the steps of the walker starting from i are in mean more to the left
than to the right, namely it tends to go back towards 0. In case X := Z and W (x) := |x|, a
typical illustration of the explicit computations needed for obtaining the drift inequality (48)
can be found in [MT09, Sect. 8.4.3 ] for random walks with bounded range and zero mean
increment. If (X, d) is a metric space and W (x) := d(x, x0), level sets are the balls centred at
x0. However the possibility of considering other level functions more suited to the transition
kernel (i.e. possibly considering level sets other than balls) offers flexibility for the validity of
Conditions (54) or of the modulated drift condition involved in the next sections.

To illustrate what can be deduced for Markov chains from this section, let us complete the
probabilistic Theorem A stated at the end of Section 3. The following statement follows from
Corollary 4.8 and Theorem 4.14 restricted to the absorbing and µR−full set H := {h∞

R = 0}:
Theorem B. Let (Xn)n≥0 be a Markov chain on (X,X ) with stationary distribution π.
Assume that Assumption (∗) of Theorem A holds, and that (Xn)n≥0 is aperiodic, i.e.: There
do not exist an integer d ≥ 2, a π−full absorbing set E ∈ X and sets C0, . . . , Cd−1 in X such
that (with the convention Cd = C0)

E =
d−1⊔
ℓ=0

Cℓ with ∀ℓ = 0, . . . , d− 1, ∀x ∈ Cℓ, Px
(
X1 ∈ Cℓ+1

)
= 1.

Then the following convergence in total-variation distance holds for π−almost every x ∈ X:

lim
n→+∞

sup
A∈X

∣∣Px(Xn ∈ A)− π(1A)
∣∣ = 0.

5 Modulated drift condition and Poisson’s equation

Throughout this section, the Markov kernel P is assumed to satisfy the first-order minoriza-
tion condition (Mν,ψ). Then, the following V1−modulated drift condition is introduced:
PV0 ≤ V0 − V1 + bψ with some measurable function V0 : X→[1,+∞) and the so-called mod-
ulated measurable function V1 : X→[1,+∞). The minorization condition is the first pillar in
this work, this modulated drift condition is the second one. Note that the modulated drift
condition is a re-enforcement of the drift inequality (48) of Proposition 4.19.

Under the minorization Condition (Mν,ψ) and the V1−modulated drift condition, the
convergence of the series

∑+∞
k=0R

kV1 is proved in Theorem 5.3. Then the series
∑+∞

k=0R
k1X

converges point-wise since 1X ≤ V1, so that the function h∞
R := limnR

n1X (see (20)) is zero
on X. Under the same assumptions it is also shown in Theorem 5.3 that the positive measure
µR given in (21) is finite, i.e. µR(1X) < ∞. Accordingly, when Condition (Mν,ψ) and the
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V1-modulated drift condition are assumed to hold, all the conclusions of Theorems 4.1, 4.3,
and Theorem 4.7 or 4.12 hold true, that is:

(i) The P−harmonic functions are constant on X.

(ii) P is irreducible (see (29)) and recurrent (see (27)).

(iii) The positive measure µR (see (21)) is finite (i.e. µR(1X) <∞) and satisfies µR(ψ) = 1.
Moreover it is the unique (up to a positive multiplicative constant) P−invariant positive
measure η such that η(ψ) <∞.

(iv) πR := µR(1X)
−1µR (see (26)) is the unique P−invariant probability measure on (X,X ),

we have πR(ψ) > 0, and P is Harris-recurrent (see (36)).

(v) The convergence in total variation of Theorem 4.7 or Theorem 4.12, depending on
whether P is aperiodic or periodic, holds.

Actually the convergence of the series
∑+∞

k=1R
kV1 gives more, in particular it naturally

provides solutions to the so-called Poisson’s equation (Theorem 5.4). This is the main moti-
vation of this section.

5.1 Modulated drift condition Dψ(V0, V1)

Let us introduce the following condition for any couple (V0, V1) of measurable functions from
X to [1,+∞):

∃ψ ∈ B∗
+, ∃b0 ≡ b0(V0, V1, ψ) > 0 : PV0 ≤ V0 − V1 + b0ψ. (Dψ(V0, V1))

This condition is said to be a V1−modulated drift condition for P , and V0 and V1 inDψ(V0, V1)
are called Lyapunov functions for P . The functions V0, V1, ψ are assumed to be everywhere
finite, so the function PV0 is too. It is worth noticing that the modulated function V1
must be larger than one for the results of this section to hold. In fact, it is only required
that V0 is non-negative and V1 is uniformly bounded from below by a positive constant.
Indeed, if PV ′

0 ≤ V ′
0 − V ′

1 + b′ψ for some positive constant b′ and some measurable functions
V ′
0 ≥ 0 and V ′

1 ≥ c1X with c > 0, then Condition Dψ(V0, V1) holds with V1 := V ′
1/c ≥ 1X,

V0 := 1X+V ′
0/c ≥ 1X and b0 := b′/c > 0. Moreover observe that if Conditions Dϕ(V0, V1) for

some ϕ ∈ B∗
+ is satisfied then Dψ(V0, V1) holds for any ψ ∈ B∗

+ such that ψ ≥ ϕ (using any
constant b0(V0, V1, ψ) larger than b0(V0, V1, ϕ)).

In the special case ψ := 1S for some S ∈ X ∗, the above condition writes as

∃S ∈ X ∗, ∃b0 ≡ b0(V0, V1, 1S) > 0 : PV0 ≤ V0 − V1 + b01S . (D1S (V0, V1))

Note that Condition D1S (V0, V1) implies that V0 ≥ V1 on S
c. In fact Condition D1S (V0, V1) is

equivalent to : There exists S ∈ X ∗ such that supx∈Sc Γ(x) ≤ 0 and supx∈S Γ(x) <∞ with the
measurable finite function Γ(x) := (PV0)(x)−V0(x)+V1(x). Thus, if Condition D1S (V0, V1)
holds, then any constant b0(V0, V1, 1S) ≥ supx∈S Γ(x) may be chosen. Finally recall that
Conditions (Mν,1S ) and D1S (V0, V1) are the most classical minorization/drift assumptions
in the literature.

Let us return to Markov kernel P satisfying the assumptions of Proposition 3.1. Then both
Conditions (Mν,1S ) and (Mν,ψS

) hold with ν ∈ M∗
+,b and ψS ≥ 1S given in (15). Moreover, if
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P satisfiesD1S (V0, V1), then ConditionDψS
(V0, V1) holds since ψS ≥ 1S . The next statement

ensures that the constant b0(V0, V1, ψS) may be chosen smaller than b0(V0, V1, 1S).

Proposition 5.1 Let P satisfy the assumptions of Proposition 3.1 and Condition D1S (V0, V1)
for some couple (V0, V1) of Lyapunov functions on X. Then P satisfies Condition DψS

(V0, V1)
with ψS ≥ 1S given in (15), and we can choose

b0(V0, V1, ψS) ≤ b0(V0, V1, 1S). (55)

Proof. Since ψS defined in (15) is such that ψS ≥ 1S we already quoted that P also satisfies
Condition DψS

(V0, V1). Next, set

b0(V0, V1, ψS) := sup
x∈S

Γ(x)

ψS(x)
with Γ(x) := (PV0)(x)− V0(x) + V1(x).

Since ψS ≥ 1S , we have b0(V0, V1, ψS) ≤ supx∈S Γ(x) ≤ b0(V0, V1, 1S). □

Example 5.2 (Geometric drift condition) Let us introduce the following so-called V−geo-
metric drift condition (to be discussed in Section 6):

∃ψ ∈ B∗
+, ∃δ ∈ (0, 1), ∃b ∈ (0,+∞) : PV ≤ δV + b ψ (Gψ(δ, V ))

where V : X→[1,+∞) is a measurable function. Again recall that the most classical case is
when ψ := 1S for some S ∈ X ∗, that is

∃S ∈ X ∗, ∃δ ∈ (0, 1), ∃b ∈ (0,+∞) : PV ≤ δV + b 1S . (G1S (δ, V ))

Observe that Gψ(δ, V ) implies that PV ≤ V − (1 − δ)V + b ψ, so that P satisfies the
V1−modulated drift Condition Dψ(V0, V1) with V0 := V/(1− δ), V1 := V and b0 := b/(1− δ).

5.2 Series of the residual kernel iterates

Under Conditions (M ν,ψ)–Dψ(V0, V1) the following theorem provides relevant properties on
the non-negative kernel

∑+∞
k=0R

k involving the residual kernel R, from which further state-
ments on P and πR are obtained. Moreover the bounds (57a)-(57b) below are crucial for
the study of Poisson’s equation in the next subsection. The constant used under Condi-
tions (M ν,ψ)-Dψ(V0, V1) in Theorems 5.3 and 5.4 is the following one:

d0 := max

(
0,
b0 − ν(V0)

ν(1X)

)
. (56)

Theorem 5.3 Let P satisfy Conditions (Mν,ψ)–Dψ(V0, V1). Then the following non-negative
function series and their integral w.r.t. the measure ν satisfy

0 ≤
+∞∑
k=0

Rk1X ≤
+∞∑
k=0

RkV1 ≤ V0 + d01X ≤ (1 + d0)V0 (57a)

0 ≤
+∞∑
k=0

ν
(
Rk1X

)
≤

+∞∑
k=0

ν
(
RkV1

)
≤ ν(V0) + d0ν(1X) ≤ (1 + d0) ν(V0) <∞. (57b)

Moreover the conclusions (i)-(v) provided at the beginning of this section hold true, as well
as the following additional assertions:
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(vi) The unique P−invariant probability measure πR is such that πR(V1) <∞.

(vii) If πR(V0) <∞, then πR(V1) ≤ b0 πR(ψ) ≤ b0 where b0 is the constant in Dψ(V0, V1).

(viii) if PV1/V1 is bounded on X, i.e. PBV1 ⊂ BV1, then the P−harmonic functions in BV1
(i.e. g ∈ BV1 such that Pg = g) are constant on X.

Inequalities (57a)-(57b), thus the non-negative constant d0 in (56), will play a crucial role for
the bounds of solutions to Poisson equation in Subsection 5.3 and for the rates of convergence
in Section 8. Recall that the constant d0 depends on the minorizing measure ν in (M ν,ψ)
and on the constant b0(V0, V1, ψ) in Dψ(V0, V1).

Proof. From Condition Dψ(V0, V1) we obtain that

RV0 = PV0 − ν(V0)ψ ≤ V0 − V1 +
(
b0 − ν(V0)

)
ψ,

equivalently V1 ≤ V0 −RV0 + (b0 − ν(V0))ψ,

from which we derive that

∀n ≥ 1, 0 ≤
n∑
k=0

RkV1 ≤
n∑
k=0

RkV0 −
n+1∑
k=1

RkV0 +
(
b0 − ν(V0)

) n∑
k=0

Rkψ (58)

≤ V0 + d01X

using the definition and the non-negativity of d0 and finally (24). This provides Inequalities
(57a) observing that V ≤ (1 + d0)V0, and (57b) is then obtained using the monotone con-
vergence theorem. Next, the point-wise convergence of the first series in (57a) proves that
h∞

R := limnR
n1X = 0 (see (20)), while the convergence of the first series in (57b) reads as

µR(1X) =
∑+∞

k=0 ν(R
k1X) < ∞ (see (21)). Recall that the conclusions (i)-(v) provided at the

beginning of this section then follows from Theorems 4.1, 4.3, 4.7 and 4.12. Now prove the
additional assertions (vi)-(viii). That πR(V1) <∞ follows from the definition of πR and from
the second inequality in (57b) which provides µR(V1) <∞. To prove (vii), note that

πR(PV0) = πR(V0) ≤ πR(V0)− πR(V1) + b0πR(ψ)

from the P−invariance of πR and Dψ(V0, V1). Finally the proof of (viii) follows the same
lines as for Assertion 1. of Theorem 4.1, replacing the function 1X with V1 and observing
that P (BV1) ⊂ BV1 , thus R(BV1) ⊂ BV1 , when PV1/V1 is bounded on X. Indeed, first

recall that ψ̃ :=
∑+∞

k=0R
kψ = ν(1X)

−11X from (35) since h∞
R = 0. Now let g ∈ BV1 be

such that Pg = g. Using R(BV1) ⊂ BV1 and proceeding as in Lemma 3.3, we obtained
that ν(g)

∑n
k=0R

kψ = g − Rn+1g for every n ≥ 1. Moreover we have limnR
ng = 0 since

|Rng| ≤ Rn|g| ≤ ∥g∥V1RnV1 and limnR
nV1 = 0 from (57a). Thus g = ν(g)ψ̃, from which it

follows that g is constant. □

5.3 Poisson’s equation

When P satisfies Conditions (M ν,ψ) andDψ(V0, V1), recall that πR given in (26) is the unique
P−invariant probability measure on (X,X ).

Theorem 5.4 Let P satisfy Conditions (Mν,ψ)–Dψ(V0, V1) and let R ≡ Rν,ψ be the associ-
ated residual kernel given in (13). Then the following assertions hold.
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1. For any g ∈ BV1, the function series g̃ :=
∑+∞

k=0R
kg absolutely point-wise converges on X.

Moreover we have g̃ ∈ BV0, more precisely we have

|g̃| ≤ ∥g∥V1
(
V0 + d01X

)
(59a)

and ∥g̃∥V0 ≤ (1 + d0)∥g∥V1 . (59b)

where the non-negative constant d0 is defined in (56).

2. For any g ∈ BV1 such that πR(g) = 0, the function g̃ satisfies Poisson’s equation

(I − P )g̃ = g. (60)

Let h ∈ BV1 and let h0 := h− πR(h)1X be the associated πR−centred function. Then the

function h̃0 =
∑+∞

k=0R
kh0 belongs to BV0 and satisfies Poisson’s equation (I − P )h̃0 = h0.

Moreover the following bounds hold

|h̃0| ≤ ∥h∥V1
(
1 + πR(V1)

)(
V0 + d01X

)
≤ ∥h∥V1

(
1 + πR(V1)

)(
1 + d0

)
V0.

This follows from Theorem 5.4 applied to g := h0, observing that we have from the triangular
inequality

∥h0∥V1 ≤ ∥h∥V1
(
1 + πR(V1)

)
.

Proof. Let g ∈ BV1 . Using |g| ≤ ∥g∥V1V1 and |Rkg| ≤ Rk|g| ≤ ∥g∥V1RkV1 for k ≥ 1,
Assertion 1. follows from (57a). Next, note that πR(|g|) < ∞ since πR(V1) < ∞ from
Assertion (vi) of Theorem 5.3. Now define

∀n ≥ 1, g̃n :=
n∑
k=0

Rkg.

Then, using P = R+ ψ ⊗ ν we have

g̃n − P g̃n = g̃n −Rg̃n − ν(g̃n)ψ = g −Rn+1g − ν(g̃n)ψ. (61)

We know that limnR
n+1g = 0 (pointwise convergence) from the convergence of the se-

ries
∑+∞

k=0R
kg. Moreover, using ν(g̃n) =

∑n
k=0 ν(R

kg) and µR(V1) < ∞, we obtain that
limn→+∞ ν(g̃n) = µR(g) from Lebesgue’s theorem w.r.t. the measure ν. Finally, for every
x ∈ X, we have limn(P g̃n)(x) = (P g̃)(x) from Lebesgue’s theorem applied to the sequence
(g̃n)n w.r.t. the probability measure P (x, dy) since limn g̃n = g̃, |g̃n| ≤ ∥g∥V1V0 (from As-
sertion 1.) and (PV0)(x) < ∞. Taking the limit when n goes to infinity in (61), we get
that

(I − P )g̃ = g − µR(g)ψ. (62)

Next, if we assume that πR(g) = 0, then Equality (62) rewrites as (I − P )g̃ = g since
µR(g) = πR(g)/πR(ψ) = 0 from (26). Theorem 5.4 is proved. □

For g ∈ BV1 such that πR(g) = 0, the solution g̃ :=
∑+∞

k=0R
kg in BV0 to Poisson’s equation

(I − P )g̃ = g in Theorem 5.4 is not πR−centred a priori, i.e. πR(g̃) ̸= 0. The natural way to
get a πR−centred solution is to define ĝ = g̃−πR(g̃)1X, but we then need to assume that g̃ is
πR−integrable. Accordingly, to obtain such a πR−centred solution to Poisson’s equation in
general terms, the assumption πR(V0) <∞ must be made.
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Corollary 5.5 Let P satisfy Conditions (Mν,ψ)–Dψ(V0, V1) with πR(V0) < ∞. For any
g ∈ BV1 such that πR(g) = 0, set g̃ :=

∑+∞
k=0R

kg. Then the function ĝ = g̃ − πR(g̃)1X is a
πR−centered solution on BV0 to Poisson’s equation (I − P )ĝ = g. Moreover we have

∥ĝ∥V0 ≤ (1 + d0)
(
1 + πR(V0)

)
∥g∥V1 (63)

where the non-negative constant d0 is given in (56).

Proof. Let g ∈ BV1 be such that πR(g) = 0. Obviously we have ĝ ∈ BV0 and πR(ĝ) = 0.
Moreover we obtain that (I − P )ĝ = (I − P )g̃ = g from Theorem 5.4 and (I − P )1X = 0.
Finally we have

∥ĝ∥V0 ≤
(
1 + πR(V0) ∥1X∥V0

)
∥g̃∥V0 ≤ (1 + d0)

(
1 + πR(V0)

)
∥g∥V1 (64)

using the definition of ĝ, the triangular inequality and |g̃| ≤ ∥g̃∥V0V0 for the first inequality,
and the bound (59b) applied to g̃ for the second one. □

Let g ∈ BV1 be such that πR(g) = 0. Under the assumptions of Corollary 5.5, when a
πR−centred solution g ∈ BV0 to Poisson’s equation (I − P )g = g is known, and when two
solutions to Poisson’s equation in BV0 differ from an additive constant, then we have g = ĝ, so
that the bound (63) applies to g. Of course such a solution g may be obtained independently
of the function g̃. For instance it can be given by g =

∑+∞
k=0 P

kg provided that this series
point-wise converges and defines a function of BV0 . Note that the choice of the minorizing
measure ν and of the function ψ used in Conditions (Mν,ψ) and Dψ(V0, V1) of Corollary 5.5
naturally has an impact on the constant d0 in (63).

Remark 5.6 Recall that, under Conditions (Mν,ψ)–Dψ(V0, V1), the function h
∞
R := limnR

n1X
(see (20)) is zero from the convergence of the first series in (57a), so that ψ̃ :=

∑+∞
k=0R

kψ =
ν(1X)

−11X from (35). So the presence of the term ν(1X)
−1 in the general bound (59b) is quite

natural (it is not due to the proof of Theorem 5.4). This does not mean that the bound of
the V0− norm of solutions to Poisson’s equation could not be improved. But in fact this last
question is not well formulated since solutions to Poisson’s equation are not unique, and the
solutions given in Theorem 5.4 are very specific: they are defined from the residual kernel R,
in particular they are not πR−centred (see Corollary 5.5).

Remark 5.7 Assume that P satisfies Conditions (M ν,1S )–D1S (V0, V1) with V0 ≥ V1 and
inf V0 = 1. Then we have d0 = 0 in the bound (59b) of Theorem 5.4 if, and only if, S is an
atom, i.e. ∀a ∈ S, ν(dy) = P (a, dy). Indeed, if S is an atom, then P satisfies D1S (V0, V1)
with b0 = ν(V0) since V0 ≥ V1. Thus d0 = 0. To prove the converse implication, note that

ν(1X)
−1 = ν(1X)

−1∥1X∥V0 ≤ (1 + d0)∥1S∥V1 ≤ (1 + d0)

from (59b) applied to g := 1S and (35) with here ψ := 1S. Hence, if d0 = 0, then ν(1X) ≥ 1.
Thus S is an atom since, for every a ∈ S, the non-negative measure ηa(dy) = P (a, dy)−ν(dy)
satisfies ηa(1X) ≤ 0, so that ηa = 0.

5.4 Further statements

Under Conditions (Mν,ψ) and for any couple (V,W ) of measurable functions from X to
[1,+∞) such that ν(V ) < ∞, let us introduce the following residual-type modulated drift
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condition involving the residual kernel R ≡ Rν,ψ given in (13):

RV ≤ V −W. (Rν,ψ(V,W ))

Note that ConditionRν,ψ(V,W ) rewrites as PV ≤ V −W+ν(V )ψ, which is a specific instance
of Condition Dψ(V,W ) with b0 = ν(V ). The next simple lemma shows that Dψ(V0, V1)
generates a residual-type modulated drift condition up to slightly modify V0. This has been
already observed under the weaker drift condition (48) in the proof of Proposition 4.19.

Lemma 5.8 If P satisfies Conditions (M ν,ψ) and Dψ(V0, V1), then we have ν(V0) <∞, and
the residual kernel R ≡ Rν,ψ given in (13) satisfies Condition Rν,ψ(V0,d0 , V1) with V0,d0 :=
V0 + d01X ≥ V0 where d0 := max

(
0, (b0 − ν(V0))/ν(1X)

)
.

Note that d0 in Lemma 5.8 and also in Lemma 5.9 below is the non-negative constant already
given in (56).

Proof. We already quoted that PV0 is everywhere finite under Condition Dψ(V0, V1), so that
0 ≤ ν(V0)ψ(x) ≤ (PV0)(x) for every x ∈ X from (Mν,ψ). Then it follows that the function
RV0 is well-defined and is everywhere finite. Note that ν(V0,d0) = ν(V0) + d0ν(1X) <∞ and
that PV0,d0 = PV0 + d01X. We get from the definitions of R and V0,d0

RV0,d0 = PV0,d0 − ν(V0,d0)ψ = PV0 + d01X −
(
ν(V0) + d0 ν(1X)

)
ψ

≤ V0 − V1 + b0ψ + d01X −
(
ν(V0) + d0 ν(1X)

)
ψ (from Assumption Dψ(V0, V1))

= V0,d0 − V1 +
(
b0 − ν(V0)− d0 ν(1X)

)
ψ

≤ V0,d − V1 (from the definitions of d0).

Hence the proof is complete. □

Under Conditions (Mν,ψ)-Dψ(V0, V1) and the additional condition πR(V0) < ∞, the se-
quence (PnV0)n≥1 is shown to be bounded in (BV0 , ∥ · ∥V0) in the following lemma.

Lemma 5.9 Let P satisfy Conditions (Mν,ψ)–Dψ(V0, V1) with πR(V0) <∞. Then we have
for every n ≥ 1:

PnV0 ≤ V0 +
∥ψ∥1X

(
πR(V0) + d0

)
πR(ψ)

1X with ∥ψ∥1X := sup
x∈X

ψ(x), d0 := max

(
0,
b0 − ν(V0)

ν(1X)

)
.

Proof. It follows from Lemma 5.8 that RV0,d0 ≤ V0,d0 with V0,d0 := V0 + d01X and R ≡ Rν,ψ
in (13). Using the non-negativity of R and iterating this inequality gives: ∀n ≥ 1, RnV0,d0 ≤
V0,d0 . From Formula (17) and 0 ≤ P kψ ≤ ∥ψ∥1X 1X, we obtain that

∀n ≥ 1, PnV0,d0 = RnV0,d0 +
n∑
k=1

ν(Rk−1V0,d0)P
n−kψ ≤ V0,d0 + ∥ψ∥1X µR(V0,d0)1X

with µR = πR/πR(ψ) given in (26). This provides the desired inequality using the definition
of V0,d0 , P1X = 1X and πR(V0) <∞. □

Now, given any measurable function V1 : X→[1,+∞), we present a necessary and sufficient
condition for P to satisfy a V1−modulated drift condition.
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Proposition 5.10 Assume that P satisfies Condition (Mν,ψ). Let V1 : X→[1,+∞) be any
measurable function. Then there exists a measurable function V0 : X→[1,+∞) such that P
satisfies Dψ(V0, V1) if and only if

∀x ∈ X, Ṽ1(x) :=

+∞∑
k=0

(RkV1)(x) <∞ and ν(Ṽ1) <∞ (65)

where R ≡ Rν,ψ is the residual kernel in (13).

Proof. If P satisfies Condition Dψ(V0, V1) for some Lyapunov function V0, then (65) holds

true from Theorem 5.3 (in fact we know that Ṽ1 ≤ c V0 for some positive constant c). Con-

versely, if V1 satisfies (65) with R ≡ Rν,ψ in (13), then we have (RṼ1)(x) = Ṽ1(x) − V1(x)
for every x ∈ X from the monotone convergence theorem w.r.t. the measure R(x, dy). Hence

Condition Rν,ψ(Ṽ1, V1) holds. Then Condition Dψ(Ṽ1, V1) holds with b0 := ν(Ṽ1). □

The next statement completes Theorem 3.6.

Proposition 5.11 Assume that P satisfies Condition (Mν,ψ) and is irreducible. Then the
three equivalent conditions 1., 2. and 3. of Theorem 3.6 are also equivalent to the following
one: There exists a P−absorbing and µR−full set A ∈ X such that the restriction of P to
A satisfies the modulated drift condition DψA

(VA, 1A) for some measurable function VA :
A→[1,+∞), where ψA is the restriction of ψ to A.

If P satisfies the minorization condition (Mν,ψ), is irreducible and admits an invariant prob-
ability measure η, then we have η = πR from Theorem 3.14, and all the conclusions of
Theorem 5.3 then hold on some P−absorbing and πR−full set thanks to Proposition 5.11.

Proof. Under Condition (Mν,ψ), let R ≡ Rν,R be the residual kernel defined in (13). Assume
that Condition 2. of Theorem 3.6 holds, i.e. µR(1X) < ∞. Define on X the function V :=∑+∞

k=0R
k1X taking its value in [0,+∞] a priori. Since ν(V ) = µR(1X) <∞, the set

A :=
{
x ∈ X : V (x) <∞

}
is non-empty. Moreover, if x ∈ A, then we have (RV )(x) < ∞ since (RV )(x) = V (x) − 1
from the monotone convergence theorem w.r.t. the measure R(x, dy). We then obtain that
(PV )(x) = (RV )(x) + ν(V )ψ(x) = V (x) − 1 + ν(V )ψ(x) < ∞. This proves that A is
P−absorbing. Since P is irreducible, A is µR−full from Proposition 3.15. Furthermore,
the previous equality proves that the restriction of P to A satisfies the modulated drift
condition DψA

(VA, 1A) where VA is the restriction of V to the set A.

Conversely assume that the condition provided in Proposition 5.11 holds. Using the fact
that A is P−absorbing and proceeding as in the proof of Corollary 4.5, it can be proved that
the restriction PA of P to A satisfies on A the minorization condition (MνA,ψA

) with small-
function ψA and minorizing measure νA defined as the restriction of ν to A. Then it follows
from Theorem 5.3 applied to the Markov kernel PA that there exists a unique PA-invariant
probability measure ηA on A and that ηA(ψA) > 0 (apply Assertion (iv) to PA). Next let
us define the following positive measure on (X,X ): ∀B ∈ X , η(1B) := ηA(1A∩B). Since A
is P−absorbing, η is a P -invariant probability measure, and we have η(ψ) = ηA(ψA) > 0.
Consequently Condition 1. of Theorem 3.6 holds for P and Proposition 5.11 is proved. □
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Under Conditions (Mν,ψ)–Dψ(V0, V1), the next statement provides a necessary and suffi-
cient condition for the (unique) P−invariant probability measure πR given in (26) to satisfy
πR(V0) <∞.

Proposition 5.12 Let P satisfy Conditions (Mν,ψ)–Dψ(V0, V1). Then the two following
conditions are equivalent:

1. πR(V0) <∞.

2. There exists a P−absorbing and πR−full set A ∈ X and a measurable function L ≥ V0 on A
such that the restriction PA of P to A satisfies the modulated drift condition DψA

(L, V0|A),
where V0|A (resp. ψA) is the restriction of V0 (resp. of ψ) to A.

Proof. The proof follows the same limes as for Proposition 5.11. Let R ≡ Rν,R be the
residual kernel given in (13). Assume that πR(V0) <∞ and define on X the [0,+∞]−valued

function Ṽ0 :=
∑+∞

k=0R
kV0. Then Ṽ0 ≥ V0, and the following equality holds in [0,+∞]:

RṼ0 = Ṽ0−V0. Note that there exists x ∈ X such that Ṽ0(x) <∞ since ν(Ṽ0) = µR(V0) <∞
from πR(V0) < ∞, where µR :=

∑+∞
k=0 νR

k (see (26)). Now define the non-empty set A :=

{x ∈ X : Ṽ0(x) < ∞} ∈ X . Let x ∈ A. Then we have (RṼ0)(x) < ∞ from (RṼ0)(x) =

Ṽ0(x) − V0(x), so that (PṼ0)(x) = (RṼ0)(x) + ν(Ṽ0)ψ(x) < ∞. Thus P (x,A) = 1. This
proves that A is P−absorbing. Since P is irreducible from Theorem 5.3, A is πR−full from
Proposition 3.15. Moreover the restriction L := Ṽ0|A of Ṽ0 to A is a measurable function on
A satisfying RL = L− V0 on A, so that the restriction PA of P to A satisfies the modulated
drift condition DψA

(L, V0|A) as stated in Assertion 2. of Proposition 5.12.

Conversely assume that P satisfies Assertion 2. Then, proceeding as in the proof of
Corollary 4.5, we know that PA satisfies on A the minorization condition (M νA,ψA

) where
νA is the restriction of the minorizing measure ν to A. Thus it follows from Assertion (vi)
of Theorem 5.3 applied to PA under Condition (M νA,ψA

) and DψA
(L, V0|A) that the unique

PA−invariant probability measure, say πA, is such that πA(V0|A) <∞. Using the fact that πR

is the unique P− invariant probability measure, we then obtained that πA is the restriction
of πR to A and that πR(V0) = πA(V0|A) <∞ since A is P−absorbing and πR−full. □

We conclude this subsection proving that the bound πR(V1) ≤ b0 πR(ψ) in Assertion (vii)
of Theorem 5.3 holds even when V0 is not πR−integrable.

Proposition 5.13 Let P satisfy Conditions (Mν,ψ)–Dψ(V0, V1). Then πR(V1) ≤ b0 πR(ψ).

Proof. Let W1 := V0 − PV0 + b0ψ. Note that W1 ≥ V1. Since P obviously satisfies Condi-
tion Dψ(V0,W1) we know from Assertion (vi) of Theorem 5.3 that πR(W1) < ∞. Thus the
function V0 − PV0 is πR−integrable. Since V0 − RV0 = V0 − PV0 + ν(V0)ψ, we obtain that
V0 −RV0 is πR−integrable too. Moreover we know from Lemma 5.8 that RV0,d0 ≤ V0,d0 with
V0,d0 := V0 + d01X and d0 := max(0, (b0 − ν(V0))/ν(1X)). Iterating this inequality provides:
∀k ≥ 1, RkV0,d0 ≤ V0,d0 , thus R

kV0 ≤ V0 + d01X. This shows that ν(RkV0) < ∞ for every
k ≥ 0. Next note that V0 − PV0 and V0 −RV0 are also µR−integrable since µR := µR(1X)πR

(see (26)). Therefore it follows from the definition of µR that the series
∑+∞

k=0 ν(R
k(V0−RV0))
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converges, so that

µR(V0 −RV0) := lim
n→+∞

n∑
k=0

ν
(
Rk(V0 −RV0)

)
= lim

n→+∞

n∑
k=0

[
ν
(
RkV0

)
− ν(Rk+1V0)

]
= ν(V0)− lim

n→+∞
ν
(
Rn+1V0

)
from which we deduce that

µR(V0 − PV0) = µR(V0 −RV0)− ν(V0)µR(ψ) = − lim
n→+∞

ν
(
RnV0

)
≤ 0

since µR(ψ) = 1 and ν(RnV0) ≥ 0. Finally we obtain from the definition of W1 that

πR(V1) ≤ πR(W1) = πR(V0 − PV0) + b0πR(ψ) ≤ b0πR(ψ)

since πR(V0 − PV0) = µR(1X)
−1µR(V0 − PV0) ≤ 0. □

5.5 Further comments and bibliographic discussion

Condition D1S (V0, V1), extended here to Dψ(V0, V1), is the so-called V1-modulated drift con-
dition, e.g. see Condition (V3) in [MT09, p. 343]. Although the functions V0, V1 in Dψ(V0, V1)
satisfy V0 ≥ V1 in general, this condition is not useful in this section. Such drift conditions
was first introduced for infinite stochastic matrices in [Fos53] to study the return times to a
set. Still in discrete case, further developments based on drift conditions were proposed in
[Ken51, Mau57, Pak69] with the aim of studying ergodicity or recurrence properties. The use
of modulated drift conditions was extended to general state space in [Twe75]. An historical
background on this subject is provided in [MT09, p. 198] and [DMPS18, p. 96, 164, 337]. The
main results of this section have been presented in [HL25a]: Here the proof of Theorem 5.3 is
slightly simplified using (24), moreover an intermediate bound is added in (59a) to facilitate
bibliographic comments of Section 11. Again note that the non-negativity of the residual
kernel R plays a crucial role in Theorem 5.3 since the point-wise convergence of the series in
(57a) is simply obtained bounding the partial sums (see (58)).

Under the V1−modulated drift condition D1S (V0, V1) w.r.t. some petite set S ∈ X , the
existence of a solution ξ ∈ BV0 to Poisson’s equation (I − P )ξ = g was proved in [GM96,
Th. 2.3] for every πR−centred function g ∈ BV1 , together with the bound ∥ξ∥V0 ≤ c0 ∥g∥V1
for some positive constant c0 (independent of g). When S is an atom, the solution ξ in
[GM96, Th. 2.3] can be expressed in terms of the first hitting time in S, and the non-
atomic case is solved in [GM96] via the splitting method. Under the irreducibility and
aperiodicity conditions, Glynn-Meyn’s theorem is related to point-wise convergence of the
series

∑+∞
k=0 P

kg, see [MT09, Th. 14.0.1]. With regard to the above two representations of
solutions to Poisson’s equation, the reader may consult the recent article [GI24]. To the
best of our knowledge the constant c0 in [GM96, Th. 2.3] was unknown. In [Num91] the
link between solutions to Poisson’s equation (I − P )ξ = g and the residual potential series∑+∞

k=0R
kg was highlighted in an abstract framework involving harmonic functions for both

R and P . No modulated drift condition is used in [Num91], so that the convergence of the
previous series must be assumed to hold and no bound for this series is provided there. The
study of Poisson’s equation via taboo potential theory has been developed in an even more
abstract context in [Nev72, Rev84]. In our work this potential approach is restricted to
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the residual kernel under the first-order minorization condition (Mν,ψ) and the modulated
condition Dψ(V0, V1).

The works [HL25a] and more recently [GLL25] seem to be the first ones providing an
explicit bound in Poisson’s equation, which was previously known only in the atomic case:
see [LL18, Prop. 1] for a discrete state-space X. Thus, the novelty of Theorem 5.4 and Corol-
lary 5.5 already proved in [HL25a] is to provide a simple and explicit bound in Poisson’s
equation in the non-atomic case. Under the first-order minorization condition, the constants
in the analogue of Bound (59a) in [GLL25] are very close to ours, and even possibly slightly
tighter in particular cases, see [GLL25, Sec. 4] where the bounds are compared for the random
walks on the half line. The paper [GLL25] based on a randomized stopping time also provides
an explicit and simple bound of solutions to Poisson’s equation under higher-order minoriza-
tion condition (in place of Condition (Mν,ψ)). Such an extension is proved in Subsection 11.2
(see Theorem 11.12) using again the series of the iterates of a residual kernel. However the
bound obtained in Theorem 11.12 is not as simple and accurate as in [GLL25], see Subsec-
tion 11.3. Still with the aim of studying Poisson’s equation, an alternative approach based
on the use of several first-order small-functions is proposed in Subsection 11.1.

Let us briefly discuss the Central Limit Theorem (C.L.T.), which is a standard topic
where Poisson’s equation is useful. If (Xn)n∈N is a Markov chain with state space X and
invariant distribution π, then a measurable π−centred real-valued function g on X is said to
satisfy the C.L.T. under Pη for some initial probability measure η (i.e. η is the probability
distribution ofX0) when the asymptotic distribution of n−1/2Sn(g) with Sn(g) =

∑n−1
k=0 g(Xk)

is the Gaussian distribution N (0, σ2g) for some positive constant σ2g , called the asymptotic
variance of g. We refer to [Jon04] for a general overview on the Markovian C.L.T. and its
relationship with drift and mixing conditions. In our context, [DMPS18, Chap. 21] is a nice
and comprehensive account on the C.L.T. and the classical approach via Poisson’s equation.
Here, in link with Corollary 5.5, we just recall the following classical C.L.T. proved in [GM96]
for Markov chains satisfying a modulated drift condition:

Glynn-Meyn’s C.L.T. [GM96]: If the transition kernel P of the Markov chain
(Xn)n∈N satisfies Conditions (Mν,ψ)–Dψ(V0, V1) with V1 ≤ V0, πR(V

2
0 ) < ∞, and

if η is any initial probability measure, then every πR−centred function g ∈ BV1 satisfies
the C.L.T. under Pη with asymptotic variance given by σ2g = 2πR(gĝ) − πR(g

2), where
ĝ ∈ BV0 is the solution to Poisson’s equation (I − P )ĝ = g provided by Corollary 5.5.

The condition πR(V
2
0 ) < ∞ is required for the function ĝ to be square πR−integrable in

order to apply the Markovian C.L.T. [DMPS18, Th. 21.2.5] under PπR , where πR is the
unique P−invariant probability measure from Theorem 5.3. The extension to any initial
probability measure follows from [DMPS18, Cor. 21.1.6] since P is Harris recurrent under
the assumptions of Corollary 5.5 from Theorem 5.3. A fairly comprehensive overview on
the asymptotic variance in Markov chain C.L.T. is provided in [HR07]. Moreover recall
that the finiteness of the asymptotic variance may be relevant beyond the C.L.T., e.g. see
[Atc16]. Note that the asymptotic variance σ2g can be upper bounded using the bound (63)
(see [HL25a, Cor. 2.7]).

To conclude this section let us make a few additional comments on the modulated drift
condition, which is the main assumption of this work together with the minorization condition.
If (Xn)n≥0 is a Markov chain with state space X and transition kernel P , then the modulated
drift condition has the following form when the modulated function V1 is constant and ψ = 1Vs
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for some s > 0 where Vs = {x ∈ X : V0(x) ≤ s} is the level set of order s w.r.t. the function V0:

sup
x∈Vs

Ex
[
V0(X1)

]
<∞ and ∃a > 0, ∀x ∈ X \ Vs, Ex

[
V0(X1)

]
≤ V0(x)− a. (66)

The second condition in (66) means that, for any r > s, each point x ∈ X such that V0(x) = r
transits in mean to a point of the level set Vr−a. For a random walk on N, it means that, for
i large enough, the steps of the walker starting from i are in mean strictly more to the left
than to the right, the gap being controlled by a fixed additive constant a > 0. Recall that
the weaker drift condition (54) was introduced in Proposition 4.19 to obtain limk R

k1X = 0.
The additive reduction by the positive constant a in (66) is the sole difference with (54),
but it is crucial for obtaining the convergence of the series

∑+∞
k=0R

k1X in Theorem 5.3. The
general modulated drift condition Dψ(V0, V1) corresponds to (66) with a positive term V1(x)
depending on x instead of the positive constant a.

Under the minorization condition (Mν,ψ), Theorem 3.14 and Proposition 5.11 show that, if
P is irreducible and admits an invariant probability measure π, then P satisfies a modulated
drift condition with V1(x) = 1 on some absorbing and π−full set. Hence modulated drift
condition is a natural assumption. In the discrete state space, any Markov kernel P satisfying
the standard communication property [MT09, p. 78] and admitting an invariant probability
measure π satisfies all the conclusions of Theorems 5.3, 5.4 and Corollary 5.5. Indeed S = {x}
for some state x may be chosen such that π(1{x}) > 0, and S = {x} is obviously a first-order
small-set. We have π = πR from Theorem 3.14. Next, it follows from Proposition 5.11 that P
satisfies all the conclusions of Theorem 5.3 on a P−absorbing and π−full set A ∈ X . In fact
we have A = X here: Indeed, otherwise any x ∈ A would satisfy Pn(x,Ac) = 0 for every n ≥ 1
with Ac ̸= ∅, which contradicts the communication property between any two states. Various
examples of discrete Markov models are presented in [Nor97, Bré99, Gra14]. In fact, many
of the above conclusions are milestones in Markov theory. In particular, Forster’s criterion
as a necessary and sufficient condition of existence of a P−invariant probability measure (or
for positive recurrence) for irreducible Markov kernels, is nothing else that a 1−modulated
drift condition. This explains why the minorization and drift conditions are so popular for
studying Markov models.

Note, however, that Proposition 5.11, as well as Proposition 5.10, are only of theoretical
interest. In practice the form of the Markov kernel P is directly taken into account to find
explicit functions V0 and V1 satisfying Condition Dψ(V0, V1). Finally, as shown for instance
for random walks on the half line in [JT03], recall that the condition πR(V0) < ∞ is not
automatically fulfilled under Condition Dψ(V0, V1). In fact, as proved in Proposition 5.12,
this additional condition πR(V0) < ∞ is closely related to an extra V0−modulated drift
condition. Finally recall that, under the sole condition PV0 ≤ V0 − V1 + b0 1X for some
Lyapunov functions V0, V1 and positive constant b0, we have πR(V1) ≤ b0 from [GZ08, Cor. 4].
This bound is proved in Proposition 5.13 under the stronger Conditions (Mν,ψ)–Dψ(V0, V1).
Also see [Hai21, Prop. 1.4] which provides, under the same assumptions as in [GZ08], a simple
proof of the property πR(V1) <∞ (without bound).

To conclude this section let us just illustrate properties (iv) and (v) stated at the beginning
of this section, by simply converting them into a probabilistic version:

Theorem C. Let (Xn)n≥0 be a Markov chain on (X,X ). Assume that there exists a non-
empty set S ∈ X such that

∀x ∈ S, Px(X1 ∈ A) ≥ ν(1A) and ∀x ∈ Sc, Ex[V0(X1)] ≤ V0(x)− V1(x)
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for some finite positive measure ν and measurable functions V0, V1 : X→[1,+∞) such that
V1 and x 7→ Ex[V0(X1)] are bounded from above on S. Then (Xn)n≥0 is Harris-recurrent
with unique stationary distribution π. Moreover, if (Xn)n≥0 is aperiodic, then the following
convergence in total-variation distance holds:

∀x ∈ X, lim
n→+∞

sup
A∈X

∣∣Px(Xn ∈ A)− π(1A)
∣∣ = 0.

6 V−geometric ergodicity

Let V : X→[1,+∞) be measurable. Recall that the V−geometric drift condition for P is

∃ψ ∈ B∗
+, ∃δ ∈ (0, 1), ∃b ∈ (0,+∞) : PV ≤ δV + b ψ (Gψ(δ, V ))

and that this condition provides the modulated drift Condition Dψ(V0, V1) with

V0 := V/(1− δ), V1 := V and b0 := b/(1− δ) (67)

(see Example 5.2). Now in this section, let us assume that P satisfies the first-order mi-
norization condition (Mν,ψ) and the geometric drift condition Gψ(δ, V ). It follows from
Theorem 5.3 and Condition Dψ(V0, V1) with V0, V1 and b0 given in (67) that the residual
kernel R ≡ Rν,ψ given in (13) fulfils the following properties

0 ≤
+∞∑
k=0

Rk1X ≤
+∞∑
k=0

RkV ≤ 1 + d0
1− δ

V with d0 := max

(
0,

b− ν(V )

ν(1X)(1− δ)

)
(68a)

0 ≤
+∞∑
k=0

ν
(
Rk1X

)
≤

+∞∑
k=0

ν
(
RkV

)
≤ (1 + d0)ν(V )

1− δ
<∞, (68b)

so that h∞
R = 0 and πR := µR(1X)

−1µR (see (26)) is the unique P−invariant probability
measure on (X,X ). Moreover we have from Conclusions (iii) and (vi) of Theorem 5.3 that

µR(ψ) = 1 and πR(V ) = πR(V1) <∞. (69)

Below a direct application of Theorem 5.4 and Corollary 5.5 for Poisson’s equation pro-
vides Corollary 6.1. Then, assuming further the aperiodicity condition (39), the so-called
V−geometric ergodicity is obtained in Subsection 6.2 using elementary spectral theory.

6.1 Poisson’s equation under the geometric drift condition

Corollary 6.1 Let P satisfy Conditions (Mν,ψ)–Gψ(δ, V ) and let R ≡ Rν,ψ be the associated
residual kernel given in (13). Then:

1. For any g ∈ BV , the function series g̃ :=
∑+∞

k=0R
kg absolutely converges on X (point-wise

convergence). Moreover we have g̃ ∈ BV and

∥g̃∥V ≤ 1 + d0
1− δ

∥g∥V with d0 := max

(
0 ,

b− ν(V )

ν(1X)(1− δ)

)
(70)

where δ, b are the constants given in Gψ(δ, V ).
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2. For every g ∈ BV such that πR(g) = 0, the function ĝ := g̃ − πR(g̃)1X is the unique
πR−centered function in BV solution to Poisson’s equation (I − P )ĝ = g, and we have

∥ĝ∥V ≤ (1 + d0) (1 + πR(V ))

1− δ
∥g∥V . (71)

For the sake of simplicity this statement is directly deduced below from Theorem 5.4 and
Corollary 5.5. A self-contained proof of Corollary 6.1 could be also developed starting from
(68a) and mimicking the proofs of Theorem 5.4 and Corollary 5.5.

Proof. Using the modulated drift condition Dψ(V0, V1) with V0, V1, b0 given in (67), it follows
from Assertion 1. of Theorem 5.4 that

∀g ∈ BV , ∥g̃∥V0 ≤ (1 + d0)∥g∥V with d0 := max

(
0,

b− ν(V )

ν(1X)(1− δ)

)
from which we deduce (70) since ∥ · ∥V0 = (1 − δ)∥ · ∥V . Now, apply Corollary 5.5 to prove
Assertion 2. First note that πR(V0) <∞ since V0 = V/(1−δ) and πR(V ) <∞ (see (69)). Next
we know from Corollary 5.5 that ĝ = g̃ − πR(g̃)1X is a πR−centered function in BV solution
to Poisson’s equation (I − P )ĝ = g. Moreover observe that πR(V0) ∥1X∥V0 = πR(V ) ∥1X∥V ≤
πR(V ). From the first inequality in (64) and again ∥ · ∥V0 = (1− δ)∥ · ∥V , we obtained that

∥ĝ∥V ≤
(
1 + πR(V )

)
∥g̃∥V

from which we deduce (71) using (70).

Finally it follows from Condition Gψ(δ, V ) that PV/V is bounded on X, i.e. PBV ⊂ BV ,
since the small-function ψ is bounded and 1X ≤ V . Then Assertion (viii) of Theorem 5.3
ensures that E1 := {g ∈ BV : Pg = g} = R · 1X. Hence two solutions to Poisson’s equation in
BV differ from an additive constant. Consequently ĝ is the unique πR−centered function in
BV solution to Poisson’s equation (I − P )ĝ = g. □

6.2 V−geometric ergodicity

Recall that, under Conditions (Mν,ψ)–Gψ(δ, V ), we have h∞
R = 0, so that the aperiodic-

ity condition (39) corresponds to the case d = 1 in Theorem 4.14. Now, under Condi-
tions (Mν,ψ)–Gψ(δ, V ) and (39), the so-called V−geometric ergodicity of P is proved below.
The proof is based on Inequalities (68a)–(68b), Corollary 6.1 and elementary spectral theory.
This requires to extend the definition of BV to complex-valued functions, that is: For every
measurable function g : X→C, set ∥g∥V := supx∈X |g(x)|/V (x) ∈ [0,+∞] where | · | stands
here for the modulus in C, and let us define

BV (C) :=
{
g : X→C,measurable such that ∥g∥V < ∞

}
.

Note that, under Condition Gψ(δ, V ), P defines a bounded linear operator on BV . Since
every function g in BV (C) writes as g = g1 + ig2 with g1, g2 ∈ BV , Pg is simply defined by
Pg = Pg1+ iPg2, so that P obviously defines a bounded linear operator on the Banach space
(BV (C), ∥ · ∥V ) too.

Theorem 6.2 Assume that P satisfies Conditions (Mν,ψ)–Gψ(δ, V ) and is aperiodic (see
(39)). Then P is V−geometrically ergodic, that is

∃ρ ∈ (0, 1), ∃cρ > 0, ∀g ∈ BV (C), ∀n ≥ 1, ∥Png − πR(g)1X∥V ≤ cρ ρ
n∥g∥V . (72)
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Note that the geometric rate of convergence in the case of uniform ergodicity (see Exam-
ple 3.7) corresponds to the 1X−geometric ergodicity.

Let g ∈ BV be such that πR(g) = 0. It follows from Property (72) that

+∞∑
k=0

∥P kg∥V ≤ c(1− ρ)−1∥g∥V <∞.

Consequently the function series g :=
∑+∞

k=0 P
kg absolutely converges in (BV , ∥ · ∥V ) and

∥g∥V ≤ c(1− ρ)−1∥g∥V .

Note that g is πR−centred and satisfies Poisson’s equation (I − P )g = g, so that g equals to
the function ĝ of Corollary 6.1. Inequality (71) then provides the following alternative bound:

∥g∥V ≤ (1 + d0) (1 + πR(V ))

1− δ
∥g∥V .

Now, the needed prerequisites in spectral theory are listed. Let L be a bounded linear
operator on a Banach space (L, ∥ · ∥):

(S1) The spectrum σ(L) of L: σ(L) := {z ∈ C : zI − L is not invertible} where I denotes
the identity map on L. Recall that σ(L) is a compact subset of C.

(S2) The operator-norm of L, still denoted by ∥L∥: ∥L∥ := sup{∥Lf∥ : f ∈ L, ∥f∥ ≤ 1}.

(S3) The spectral radius r(L) of L: r(L) := max{|z| : z ∈ σ(L)},
and Gelfand’s formula: r(L) = limn ∥Ln∥1/n.

Under the assumptions of Theorem 6.2, Lemmas 6.3–6.4 below show that, for any z ∈ C
such that |z| = 1 and z ̸= 1, the bounded linear operator zI − P on BV (C) is invertible.

Lemma 6.3 If P satisfies Conditions (M ν,ψ)–Gψ(δ, V ) and is aperiodic, then for any z ∈ C
such that |z| = 1 and z ̸= 1 the bounded linear operator zI − P on BV (C) is one-to-one.

Proof. Let z ∈ C be such that |z| = 1 and assume that zI − P on BV (C) is not one-to-one,
that is: there exists g ∈ BV (C), g ̸= 0, such that (zI − P )g = 0. Below this is proved to be
only possible for z = 1, which provides the desired result. Let g ∈ BV (C), g ̸= 0, be such
that (zI −P )g = 0. Since P , thus R, defines a bounded linear operator on the Banach space
(BV (C), ∥ · ∥V ), Equality (46) of Lemma 4.16 can be proved similarly, that is we have:

∀n ≥ 0, ν(g)
n∑
k=0

z−(k+1)Rkψ = g − z−(n+1)Rn+1g.

Moreover we know from Assertion 1. of Corollary 6.1 that the series g̃ :=
∑+∞

k=0R
kg point-wise

converges on X, thus: limk R
kg = 0 (point-wise convergence). Hence we have g = ν(g)ψ̃z,

with ψ̃z :=
∑+∞

k=0 z
−(k+1)Rkψ. Recall that ψ̃z is bounded on X from Proposition 3.4. Thus

g is bounded on X, so that z is an eigenvalue of P on B(C) and ρ(z) = 1 from Lemma 4.16,
where ρ(·) is defined (38). Since the aperiodicity condition corresponds to the case d = 1 in
Theorem 4.14, it follows that z = 1 from Assertion (a) of Theorem 4.14. □
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Lemma 6.4 If P satisfies Conditions (Mν,ψ)-Gψ(δ, V ) and is aperiodic, then for every z ∈
C such that |z| = 1 and z ̸= 1 the bounded linear operator zI − P on BV (C) is surjective.

Proof. Let z ∈ C be such that |z| = 1 and g ∈ BV . Define

∀n ≥ 1, g̃n,z :=
n∑
k=0

z−(k+1)Rkg.

Using P = R+ ψ ⊗ ν we obtain that

zg̃n,z − P g̃n,z = z g̃n,z −Rg̃n,z − ν(g̃n,z)ψ = g − z−(n+1)Rn+1g − ν(g̃n,z)ψ. (73)

Moreover we have

lim
n→+∞

g̃n,z = g̃z :=
+∞∑
k=0

z−(k+1)Rkg (point-wise convergence) (74)

with g̃z ∈ BV (C) since

+∞∑
k=0

|z−(k+1)Rkg| ≤ ∥g∥V
+∞∑
k=0

RkV ≤ c V with c = (1 + d0)(1− δ)−1

from the second inequality in (68a). Also note that, for any x ∈ X, we have (PV )(x) < ∞
from Condition Dψ(V0, V1), and that |g̃n,z| ≤ c V . It then follows from Lebesgue’s theorem
w.r.t. the probability measure P (x, dy) that limn(P g̃n,z)(x) = (P g̃z)(x). Finally we have

lim
n→+∞

ν(g̃n,z) = lim
n→+∞

n∑
k=0

z−(k+1)ν(Rkg) = µz(g) :=
+∞∑
k=0

z−(k+1)ν(Rkg)

since the last series converges from |z−(k+1)ν(Rkg)| ≤ ∥g∥V ν(RkV ) and (68b). Then, when n
growths to +∞ in Equality (73) (point-wise convergence on X), we obtain that (zI −P )g̃z =
g − µz(g)ψ. With g := ψ this provides (zI − P )ψ̃z =

(
1− µz(ψ)

)
ψ with

ψ̃z :=
+∞∑
k=0

z−(k+1)Rkψ ∈ BV (C) and µz(ψ) =
+∞∑
k=0

z−(k+1)ν(Rkψ) = ρ(z−1)

where ρ(·) is defined (38). Since z ̸= 1 and d = 1 (aperiodicity condition), we know from
Assertion (a) of Theorem 4.14 that ρ(z−1) ̸= 1. Thus

(zI − P )

(
g̃z +

µz(g)

1− µz(ψ)
ψ̃z

)
= g,

from which we deduce that zI − P is surjective. □

Proof of Theorem 6.2. Recall that πR(V ) < ∞ under the assumptions of Theorem 6.2 (see
(69)). Thus πR defines a bounded linear form on BV (C), so that B0 := {g ∈ BV (C) : πR(g) =
0} is a closed subspace of BV (C). Note that B0 is P−stable (i.e. P (B0) ⊂ B0) from the
P−invariance of πR. Let P0 be the restriction of P to B0. Assertion 2. of Corollary 6.1 shows
that I − P0 is invertible on B0. Next let z ∈ C be such that |z| = 1, z ̸= 1. It follows
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from Lemma 6.3 that zI − P0 is one-to-one. Now, let g ∈ B0. From Lemma 6.4 there exists
h ∈ BV (C) such that (zI − P )h = g. We have (z − 1)πR(h) = πR(g) = 0, thus πR(h) = 0
(i.e. h ∈ B0) since z ̸= 1. Hence zI − P0 is surjective.

We have proved that, for every z ∈ C such that |z| = 1, the bounded linear operator
zI − P0 is invertible on B0. Let r(P ) denote the spectral radius of P on BV (C). Recall
that r(P ) = limn(∥Pn∥V )1/n from Gelfand’s formula, where ∥ · ∥V denotes here the operator
norm on BV (C). We know that r(P ) ≤ 1 from Lemma 5.9 (in fact we have r(P ) = 1 since
P1X = 1X). Hence the spectral radius r0 = r(P0) of P0 on B0 is less than one too. In fact
we have r0 < 1 since the spectrum σ(P0) of P0 is a compact subset of C which, according to
the above, is contained in the unit disk of C and does not contain any complex number of
modulus one.

Let ρ ∈ (r0, 1). Since r0 = limn(∥Pn0 ∥0)1/n from Gelfand’s formula where ∥ · ∥0 denotes
the operator norm on B0, there exists a positive constant cρ such that: ∥Pn0 ∥0 ≤ cρ ρ

n. Thus

∀n ≥ 1, ∀g ∈ BV (C), ∥Png − πR(g)1X∥V = ∥Pn(g − πR(g)1X)∥V (from Pn1X = 1X)

= ∥Pn0 (g − πR(g)1X)∥V (since g − πR(g)1X ∈ B0)

≤ cρ ρ
n ∥g − πR(g)1X∥V

≤ cρ(1 + πR(V )) ρn ∥g∥V (75)

from triangular inequality and πR(|g|) ≤ πR(V )∥g∥V . This proves (72). □

6.3 Further comments and bibliographic discussion

A detailed and comprehensive history of geometric ergodicity, from the pioneering papers
[Mar06, Doe37, Ken59, VJ62] to modern works, can be found in [MT09, Sec. 15.6, 16.6]
and [DMPS18, Sec. 15.5]. Theorem 6.2 corresponds to the statement [MT09, Th. 16.1.2] and
[DMPS18, Th. 15.2.4], except that it is stated here with a first-order small-function instead of
a petite set. We have adopted the modern form of this statement using the weighted-normed
space BV , which was first proposed in this context by [Spi91, HS92] for discrete Markov
kernels. The proof of Theorem 6.2 is based on Poisson’s equation (Corollary 6.1), combined
with the well-known and elementary prerequisites (S1)-(S3) (p. 57) of spectral theory, which
can be found for example in [RS80, Yos95, HL99]. The V−geometric ergodicity is fully
addressed in [MT09, DMPS18] using renewal theory and Nummelin’s splitting construction.
Alternative proofs can be found in [RR04] based on coupling arguments, in [Bax05] based
on renewal theory, in [HM11] based on an elegant idea using Wasserstein distance, in the
recent paper [CnM23] based on the dual version of the geometric drift inequality, and finally
in [Wu04, Hen06, HL14a, Del17, HL20] based on spectral theory (quasi-compactness) whose
first founding ideas are already present in [DF37]. Note that the use of Wasserstein distance
in [HM11] requires the condition πR(1S) > 1/2 on the set S in (Mν,1S ) (see Subsection 8.5-F
for details). The link between geometric ergodicity for P (in a less advanced form than the
current version), and the residual potential kernel, was highlighted in [NT78, NT82]. We refer
to the recent paper [GHLR24] where 27 conditions for geometric ergodicity are discussed. We
also mention here that, although the statement [HL20, Prop. A.1.] concerning the existence
of a P−invariant probability measure under the geometric drift condition is true, its proof
presented in [HL20, App. A] is only valid for a weak Feller Markov kernel P .

Since the pioneer work [MT94] much effort has been made to find explicit constant c
and rate of convergence ρ in Inequality (72). Under Assumptions (Mν,ψ)–Gψ(δ, V ) and
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the strong aperiodicity condition, such an issue is fully addressed in [Bax05] via renewal
theory. Alternative computable upper bounds of the rate of convergence ρ can be found in
[LT96, RT99, RT00, Ros02] using splitting or coupling methods, and in [HL14b, HL24] using
spectral theory. We refer to [Qin24] for a recent review on various methods for deriving
convergence bounds for MCMC. Recall that any methods based on Hairer and Mattinglsy’s
result [HM11] are faced to the condition πR(1S) > 1/2 for the small-set S. In fact, extra
conditions on πR(1S) appear in others works related to geometric or polynomial rates of
convergence (see Section 8). For example the first part in the proof of [RR04, Th. 9] provides
a quantitative control on V−geometric rate of convergence under some additional condition
on the data in Assumptions (Mν,1S )–G1S (δ, V ): this condition actually requires that πR(1S)
is bounded from below by some explicit positive constant. Without this extra condition, the
convergence rate in [RR04, Th. 9] is no longer quantitative. Finally recall that converting
bounds on Wasserstein’s distance into (weighted) total variation bounds are generally based
on [MS10, Th. 12] which requires that the probability measures P (x, dy) have a density with
respect to some reference measure (see also [QH22]). In Section 9 the geometric rate of
convergence of the iterates of P is addressed. A theoretical result for P acting on a general
Banach space B is provided, and then applied to the cases B := BV , B := L2(πR) and
B := BV α for some suitable α ∈ (0, 1], under Conditions (Mν,ψ)–Gψ(δ, V ). This result
depends on the spectral radius rB of R on B and on the possible solutions to Equation
ρ(z−1) = 1 in the complex annulus {z ∈ C : rB < |z| < 1}, where ρ(·) is the power series
introduced in (38).

Poisson’s equation for V -geometrically ergodic Markov models is classically studied start-
ing from Inequality (72), which ensures that, for every g ∈ BV such that πR(g) = 0, the
function g :=

∑+∞
k=0 P

kg in BV is the unique πR−centred solution to Poisson’s equation
(I − P )g = g. A quite different development is proposed in this section: Indeed Pois-
son’s equation is first solved in Corollary 6.1 as a by-product of the modulated drift Condi-
tion Dψ(V0, V1) (see (67)). Next this study is used for proving the V−geometric ergodicity:
Indeed note that this prior study of Poisson’s equation plays a crucial role at the beginning
of the proof of Theorem 6.2 and that the convergent series in (68a)-(68b) are repeatedly used
in the proof of Lemmas 6.3-6.4. A standard use of Poisson’s equation is to prove a central
limit theorem (C.L.T.). Let P be a Markov kernel satisfying Conditions (Mν,ψ) and the
V−geometric drift condition Gψ(δ, V ). Then P satisfies Condition Dψ(V0, V1) with V0, V1, b0
given in (67). Consequently, if π(V 2) < ∞, then the conclusions of Glynn-Meyn’s C.L.T.,
recalled page 53, hold true (note that BV1 = BV here). Mention that the residual kernel
R and its iterates have been considered in [KM03] to investigate the eigenvectors belonging
to the dominated eigenvalue of the Laplace kernels associated with V−geometrically ergodic
Markov kernel P . This issue called ”multiplicative Poisson equation” in [KM03] is used to
prove limit theorems for the underlying Markov chain (also see [KM05]). This question is
not addressed in our work.

To conclude this section, let us give a probabilistic form of Theorem 6.2, considering the
case ψ := 1S to simplify:

Theorem D. Let (Xn)n≥0 be a Markov chain on (X,X ). Assume that there exists a non-
empty set S ∈ X such that

∀x ∈ S, Px(X1 ∈ A) ≥ ν(1A) and ∃δ ∈ (0, 1), ∀x ∈ Sc, Ex[V (X1)] ≤ δ V (x)

for some finite positive measure ν and Lyapunov function V such that x 7→ Ex[V (X1)] is
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bounded from above on S. Then (Xn)n≥0 admits a unique stationary distribution π, and
we have π(V ) < ∞. Moreover, if (Xn)n≥0 is aperiodic, then there exist ρ ∈ (0, 1) and
cρ ∈ (0,+∞) such that

∀g ∈ BV (C), ∀n ≥ 1, ∀x ∈ X,
∣∣Ex[g(Xn)]− π(g)

∣∣ ≤ cρ ρ
n∥g∥V V (x).

7 Perturbation results

The main objective of this section is the control of the deviation between the invariant
probability measure of a reference Markov kernel and the invariant probability measure of
some Markov kernel which is thought of as a perturbation of the reference one. Thus the
bounds on the gap on the invariant probability measures are expected to be expressed in
function of that on the Markov kernels. To be consistent, such a bound must converge to
0 when the perturbed kernel converges (in some sense) to the reference one. Throughout
this section, the reference Markov kernel is assumed to satisfy the first-order minorization
condition (Mν,ψ) and the V1−modulated drift condition Dψ(V0, V1). The control of the gap
on the invariant probability measures is in norm ∥ · ∥′V1 and ∥ · ∥TV (see (8)). The basic tools
are: First the fact that, for two Markov kernels P and K with respective invariant probability
measures π and κ, we have

∀g ∈ BV1 , κ(g)− π(g) = κ((K − P )ξ)

where the function ξ is any solution to Poisson’s equation (I − P )ξ = g − π(g)1X; Second
the control of the solution to Poisson’s equation provided by Theorem 5.4. Recall that any
Markov kernel satisfying both minorization and modulated drift conditions has a unique
invariant probability measure (see the introducing part of Section 5 for a list of properties
satisfied by such a Markov kernel).

7.1 Main results

First, let us present a statement based on Theorem 5.4 on Poisson’s equation. It gives an
estimate in norm ∥ · ∥′V1 and ∥ · ∥TV of the gap between the invariant probability of a Markov
kernel P satisfying Conditions (Mν,ψ)–Dψ(V0, V1) and the invariant probability measure κ
of any Markov kernel K on (X,X ) satisfying ∥KV0∥V0 <∞ and κ(V0) <∞.

Proposition 7.1 Assume that P satisfies Conditions (M ν,ψ)–Dψ(V0, V1), with P−invariant
probability measure denoted by π. Let K be a Markov kernel on (X,X ) with (any) invariant
probability measure κ such that ∥KV0∥V0 <∞ and κ(V0) <∞. Assume that the non-negative
function ∆V0 defined on X by

∀x ∈ X, ∆V0(x) := ∥P (x, ·)−K(x, ·)∥′V0

is X−measurable. Then

∥κ− π∥′V1 ≤ (1 + d0)(1 + π(V1)∥1X∥V1)κ(∆V0) (76)

where d0 := max(0, (b0 − ν(V0))/ν(1X)) and π(V1) <∞.
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The function ∆V0 on X quantifying the gap between the two Markov kernels is assumed to
be X−measurable in Proposition 7.1. In the other statements of this subsection (Proposi-
tion 7.2, Theorem 7.3), such a measurability assumption on the corresponding “gap function”
is also introduced. It turns out that, when X is countably generated, the “gap function” is
X−measurable. We refer to Subsection 7.4 for some details.

Proof. Recall that ∥PV0∥V0 < ∞ from Dψ(V0, V1), so that ∆V0 and κ(∆V0) are well-defined
under the assumptions of Proposition 7.1.

Let g ∈ BV1 be such that ∥g∥V1 ≤ 1. Since π(V1) <∞ from Assertion (vi) of Theorem 5.3,
π(g) is well-defined. Introduce g0 := g− π(g)1X and the residual kernel R := P −ψ⊗ ν. Let
g̃0 :=

∑+∞
k=0R

kg0 be the function in BV0 provided by Therorem 5.4. Then we have

κ
(
(K − P

)
g̃0) = κ(g̃0)− κ(g̃0 − g0) = κ(g0) = κ(g)− π(g) (77)

using the K−invariance of κ, the Poisson equation (I − P )g̃0 = g0 from Theorem 5.4, and
finally the definition of g0. It follows from the definition of the X−measurable function ∆V0

that

|κ(g)− π(g)| ≤
∫
X

∣∣(Kg̃0)(x)− (P g̃0)(x)
∣∣κ(dx) ≤ ∥g̃0∥V0

∫
X
∆V0(x)κ(dx) = ∥g̃0∥V0κ(∆V0).

Finally we know from Theorem 5.4 that ∥g̃∥V0 ≤ (1 + d0)∥g0∥V1 with d0 defined in (59b), so
that

∥g̃0∥V0 ≤ (1 + d0) ∥g − π(g)1X∥V1 ≤ (1 + d0)
(
1 + π(V1)∥1X∥V1

)
from which we deduce (76). □

Now let {Pθ}θ∈Θ be a family of transition kernels on (X,X ), where Θ is an open subset of
some metric space. Let us fix some θ0 ∈ Θ. The family {Pθ, θ ∈ Θ \ {θ0}} must be thought
of as a family of transition kernels which are perturbations of Pθ0 and which converges (in
a certain sense) to Pθ0 when θ→ θ0. To that effect, when Pθ0 satisfies Conditions (Mν,ψ)–
Dψ(V0, V1) and ∥PθV0||V0 <∞ for any θ ∈ Θ \ {θ0}, we can define

∀θ ∈ Θ, ∀x ∈ X, ∆θ,V0(x) := ∥Pθ0(x, ·)− Pθ(x, ·)∥′V0 . (78)

As a direct consequence of Proposition 7.1, we obtain the following perturbation result.

Proposition 7.2 Assume that the Markov kernel Pθ0 satisfies Conditions (Mν,ψ)–Dψ(V0, V1),
and let πθ0 be the Pθ0−invariant probability measure. Suppose that, for every θ ∈ Θ \ {θ0},
we have ∥PθV0∥V0 < ∞ and that there exists a Pθ−invariant probability measure πθ such
that πθ(V0) < ∞. Finally assume that the non-negative function ∆θ,V0 defined in (78) is
X−measurable for any θ ∈ Θ. Then we have the two following bounds

∥πθ − πθ0∥′V1 ≤ (1 + d0) cθ0 πθ(∆θ,V0) (79a)

∥πθ − πθ0∥TV ≤ 2 (1 + d0) πθ(∆θ,V0) (79b)

with d0 := max
(
0, (b0 − ν(V0))/ν(1X)

)
and cθ0 := 1 + πθ0(V1)∥1X∥V1 < ∞. If πθ0(V0) < ∞

then cθ0 ≤ 1 + b0∥1X∥V1.

Proof. Under these assumptions, the bound in (79a) directly follows from Proposition 7.1
applied to (P,K) := (Pθ0 , Pθ) with θ ̸= θ0. If πθ0(V0) < ∞ then cθ0 ≤ 1 + b0∥1X∥V1 from
Assertion (vii) of Theorem 5.3.
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When Condition Dψ(V0, V1) is satisfied, so is Condition Dψ(V0, 1X) since V1 ≥ 1X. Thus,
the bound (79a) also holds with V1 := 1X and then provides the control of the total variation
error since ∥πθ − πθ0∥TV = ∥πθ − πθ0∥′1X . Then, using πθ0(1X) = 1, ∥1X∥1X = 1, so that
cθ0 = 2, we obtain the estimate for ∥πθ − πθ0∥TV in (79b). □

Note that the bounds in (79a)–(79b) are of interest only when the term πθ(∆θ,V0) is com-
putable and can be proved to converge to 0 when θ→ θ0. Now, the objective is to pro-
pose fair assumptions under which the convergence of the deviation between πθ and πθ0 to
zero can be derived from the following natural condition of closeness between Pθ and Pθ0 :
limθ→ θ0 ∆θ,V0(x) = 0 for any x ∈ X. A way is to reinforce the knowledge on the Markov
kernel Pθ for θ ̸= θ0. It turns out that, in many perturbation problems, not only does Pθ0
satisfies minorization and modulated drift conditions, but so all other transition kernels in the
family {Pθ}θ∈Θ. Such instances are provided by the standard perturbation schemes of Sub-
section 7.3. Thus, let us introduce the following minorization and modulated drift conditions
w.r.t. the family {Pθ}θ∈Θ: for every θ ∈ Θ

∃ψθ ∈ B∗
+, ∃νθ ∈ M∗

+,b, Pθ ≥ ψθ ⊗ νθ, (Mθ)

and there exists a couple (V0, V1) of Lyapunov functions such that, for every θ ∈ Θ

∃bθ > 0, PθV0 ≤ V0 − V1 + bθ ψθ. (Dθ(V0, V1))

Under Condition Dθ(V0, V1), we have PθV0 ≤ (1 + bθ)V0 so that the function ∆θ,V0 defined
in (78) is well-defined for any θ ∈ Θ. Finally, under the additional conditions supθ∈Θ bθ <∞
and infθ∈Θ νθ(1X) > 0, let us introduce the following positive constant

d := max

(
0, sup
θ∈Θ

bθ − νθ(V0)

νθ(1X)

)
. (80)

In Theorem 7.3 below, each Markov kernel Pθ is assumed to satisfy Conditions (Mθ)–
Dθ(V0, V1). Thus the Pθ−invariant probability measure denoted by πθ in these two state-
ments is given by (26) with ν := νθ and Rθ := Pθ − ψθ ⊗ νθ.

Theorem 7.3 Assume that, for every θ ∈ Θ, Pθ satisfies Conditions (Mθ)–Dθ(V0, V1) and
that b := supθ∈Θ bθ <∞ and infθ∈Θ νθ(1X) > 0. For any θ ∈ Θ, the Pθ−invariant probability
measure πθ is assumed to satisfy πθ(V0) < ∞. Finally, the non-negative function ∆θ,V0

defined in (78) is assumed to be X−measurable.

Then we have

∀θ ∈ Θ, ∥πθ0 − πθ∥′V1 ≤ (1 + d)min
{
cθ0 πθ(∆θ,V0) , cθ πθ0(∆θ,V0)

}
(81a)

∥πθ − πθ0∥TV ≤ 2 (1 + d) min
{
πθ(∆θ,V0) , πθ0(∆θ,V0)

}
(81b)

with d defined in (80) and with

cθ := 1 + πθ(V1)∥1X∥V1 ≤ 1 + b ∥1X∥V1 . (82)

Moreover, if the following convergence holds

∀x ∈ X, lim
θ→ θ0

∆θ,V0(x) = 0, (∆V0)

then we have
lim
θ→ θ0

∥πθ − πθ0∥′V1 = 0 and lim
θ→ θ0

∥πθ − πθ0∥TV = 0.

63



Proof. Let θ ∈ Θ. Recall that ∥PθV0∥V0 <∞ fromDθ(V0, V1). It is assumed that πθ(V0) <∞
and that the function ∆θ,V0 is X−measurable. Thus Proposition 7.1 can be applied to
(P,K) := (Pθ0 , Pθ) and to (P,K) := (Pθ, Pθ0), which provides Inequality (81a). The bounds
in (81b) are derived from (81a) as in Proposition 7.2. The assumption πθ(V0) <∞ allows us to
obtain as in Proposition 7.2 that cθ ≤ 1+bθ∥1X∥V1 . Thus (82) holds with b := supθ∈Θ bθ <∞.

Next, we have

lim
θ→ θ0

πθ0(∆θ,V0) = lim
θ→ θ0

∫
X
∆θ,V0(x)πθ0(dx) = 0 (83)

from Lebesgue’s theorem using ∆θ,V0 ≤ 2(1 + b)V0, πθ0(V0) < ∞ and Assumption (∆V0).
Then we obtain that limθ→ θ0 ∥πθ − πθ0∥′V1 = 0 and limθ→ θ0 ∥πθ − πθ0∥TV = 0 from the
second bound in (81a)-(81b) and from the inequality (82). □

Let us stress that, in our perturbation context, πθ0 is (generally) unknown and πθ is
expected to be known, so πθ(∆θ,V0) to be computable. Thus, the bounds of interest in
(81a)-(81b) are the following ones

∥πθ − πθ0∥′V1 ≤ (1 + d) cθ0 πθ(∆θ,V0) ≤ (1 + d)(1 + b∥1X∥V1)πθ(∆θ,V0)

∥πθ − πθ0∥TV ≤ 2 (1 + d) πθ(∆θ,V0).

The convergence of πθ0(∆θ,V0) to 0 when θ→ θ0 in (83) is of theoretical interest here. It is
used to prove that limθ→ θ0 ∥πθ − πθ0∥′V1 = limθ→ θ0 ∥πθ − πθ0∥TV = 0 in Theorem 7.3.

7.2 Examples

Let us illustrate the results of Theorem 7.3 through the two following examples where the
set of parameters Θ is assumed to be some open metric space.

7.2.1 Geometric drift conditions

In the perturbation context, under Condition (Mθ) for any θ ∈ Θ, the standard geomet-
ric drift conditions for some Lyapunov function V are the following ones (see Gψ(δ, V ) in
Example 5.2):

∀θ ∈ Θ, ∃δθ ∈ (0, 1), ∃Cθ > 0, PθV ≤ δθ V + Cθ ψθ. (84)

Moreover suppose that C := supθ∈ΘCθ < ∞ and δ := supθ∈Θ δθ ∈ (0, 1). Since PθV ≤
δ V + C ψθ for any θ ∈ Θ, we know from Example 5.2 that

∀θ ∈ Θ, PθV0 ≤ V0 − V1 + b ψθ

with V0 := V/(1−δ), V1 := V and b := C/(1−δ), that is Condition Dθ(V0, V1) is satisfied for
any θ ∈ Θ. Thus, we know from Theorem 5.3 that the unique Pθ−invariant probability πθ is
such that πθ(V1) = πθ(V ) < ∞ for any θ ∈ Θ. Let θ0 ∈ Θ be fixed. Assume that the non-
negative function ∆θ,V0 is X−measurable for any θ ∈ Θ. Consequently, if infθ∈Θ νθ(1X) > 0
where νθ ∈ M∗

+,b is given in (Mθ), then the familly {Pθ}θ∈Θ satisfies the assumptions of
Theorem 7.3 which provides a control of ∥πθ − πθ0∥′V and ∥πθ − πθ0∥TV. Finally, we have
limθ→ θ0 ∥πθ − πθ0∥′V = 0 and limθ→ θ0 ∥πθ − πθ0∥TV = 0, provided that Condition (∆V ) is
satisfied.
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7.2.2 Random walk on the half line

For any θ ∈ Θ, let us consider the random walk {X(θ)
n }n∈N on the half line X := [0,+∞)

given by

X
(θ)
0 ∈ X and ∀n ≥ 1, X(θ)

n := max
(
0, X

(θ)
n−1 + ε(θ)n

)
(85)

where {ε(θ)n }n≥1 is a sequence of independent and identically distributed R-valued random

variables assumed to be independent of X
(θ)
0 and to have a parametric probability density

function pθ w.r.t. the Lebesgue measure on R. The transition kernel associated with {Xθ
n}n∈N

is given by

∀x ∈ X, ∀A ∈ X , Pθ(x,A) = 1A(0)

∫ −x

−∞
pθ(y) dy +

∫ +∞

−x
1A(x+ y) pθ(y) dy. (86)

Next define the following Lyapunov functions on X:

∀x ∈ X, W ′(x) = (1 + x)2, V ′
0(x) = 1 + x and V1(x) = 1.

Assume that

m2 := sup
θ∈Θ

E
[
|ε(θ)1 |2

]
<∞ and ∃x0 > 0, sup

θ∈Θ

∫ +∞

−x0
y pθ(y) dy < 0. (87)

Let θ0 ∈ Θ be fixed. Here the state space is X := [0,+∞) equipped with its Borel
σ−algebra X which is countably generated. Therefore for any Lyapunov function on X, say
V , and for any θ ∈ Θ, the non-negative function on X, x 7→ ∆θ,V (x) := ∥Pθ(x, ·)−Pθ0(x, ·)∥′V ,
is X−measurable. Next, we have for every x ∈ X

(PθV
′
0)(x)− V ′

0(x) =

∫ −x

−∞
pθ(y) dy +

∫ +∞

−x
(1 + x+ y) pθ(y) dy − (1 + x)

= −x
∫ −x

−∞
pθ(y) dy +

∫ +∞

−x
y pθ(y) dy

≤
∫ +∞

−x
y pθ(y) dy. (88)

Let us introduce from (87)

c′0 := − sup
θ∈Θ

∫ +∞

−x0
y pθ(y) dy > 0.

Then we obtain from (87) and (88)

∀x > x0, (PθV
′
0)(x)− V ′

0(x) ≤ −c′0V1(x)
and ∀x ∈ [0, x0], (PθV

′
0)(x)− V ′

0(x) + c′0V1(x) ≤
√
m2 + c′0V1(x) =

√
m2 + c′0,

that is
PθV

′
0 ≤ V ′

0 − c′0V1 + (c′0 +
√
m2) 1[0,x0]. (89)
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Next, we get in a similar way that, for any x ∈ X,

(PθW
′)(x)−W ′(x)

=

∫ −x

−∞
pθ(y) dy +

∫ +∞

−x
(1 + x+ y)2 pθ(y) dy − (1 + x)2

=
(
1− (1 + x)2

) ∫ −x

−∞
pθ(y) dy + 2(1 + x)

∫ +∞

−x
y pθ(y) dy +

∫ +∞

−x
y2 pθ(y) dy

≤ 2 (1 + x)

∫ +∞

−x
y pθ(y) dy +

∫ +∞

−x
y2 pθ(y) dy. (90)

Using the above constants m2, c
′
0 and x0, we obtain

∀x > x0, (PθW
′)(x)−W ′(x) ≤ −2 c′0 V

′
0(x) +m2.

Then it follows from this inequality and from (90) that there exists x1 > 0, which only
depends on m2, c

′
0 such that

∀x > s := max(x0, x1), (PθW
′)(x)−W ′(x) ≤ −c′0 V ′

0(x)

and ∀x ∈ [0, s], (PθW
′)(x)−W ′(x) + c′0 V

′
0(x) ≤ 2

√
m2 V

′
0(x) +m2 + c′0V

′
0(x)

≤ (2
√
m2 + c′0)(1 + s) +m2,

that is
PθW

′ ≤W ′ − c′0V
′
0 +

(
(1 + s)(c′0 + 2

√
m2) +m2

)
1[0,s]. (91a)

Since s ≥ x0, we can use in (89) the same compact set [0, s] so that

PθV
′
0 ≤ V ′

0 − c′0V1 + (c′0 +
√
m2) 1[0,s]. (91b)

It follows from (91b) that Pθ, for any θ ∈ Θ, satisfies Condition Dθ(V0, V1) with ψθ := 1[0,s],
with Lyapunov functions V1 := 1X and V0 := V ′

0/c
′ for c′ := min(1, c′0), and finally with

b0 := supθ∈Θ bθ ≤ (
√
m2 + c′0)/c

′. Set S := [0, s]. Next assume that the following non-
negative function

∀y ∈ R, pS(y) := inf
θ∈Θ

inf
x∈S

pθ(y − x)

is positive on some open interval of R. Then, for every θ ∈ Θ, Pθ satisfies Condition (Mθ)
with ψθ := 1S and νθ := ν, where ν is the positive measure on R defined by

∀A ∈ X , ν(1A) :=

∫
X
1A(y) pS(y) dy

(see Proposition 3.1 for details). Note that both ψθ and νθ do not depend on θ here. Thus,
for every θ ∈ Θ, Pθ satisfies Conditions (Mθ)–Dθ(V0, V1) w.r.t. the Lyapunov functions V0
and V1 defined above, with b0 := supθ∈Θ bθ < ∞ and infθ∈Θ νθ(1X) = ν(1X) > 0. Moreover
any Pθ has a unique invariant probability measure denoted by πθ (see Assertion (iv) at the
beginning of Section 5).

To apply Theorem 7.3, it remains to prove that πθ(V0) < ∞, for every θ ∈ Θ. We have
from (91a) that Pθ satisfies Conditions (Mθ)–Dθ(W,V

′
0) with Sθ := S and with Lyapunov

functions V ′
0(x) = 1 + x and W (x) =W ′(x)/c. It follows Assertion (vi) of Theorem 5.3 that

πθ(V
′
0) <∞ so that πθ(V0) <∞ from V0 = V ′

0/c.
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Thus, we have proved that Theorem 7.3 applies under Assumptions (87) on the noise

process {ε(θ)n }n≥1. However, for these statements to be relevant, we have to investigate
the function ∆θ,V0 and the quantity πθ(∆θ,V0). To that effect, recall that pθ denotes the
probability density function of the noise. Now fix some θ0 ∈ Θ and define

∀θ ∈ Θ, ∀y ∈ R, ρθ(y) := |pθ(y)− pθ0(y)|,

δθ :=

∫
R
ρθ(y) dy and m1,θ :=

∫
R
|y| ρθ(y) dy.

Note that δθ ≤ 2. Let g ∈ BV0 be such that |g| ≤ V0. Then we have

∀x ∈ X,
∣∣(Pθg)(x)− (Pθ0g)(x)

∣∣ ≤ V0(0)

∫ −x

−∞
ρθ(y) dy +

∫ +∞

−x
V0(x+ y) ρθ(y) dy

≤ δθ
c′

+
1

c′

∫
R

(
1 + x+ |y|

)
ρθ(y) dy

≤ δθ
c′

+ δθV0(x) +
m1,θ

c′
.

Thus

∀x ∈ X, ∆θ,V0(x) ≤
δθ(1 + c′ V0(x)) +m1,θ

c′
.

Therefore Condition (∆V0) in Theorem 7.3 holds provided that

lim
θ→ θ0

(
δθ +m1,θ

)
= 0.

This is a natural assumption on the noise in our perturbation context, that is: When θ→ θ0,
the distribution of the perturbed noise converges to that of the unperturbed one in total
variation distance, as well as in weighted total variation norm.

Finally we have

∀θ ∈ Θ, πθ(∆θ,V0) ≤
δθ(1 + c′ πθ(V0)) +m1,θ

c′
.

Hence the following bound (see (81b))

∥πθ − πθ0∥TV ≤ 2 (1 + d) πθ(∆θ,V0) with d := max

(
0,
b0 − ν(V0)

ν(1X)

)
(92)

is of interest, provided that the quantities δθ, m1,θ and πθ(V0) are computable for θ ̸= θ0 and
that both δθ and m1,θ converge to 0 when θ→ θ0.

Note that, for this specific model, it follows from [JT03, Prop. 3.5] that

∀γ ∈ [2,+∞), E
[
(max(0, ε

(θ)
1 ))γ

]
<∞ ⇐⇒

∫
R
|x|γ−1 πθ(dx) <∞.

Therefore, under Conditions (87), the Lyapunov function V0 is expected to be the greatest
possible one providing Condition Dθ(V0, 1X) with πθ(V0) <∞ for any θ ∈ Θ.
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7.3 Application to standard perturbation schemes

In the two following perturbation schemes – the truncation of infinite stochastic matrices and
a state space discretization procedure of non-discrete models – the unperturbed Markov kernel
P := Pθ0 satisfies Conditions (Mν,1S )–D1S (V0, V1), that is the minorization and modulated
drift conditions for ψθ0 := 1S for some S ∈ X . Then it turns out that Pθ satisfies Condi-
tions (M ν,1S )–D1S (V0, V1) for any θ ∈ Θ. In this case the conditions b := supθ∈Θ bθ < ∞
and infθ∈Θ νθ(1X) > 0 of Theorem 7.3 are straightforward. Finally, note that the σ−algebra
X associated with the state spaces X involved in this subsection is countably generated. As
previously quoted, it follows that for any θ ∈ Θ, the function ∆θ,V0 quantifying the gap
between perturbed and unperturbed Markov kernels in Theorem 7.3, is X−measurable. We
will therefore no longer refer to this hypothesis here.

7.3.1 Application to truncation-augmentation of discrete Markov kernels

Let P := (P (x, y))(x,y)∈N2 be a Markov kernel on the discrete set X := N. Assume that P
satisfies Conditions (Mν,1S ) and D1S (V0, V1)

P ≥ 1S ⊗ ν and ∃b0 > 0, PV0 ≤ V0 − V1 + b01S

with S, ν and V0 such that:

� S is a finite subset of N and the support Supp(ν) of ν ∈ M∗
+,b is a finite subset of N,

� V0 := (V (x))x∈N is an unbounded and non-decreasing sequence with V (0) ≥ 1.

Thus P has a unique invariant probability measure denoted by π.

For any k ≥ 1, let Bk := {0, . . . , k} and Bk
c := N \ Bk. Recall that the k-th truncated

and arbitrary augmented matrix Pk of the (k + 1)× (k + 1) north-west corner truncation of
P is defined by

∀(x, y) ∈ Bk
2, Pk(x, y) := P (x, y) + P (x,Bk

c)κx,k({y}) (93)

where κx,k is some probability measure on Bk. A linear augmentation corresponds to the case
where κx,k ≡ κk only depends on k. The so-called first or last column linear augmentation
corresponds to the case when κk is the Dirac distribution at 0 and at k respectively. The
goal here is to prove that the P−invariant probability measure π can be approximated by
the Pk−invariant probability measure πk, with an explicit error control in function of the
integer k. Since P is an infinite matrix, first define the following extended Markov kernel P̂k
of Pk on N:

∀(x, y) ∈ N2, P̂k(x, y) := Pk(x, y) 1Bk×Bk
(x, y) + 1Bk

c×{0}(x, y).

Similarly, if πk is a Pk−invariant probability measure on Bk, then we define the extended
probability measure π̂k on N by

∀x ∈ N, π̂k(1{x}) := πk(1{x}) 1Bk
(x). (94)

The next lemma provides the expected results that π̂k is a P̂k−invariant probability measure,
which is the unique one provided that πk is the unique Pk−invariant probability measure.
The proof is postponed to Appendix C.
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Lemma 7.4 Let P be a Markov kernel on N, and, for any k ≥ 1, let Pk be the stochastic
matrix Pk given in (93). If πk is a Pk−invariant probability measure on Bk, then π̂k defined
in (94) is a P̂k−invariant probability measure on X. If Pk has a unique invariant probability
measure, then so is for P̂k.

Next, let k0 ∈ N be the smallest integer such that

S ⊂ Bk0 and Supp(ν) ⊂ Bk0 . (95)

Let us introduce the following family {Pθ}θ∈Θ of Markov kernels with θ0 := +∞

Θ := {k ∈ N : k ≥ k0} ∪ {+∞}, P+∞ := P, ∀θ ∈ {k ∈ N : k ≥ k0} : Pθ := P̂k. (96)

The next proposition provides assumptions under which the family {Pθ}θ∈Θ satisfies all the
assumptions of Theorem 7.3, so that all the conclusions of this theorem hold in the present
truncation context.

Proposition 7.5 Let P satisfy Conditions (Mν,1S )–D1S (V0, V1) with P−invariant probabil-
ity measure π such that π(V0) < ∞. Then, the family {Pθ}θ∈Θ defined in (96) satisfies all
the assumptions of Theorem 7.3 including (∆V0).

The proof of Proposition 7.5 is based on the following Lemmas 7.6-7.7.

Lemma 7.6 If P satisfies the conditions (M ν,1S )–D1S (V0, V1), then for every integer k ≥ k0,

the Markov kernel P̂k satisfies the same conditions (Mν,1S )–D1S (V0, V1). Thus, for any

k ≥ k0, P̂k and Pk have a unique invariant probability measure π̂k and πk.

Proof. Let k ≥ k0. For every x ∈ S and every A ⊂ N we have

P̂k(x,A) ≥
∑

y∈A∩Bk

P̂k(x, y) ≥
∑

y∈A∩Bk

P (x, y) = P (x,A ∩Bk) ≥ ν(1A∩Bk
) = ν(1A)

using successively x ∈ S ⊂ Bk0 ⊂ Bk and the definitions of P̂k and Pk, Assumption (M ν,1S ),

and finally Supp(ν) ⊂ Bk0 ⊂ Bk. This proves that P̂k satisfies Condition (Mν,1S ) with the
same S, ν as for P .

Now let us prove that P̂k satisfies Condition D1S (V0, V1) for any integer k ≥ 1. From

D1S (V0, V1) for P , it is sufficient to prove that P̂kV0 ≤ PV0. Recall that V0 := (V0(x))x∈N is

a non-decreasing sequence with V (0) ≥ 1. Let k ≥ 1. We have from the definition of P̂k

∀x ∈ Bk, (P̂kV0)(x) =
∑
y∈Bk

P (x, y)V0(y) + P (x,Bk
c)
∑
y∈Bk

κx,k(y)V0(y)

≤
∑
y∈Bk

P (x, y)V0(y) + P (x,Bk
c)

[
V0(k)

∑
y∈Bk

κx,k(y)

]
=
∑
y∈Bk

P (x, y)V0(y) +
∑
y∈Bk

c

P (x, y)V0(k)

≤
∑
y∈N

P (x, y)V0(y) = (PV0)(x) (97)
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since for any (y, z) ∈ Bk × Bk
c, V0(y) ≤ V0(k) ≤ V0(z) and since κx,k(·) is a probability

measure on Bk. Next, using the definition of P̂k, we have for any k ≥ 1

∀x ∈ Bk
c, (P̂kV0)(x) = V0(0).

Note that V0(0)1X ≤ V0 since V0 is non-decreasing. Then V0(0)P1X = V0(0)1X ≤ PV0 since
P is a non-negative kernel. Therefore, we have that (P̂kV0)(x) = V0(0) ≤ (PV0)(x) for any
x ∈ Bk

c. This proves that P̂k satisfies D1S (V0, V1). □

The next lemma states that Condition (∆V0) holds when P satisfies (Mν,1S )–D1S (V0, V1).

Lemma 7.7 If P satisfies Conditions (M ν,1S )–D1S (V0, V1), then Condition (∆V0) holds
true.

Proof. From the definition of P̂k and (93), we have for every x ∈ Bk

∆k,V0(x) =
∑
y∈N

∣∣P (x, y)− P̂k(x, y)
∣∣V0(y)

= P (x,Bk
c)
∑
y∈Bk

κx,k(y)V0(y) +
∑
y∈Bk

c

P (x, y)V0(y)

≤ P (x,Bk
c)V0(k) +

∑
y∈Bk

c

P (x, y)V0(y)

≤
∑
z∈Bk

c

P (x, z)V0(z) +
∑
y∈Bk

c

P (x, y)V0(y) ≤ 2
∑
y∈Bk

c

P (x, y)V0(y) (98)

since V0 is non-decreasing and κx,k(Bk) = 1. Now fix x ∈ N. Then it follows from (98)
applied to any k > x that limk∆k,V0(x) = 0 since

∑
y∈N P (x, y)V0(y) = (PV0)(x) < ∞ from

D1S (V0, V1). Thus Condition (∆V0) holds true. □

Finally, for the family {Pθ}θ∈Θ defined in (96), note that the Pθ−invariant probability
measure πθ for any θ ̸= θ0, is finitely supported so that πθ(V0) <∞. Since the Pθ0−invariant
probability measure πθ0 is assumed to satisfy πθ0(V0) < ∞ in Proposition 7.5, it follows
from Lemmas 7.6-7.7 that all the assumptions of Theorem 7.3 hold true. The proof of
Proposition 7.5 is complete.

7.3.2 Application to state space discretization

Assume that (X, d) is a separable metric space equipped with its Borel σ-algebra X , and that
P is a Markov kernel on (X,X ) of the form

∀x ∈ X, P (x, dy) = p(x, y)λ(dy), (99)

where p : X2→[0,+∞) is a measurable function and λ is a positive measure on X. Typically
X is Rd and λ is the Lebesgue measure on Rd. Let x0 ∈ X be fixed, and for every integer
k ≥ 1 consider any Xk ∈ X such that{

x ∈ X : d(x, x0) < k
}

⊆ Xk ⊆
{
x ∈ X : d(x, x0) ≤ k

}
.

Now let (δk)k≥1 ∈ (0,+∞)N be such that limk→+∞ δk = 0, and for any k ≥ 1 consider a finite
family {Xj,k}j∈Ik of disjoint measurable subsets of Xk such that

Xk =
⊔
j∈Ik

Xj,k with ∀j ∈ Ik, diam(Xj,k) ≤ δk (100)
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where diam(Xj,k) := sup
{
d(x, x′) : (x, x′) ∈ Xj,k

}
. The positive scalar δk must be thought

of as the mesh of the partition {Xj,k}j∈Ik of Xk. Define

∀k ≥ 1, ∀(x, y) ∈ X2, pk(x, y) := 1Xk
(y)
∑
i∈Ik

1Xi,k
(x) inf

t∈Xi,k

p(t, y).

Observe that pk ≤ p. Next define the following submarkovian kernel Q̂k on (X,X ):

∀x ∈ X, ∀A ∈ X , Q̂k(x,A) :=

∫
X
1A(y) pk(x, y)λ(dy)

=
∑
i∈Ik

(∫
Xk

1A(y) inf
t∈Xi,k

p(t, y)λ(dy)

)
1Xi,k

(x). (101)

Note that Q̂k(x, ·) = 0 if x ∈ Xkc := X \ Xk. Define φk := 1X − Q̂k1X. We have φk ≡ 1 on
Xkc, and 0 ≤ φk ≤ 1X since 0 ≤ Q̂k1X ≤ P1X = 1X. Then the kernel P̂k defined on (X,X ) by

∀x ∈ X, ∀A ∈ X , P̂k(x,A) := Q̂k(x,A) + 1A(x0)φk(x) (102)

is a Markov kernel. Let bk := 1Xk
c and let Fk be the finite-dimensional space spanned by

the system of functions Ck :=
{
1Xi,k

, i ∈ Ik
}
∪ {bk} which forms a basis of Fk. For every

measurable function f : X→R such that (P̂k|f |)(x) < ∞ for any x ∈ X, we have P̂kf ∈ Fk.
Define the linear map Pk : Fk→Fk as the restriction of P̂k to Fk. Let Nk := dimFk =
Card (Ik) + 1, and let Bk be the Nk ×Nk−matrix defined as the matrix of Pk with respect
to the basis Ck of Fk. The next lemmas states that Bk is a stochastic matrix and that a
P̂k−invariant probability measure can be derived from any invariant probability measure of
the finite stochastic matrix Bk. Their proofs are postponed in Appendix C.

Lemma 7.8 For any k ≥ 1, the matrix Bk is a stochastic matrix.

Thus, for any k ≥ 1, there exists a stochastic row-vector πk ∈ [0,+∞)Nk such that

πk Bk = πk. (103)

Note that Pkbk = Pk1Xk
c = P̂k1Xk

c = Q̂k1Xk
c + 1Xk

c(x0)φk = 0 (see (102)) so that the last
component of πk is zero. The component of πk associated with the element 1Xi,k

of the basis
Ck is denoted by πi,k, so that πk ≡ ({πi,k}i∈Ik , 0). For every k ≥ 1, set

π̂k(f) := πk Fk (104)

where Fk ≡ Fk(f) is the coordinate vector of P̂kf in the basis Ck.

Lemma 7.9 For any k ≥ 1, let πk be a Bk−invariant probability measure. Then π̂k defined
in (104) is a P̂k−invariant probability measure and can be written as

π̂k(dy) = pk(y)λ(dy) +

(
1−

∫
X
pk(y)λ(dy)

)
δx0 , (105a)

where δx0 is the Dirac distribution at x0 and pk is the non-negative function defined by

∀y ∈ X, pk(y) := 1Xk
(y)
∑
i∈Ik

πi,k inf
t∈Xi,k

p(t, y). (105b)
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Next, assume that there exist a positive integer k0 and s ∈ (0,+∞) such that the function

y 7→ gk0,s(y) := inf
x∈S

pk0(x, y) with S := {x ∈ X, d(x, x0) ≤ s} (106a)

is positive on a subset D ∈ X such that λ(1D) > 0. Then, define ν ∈ M∗
+,b by

∀A ⊂ X , ν(1A) :=

∫
X
1A(y) gk0,s(y)λ(dy). (106b)

The Markov kernels P and {P̂k}k≥k0 satisfy Condition (Mν,1S ) w.r.t. the above set S and
positive measure ν, i.e.

P (x,A) ≥ ν(1A) 1S(x) and ∀k ≥ k0, P̂k(x,A) ≥ ν(1A) 1S(x) (107)

since
∀k ≥ k0, ∀(x, y) ∈ S × X, p(x, y) ≥ pk(x, y) ≥ pk0(x, y) ≥ gk0,s(y).

Let us introduce the following family of Markov kernels {Pθ}θ∈Θ with θ0 := +∞ and

Θ := {k ∈ N : k ≥ k0} ∪ {+∞}, P+∞ := P, ∀θ ∈ {k ∈ N : k ≥ k0}, Pθ := P̂k. (108)

The next proposition provides assumptions under which this family {Pθ}θ∈Θ satisfies all the
assumptions of Theorem 7.3, so that all the conclusions of this theorem hold true in the
present context of state space discretization.

Proposition 7.10 Let P be the Markov kernel defined in (99) with a function p(·, ·) assumed
to be such that x 7→ p(x, y) is continuous on X for every y ∈ X. Assume that P satisfies
Condition D1S (V0, V1) with respect to S and ν given in (106a)–(106b) and to Lyapunov
functions Vi, i = 0, 1 on X of the form Vi(·) := vi

(
d(·, x0)

)
for some non-decreasing function

vi : [0,+∞)→[1,+∞). Moreover, assume that the P−invariant probability measure π is such
that π(V0) <∞.

Then the family {Pθ}θ∈Θ defined in (108) satisfies all the assumptions of Theorem 7.3 in-
cluding Condition (∆V0).

Recall that, from (107), the family {Pθ}θ∈Θ satisfies Condition (M ν,1S ) with S and ν given
in (106a)–(106b). The proof of Proposition 7.10 is complete using the two following lem-
mas. The first one shows that if the unperturbed Markov kernel Pθ0 := P satisfies Condi-
tionD1S (V0, V1), then for any θ ∈ Θ\{θ0}, Pθ satisfies the same condition. The second lemma
shows that, under the continuity assumption on p(·, ·) in Proposition 7.10, Condition (∆V0)
holds true.

Lemma 7.11 If P satisfies Condition D1S (V0, V1) then, for any integer k ≥ k0, the Markov

kernel P̂k satisfies the same Condition D1S (V0, V1).

Proof. Since P satisfies Condition D1S (V0, V1), it is sufficient to show that

P̂kV0 ≤ PV0 (109)
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to prove the first statement. If x ∈ Xkc, then (P̂kV0)(x) = V0(x0)φk(x) ≤ V0(x0) from (102),
Q̂k(x, ·) = 0 for x ∈ Xkc and φk ≤ 1X. Note that v0(0)1X = V0(x0)1X ≤ V0 since v0 is
non-decreasing, so that V0(x0)1X ≤ PV0 since P is a Markov kernel. Now, let x ∈ Xk. Then

(P̂kV0)(x) = (Q̂kV0)(x) + V0(x0)
(
1− (Q̂k1X)(x)

)
(from (102))

= V0(x0) +
(
Q̂k(V0 − V0(x0)1X)

)
(x)

= V0(x0) +
∑
i∈Ik

(∫
Xk

(
V0(y)− V0(x0)

)
inf
t∈Xi,k

p(t, y)λ(dy)

)
1Xi,k

(x) (from(101))

≤ V0(x0) +
∑
i∈Ik

(∫
X

(
V0(y)− V0(x0)

)
p(x, y)λ(dy)

)
1Xi,k

(x)

≤ V0(x0) + (PV0)(x)− V0(x0) (since
∑
i∈Ik

1Xi,k
(x) = 1Xk

(x) = 1).

This proves (109). □

Lemma 7.12 Let p(·, ·) in (99) be such that, for every y ∈ X, the function x 7→ p(x, y) is
continuous on X. Then the following assertion holds:

∀x ∈ X, lim
k

∥P (x, ·)− P̂k(x, ·)∥′V0 = 0.

Proof. Let x ∈ X be fixed. Observe that

∥P (x, ·)− Q̂k(x, ·)∥′V0 ≤
∫
X
V0(y)

∣∣p(x, y)− pk(x, y)
∣∣λ(dy).

From the continuity assumption on the function p(·, ·) we have limk pk(x, y) = p(x, y) for any
y ∈ X, and we know that |p(x, y)− pk(x, y)| ≤ 2p(x, y). From Lebesgue’s theorem it follows
that limk ∥P (x, ·)− Q̂k(x, ·)∥′V0 = 0 since (PV0)(x) <∞. Finally note that

∥P (x, ·)− P̂k(x, ·)∥′V0 ≤ ∥P (x, ·)− Q̂k(x, ·)∥′V0 + V0(x0)φk(x)

≤ ∥P (x, ·)− Q̂k(x, ·)∥′V0 + V0(x0) ∥P (x, ·)− Q̂k(x, ·)∥′V0

from (102), φk(x) := 1 − (Q̂k1X)(x) = (P1X)(x) − (Q̂k1X)(x), 1X ≤ V0 and the definition
of ∥ · ∥V0 . The proof of the convergence of P̂k(x, ·) to P (x, ·) in V0−norm is complete. □

Finally, for the family {Pθ}θ∈Θ defined in (108), note that the Pθ−invariant probability
measure πθ for any θ ̸= θ0, is finitely supported so that πθ(V0) < ∞. Thus, since the
Pθ0−invariant probability measure πθ0 is assumed to satisfy πθ0(V0) < ∞, Theorem 7.3
applies.

7.4 Further comments and bibliographic discussion

A) Markovian perturbation issue. The perturbation theory for Markov chains has been widely
developed in the last decades, see e.g. [Sch68, Kar86, Sen93, GM96, SS00, AANQ04,
Mit05, MA10, FHL13, HL14a, RS18, Mou21, NR21, HL25a, and references therein]. The
perturbation material in Section 7 is based on [HL25a]. Moreover here, in Subsection 7.3,
two standard issues are analysed as a perturbation problem: truncation in discrete state
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space case, and discretization of a non-discrete state space. The central Formula (77) was
introduced in [Sch68] for finite irreducible stochastic matrices. This formula can be subse-
quently used in any problem which can be thought of as a perturbation problem of Markov
kernels (e.g. see [Sen93, GM96, LL18] and [MT09, Section 17.7]). The investigation of uni-
formly ergodic perturbed Markov chains is done in [Mit05, MA10, AFEB16, JMMD15].
Perturbation of reversible transition kernels is studied in [MALR16, NR21]. These two
specific issues are not addressed here.

B) On the Conditions (Mθ)–Dθ(V0, V1) w.r.t. the family {Pθ}θ∈Θ. As illustrated in Sub-
section 7.3, it turns out that, in standard perturbation problems, the perturbed Markov
kernels {Pθ}θ ̸=θ0 inherit the minorization and drift conditions of the unperturbed one Pθ0
(e.g. see also [RRS98], [MALR16, Section 4] or [LL18, Section 2.2]). Similarly, if only two
Markov kernels P and P̃ are involved, then both kernels are assumed or are proved to
satisfy the same minorization and drift condition under appropriated conditions, e.g. see
[RS18, Cor. 4.2], [MARS20, Th. 9]. Mention that Conditions (DRI) in [DDA21, p.
1589] correspond to (Mθ)–Dθ(V0, V1) w.r.t. a family of Markov kernels {Pθ}θ∈Θ with
ψθ := 1S for some small-set S, minorizing measure νθ ≡ ν and constant bθ ≡ b, and fi-
nally with V1 = ϕ(V0), where the function ϕ(·) satisfies specific conditions (see [DFMS04]
for details on these modulated drift conditions). Conditions (DRI) are used to study the
convergence of stochastic algorithms where Markov dynamic takes place. This concerns
Metropolis-Hastings algorithms for which some parameters must be estimated, and also
stochastic gradient descent, stochastic Expectation-Maximisation algorithms, or stochas-
tic algorithms in reinforcement learning. Actually Conditions (DRI) are used in [DDA21]
to ensure that the specific Assumption [AMP05, (A3)] for convergence of the stochastic
algorithm is satisfied when the underlying Markov dynamic is subgeometrically ergodic.
Similar conditions were introduced in [AMP05, (DRI1), Section 6] to deal with geomet-
rically ergodic underlying Markov kernels.

C) On the condition π(V0) <∞. For a Markov kernel P with invariant probability measure π,
the condition π(V0) <∞ is in force in this section. When P satisfies Conditions (M ν,ψ)–
Dψ(V0, V1), we have π(V1) <∞ from Theorem 5.3, but recall that the condition π(V0) <
∞ does not hold automatically. It is in fact satisfied provided that P satisfies (M ν,ψ) and
any preliminary V0−modulated drift condition Dψ(L, V0) for some Lyapunov function L.
We refer to Proposition 5.12 for a general statement and to the example of Subsection 7.2.2
for a specific situation. Such nested modulated drift conditionsDψ(L, V0) andDψ(V0, V1)
occur in most of the analysis of polynomial or subgeometric convergence rate of Markov
models, e.g. see [JR02, FM03b, DFMS04, AFV15, DMPS18].

D) On the measurability of the function ∆V . Let P and K be two Markov kernels on (X,X )
and let V be a Lyapunov function such that ∥PV ∥V < ∞ and ∥KV ∥V < ∞. Assume
that the σ−algebra X is countably generated. Then the function on X, x 7→ ∆V (x) :=
∥P (x, ·) − K(x, ·)∥′V , is X−measurable. Indeed, for every x ∈ X we have ∥P (x, ·) −
P ′(x, ·)∥V = |ηx|(V ) where |ηx| is the total variation measure of the finite signed measure
ηx = P (x, ·) − K(x, ·). Moreover the map x 7→ |ηx|(V ) is X−measurable since so is
x 7→ ηx(V ), see [DF64].

E) On the Condition (∆V ). As introduced in [Twe98] for discrete set X, Condition (∆V )

∀x ∈ X, lim
θ→ θ0

∆θ,V (x) = lim
θ→ θ0

∥Pθ0(x, ·)− Pθ(x, ·)∥′V = 0,
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is the expected continuity assumption in order to study the convergence to 0 of the
V−weighted total variation distance between πθ and πθ0 . Let us discuss Condition (∆V )
and alternative assumptions used in prior works.

� The standard operator-norm continuity assumption introduced in [Kar86] writes as
limθ→ θ0 ∥Pθ − Pθ0∥V = 0, namely

lim
θ→ θ0

sup
x∈X

∆θ,V (x)

V (x)
= 0.

This condition is clearly much more restrictive than Condition (∆V ). Such a con-
dition is suitable when Pθ = Pθ0 + θD where θ ∈ R and D is a real-valued kernel
satisfying D(x, 1X) = 0 for every x ∈ X, e.g. see [AANQ04, Mou21].

� The weak operator-norm continuity assumptions, based on Keller’s approach for
perturbed dynamical systems [Kel82], require that

lim
θ→ θ0

sup
x∈X

∆θ,1X(x)

V (x)
= lim

θ→ θ0
sup
x∈X

∥Pθ(x, ·)− Pθ0(x, ·)∥′TV
V (x)

= 0. (110)

To understand the difference between Conditions (∆V ) and (110), consider the
following simple example derived from perturbed linear autoregressive models (see
[FHL13, Ex. 1] for some details on this perturbed model):

∀θ ∈ (0, 1), ∀x ∈ X := R, ∀A ∈ X , Pθ(x,A) :=

∫
R
1A(y) p(y − θx) dy,

where X is here the Borel σ−algebra on R and where p is some probability den-
sity function with respect to Lebesgue’s measure on R. Let θ0 ∈ (0, 1) be fixed.
Condition (∆V ) writes as follows

∀x ∈ R, lim
θ→ θ0

∫
X
V (y)

∣∣p(y − θx)− p(y − θ0x)
∣∣dy = 0, (111)

while Condition (110) is:

lim
θ→ θ0

sup
x∈R

∫
X
∣∣p(z − θx)− p(z − θ0x)

∣∣dz
V (x)

= 0. (112)

Conditions (111) and (112) are quite different. In (111) the convergence is simply
point-wise, but the presence of V (y) in the integral may be problematic. In (112)
the absence of the function V in the integral is of course an advantage, but the
uniform convergence in x ∈ R may be problematic (even though it can actually only
be proved w.r.t. every compact of R thanks to the division by V (x)).

The weak continuity assumption (110) has been adapted to V -geometrically ergodic
Markov models, either using the Keller-Liverani perturbation theorem from [KL99]
(see [FHL13, HL14a, HL23b]), or using [HM11] based on Wasserstein distance as in
[SS00] or in [RS18, MARS20]. In the next item, the perturbation bound obtained
in [HL14a] and [RS18] under this condition (110) is compared with the bound of
Theorem 7.3.
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F) Geometric ergodicity case. If {Pθ}θ∈Θ satisfies the assumptions of the example in Sub-
section 7.2.1, then the bound (81b) of Theorem 7.3 gives

∥πθ − πθ0∥TV ≤ 2 (1 + d̃)

1− δ
πθ(∆θ,V ) with d̃ =

1

1− δ
max

(
0,
C

m

)
(113)

where m := infθ∈Θ νθ(1X) > 0. The focus here is on the comparison of the error bound
(113) with that obtained in [HL14a, Prop. 2.1] and [RS18, Eq. (3.19)] (see also [HL23b]
for the iterated function systems), that is

∥πθ − πθ0∥TV ≤ c γθ
∣∣ ln γθ∣∣ with γθ := sup

x∈X

∆θ,1X(x)

V (x)
(114)

where the positive constant c depends on the constants δ, C given in Subsection 7.2.1 and
on the V−geometric rate of convergence of the iterates P n

θ to the invariant distribution πθ
(i.e. Property (72) w.r.t. Pθ). The interest of the bound (114) may be the use of ∆θ,1X(x)
rather than ∆θ,V (x) in (113). The drawback of (114) is that it involves a logarithm
term, but above all that the constant c in (114) depends on the V−geometric rate of
convergence of P n

θ to πθ, which is unknown in general (or badly estimated).

G) Approximation by truncation. Here we focus on the approximation by a truncation of
the state space X. Specifically we are interested in the so-called truncation-augmentation
technique and essentially in the study of convergence of the truncated invariant prob-
ability measure π̂n to π. We refer to [Wol80, Sen06, GS87a, GS87b, KR90, Hey91,
Sim95, Twe98, Liu10, Mas16, LL18, and references therein] for countable set X and
[IGL22, IG22, HL25a] for a continuous state space. Note that the stochastic monotonic-
ity property is widely used in the statements of most of these references. Various points
related to the results of Subsection 7.3.1 are discussed below, keeping in mind that trun-
cation scheme is considered as a perturbation issue.

� Convergence of {π̂k}n≥0 to π. For V -geometrically ergodic discrete Markov chains,
the convergence in V -weighted total variation norm is proved to take place in [Twe98,
Th 3.2] for the first-column linear augmentation (see (93) with κx,k is a Dirac dis-
tribution at 0). Using regeneration methods, such a convergence is extended to
V -geometrically or polynomially ergodic Markov chains with continuous state space
in [IG22, Th 2] for a specific linear augmentation. The weak convergence in the case
of general augmentation of continuous state space Markov chains has been recently
addressed in [IGL22]. Note that in such context, the weak convergence does not
provide the convergence in the total variation norm.

� Rate of Convergence of {π̂k}n≥0 to π. The bound of Theorem 7.3 for a V−geo-
metrically ergodic Markov kernel P and ψ := 1S for some set S (see also Propo-
sition 7.5) then provides a generalization of the bound (10) in [LL18, Th. 2] to a
general state-space X without assuming the existence of an atom. Similarly the
bound of Theorem 7.3 extends the bound (16) in [LL18, Th. 3] (with m := 1) to a
general state-space X without assuming that the residual kernel is a contraction on
BV , i.e. RV ≤ βV for some β < 1 (see Condition 3 in [LL18, Th. 3]).

H) Approximation though numerical computations. The discretization procedure of the
general state-space X in Subsection 7.3.2 can be used to numerically approximate the
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P−invariant probability measure. This has been proposed in [HL21] in the specific con-
text of a V−geometrically ergodic Markov chain. We refer to [HL21] for various illus-
trations, in particular for autoregressive models. Here, the procedure has been adapted
to a general context in Proposition 7.10, where the geometric drift condition is replaced
by any modulated drift condition. Fine discretizations of continuous state-space models
used on computers introduce round off errors, and therefore produce bias in the results
of computations. Thus, it is of interest to show that such a bias is negligible under fair
conditions. There, using perturbation techniques may prove relevant, as highlighted for
example in [RRS98, BRR01]. Such an issue was discussed in [HL23b] for a more gen-
eral mechanism of round-off than in [RRS98, BRR01] and for iterated function systems
of Lipschitz maps. It should be noted that the problem addressed in [SS00] fits natu-
rally into the current discussion on the use of perturbation techniques for analysing the
effect of numerical approximation on the calculation of stationary characteristics. We
refer to [RSQ24, RSQ24, CDJT24, and references therein] for such a study in MCMC
computations with respect to weighted total variation, Wasserstein and χ−metrics.

8 Polynomial convergence rates

The definitions of the space BV and the V−weighted total variation norm are recalled in
Section 2, see (8). Throughout this section, P is a Markov kernel on (X,X ) satisfying the
first-order minorization condition (M ν,ψ) for some (ν, ψ) ∈ M∗

+,b×B∗
+, as well as the following

well-known nested modulated drift conditions: There exists a collection {Vi}mi=0 of Lyapunov
functions with m ≥ 1 such that

∀i ∈ {0, . . . ,m− 1}, Vi+1 ≤ Vi and ∃bi > 0, PVi ≤ Vi − Vi+1 + bi ψ. (Dψ(V0 : Vm))

Note that Vm ≤ · · · ≤ Vi ≤ · · · ≤ V0. Since Condition Dψ(V0, V1) is contained in Dψ(V0 : Vm)
it follows from Theorem 5.3 that πR given in (26) is the unique P−invariant probability
measure on (X,X ) and that

πR(ψ) > 0, πR(V1) <∞, so πR(Vi) <∞ for i ∈ {1, . . . ,m}. (115)

Note that the condition πR(V0) <∞ is not guaranteed a priori. When m ≥ 2 the purpose of
the next Subsection 8.1 is to obtain explicit bounds for the following quantities:

∀g ∈ BVm , ∀x ∈ X, Sm−2(g, x) :=

+∞∑
n=0

(n+ 1)m−2
∣∣(Png)(x)− πR(g)

∣∣
∀x ∈ X, Sm−2(x) :=

+∞∑
n=0

(n+ 1)m−2∥Pn(x, ·)− πR∥′Vm

and ∀k ≥ 0, ∀x ∈ X,
∥∥P k(x, ·)− πR

∥∥
TV
.

To this end the technical condition πR(|ψ − πR(ψ)1X|)/πR(ψ) < 1 (see (121)) is assumed.
When it does not hold, replacing this condition by the strong aperiodicity condition ν(1S) > 0,
it is proved in Subsection 8.4 that the results of Subsection 8.1 then extend to some iterate
of P .
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8.1 The main statements

Let P satisfy Conditions (Mν,ψ) and Dψ(V0 : Vm). Set

∀i ∈ {0, . . . ,m− 1}, di := max

(
0,
bi − ν(Vi)

ν(1X)

)
(117)

with constants bi given in Dψ(V0 : Vm). Moreover define (Dℓ)
m−1
ℓ=0 ∈ (0 +∞)m by

D0 := 1 + d0 and ∀ℓ ∈ {1, . . . ,m− 1}, Dℓ := (1 + dℓ)
ℓ−1∑
j=0

(
ℓ

j

)
Dj (118)

where
(
ℓ
j

)
= ℓ!/j!(ℓ− j)! denotes the standard binomial coefficient.

Proposition 8.1 Let P satisfy Conditions (Mν,ψ)–Dψ(V0 : Vm) for some collection {Vi}mi=0

of Lyapunov functions with m ≥ 1. Let R ≡ Rν,ψ be the residual kernel given in (13). Then

∀i ∈ {1, . . . ,m},
+∞∑
n=0

(n+ 1)i−1RnVi ≤ Di−1 V0, (119a)

+∞∑
n=0

(n+ 1)i−1 ν
(
RnVi

)
≤ Di−1 ν(V0) <∞. (119b)

Proof. Let us prove Inequalities (119a) by an induction on m. For m := 1, Inequality (119a)
corresponds to the second inequality of (57a) in Theorem 5.3. Now suppose that Inequali-
ties (119a) are proved for some m ≥ 1 and that Conditions Dψ(V0 : Vm+1) hold. Then it
follows from Lemma 5.8 used under Condition Dψ(Vm, Vm+1) that RVm,dm ≤ Vm,dm − Vm+1

with Vm,dm := Vm + dm1X ≥ Vm, where dm := max(0, ν(1X)
−1(bm − ν(Vm))). Equivalently

we have Vm+1 ≤ Vm,dm −RVm,dm , so that we obtain for every N ≥ 1

N∑
n=0

(n+ 1)mRnVm+1 ≤
N∑
n=0

(n+ 1)mRnVm,dm −
N+1∑
n=0

nmRnVm,dm

≤
N∑
n=0

[
(n+ 1)m − nm

]
RnVm,dm =

m−1∑
j=0

(
m

j

) N∑
n=0

nj RnVm,dm

≤
(
1 + dm

)m−1∑
j=0

(
m

j

) N∑
n=0

nj RnVj+1

≤
(
1 + dm

)(m−1∑
j=0

(
m

j

)
Dj

)
V0 = DmV0

using the binomial expansion, Vm,dm ≤ (1 + dm)Vm ≤ (1 + dm)Vj+1 for j = 0, . . . ,m− 1, the
induction hypothesis, and using finally the definition of Dm. This gives Inequalities (119a)
at order m + 1. Finally (119b) follows from (119a) since, for some x ∈ S, we have from
Assumption (M ν,ψ): ν(V0) ≤ (PV0)(x) ≤ V0(x)− V1(x) + b0 <∞. □
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Now recall that, under Conditions (M ν,ψ) and Dψ(V0 : Vm), the positive measure µR :=∑+∞
k=0 νR

k satisfies µR(1X) <∞ and µR = πR/πR(ψ) from Theorem 5.3. Let us introduce the
following functions Φi : X→[0,+∞] for i ∈ {0, . . . ,m− 2}:

Φi :=
+∞∑
n=0

(n+ 1)i
∣∣Pnϕ∣∣ where ϕ ≡ ϕψ := ψ − πR(ψ)1X (120)

with ψ given in Assumptions (Mν,ψ) and Dψ(V0 : Vm), as well as the following condition

µR(|ϕ|) =
πR(|ϕ|)
πR(ψ)

< 1. (121)

Recall that, for every m ≥ 2, there exists {aj,m}m−1
j=1 ∈ Rm−1 such that

∀k ≥ 1, Σm−2
k :=

k∑
n=1

nm−2 =

m−1∑
j=1

aj,m k
j , (122)

and that the real numbers {aj,m}m−1
j=1 can be computed by induction on m using binomial

expansion (e.g. see Subsection 8.3.1 in cases m := 2, 3). Next, using Dj ’s in (118), define the
following positive constants

∀ℓ ∈ {1, . . . ,m− 1}, Eℓ :=

ℓ∑
j=1

aj,ℓ+1Dj . (123)

Theorem 8.2 Let P satisfy Conditions (Mν,ψ)–Dψ(V0 : Vm) for some collection {Vi}mi=0 of
Lyapunov functions with m ≥ 2. Then the following inequalities hold in [0,+∞]:

∀g ∈ BVm , ∀x ∈ X, Sm−2(g, x) :=
+∞∑
n=0

(n+ 1)m−2
∣∣(Png)(x)− πR(g)

∣∣
≤ ∥g − πR(g)1X∥Vm Wm(x) (124)

and ∀x ∈ X, Sm−2(x) :=
+∞∑
n=0

(n+ 1)m−2
∥∥Pn(x, ·)− πR

∥∥′
Vm

≤ θmWm(x) (125)

where θm := 1 + πR(Vm)∥1X∥Vm and the function Wm is

Wm = Dm−2 V0 + ν(V0)

[ m−2∑
j=0

(
m− 2

j

)
Dj Φm−2−j + πR(ψ)Em−1 1X

]
. (126)

If Condition (121) holds, then for every i ∈ {0, . . . ,m− 2} we have Φi ∈ BV0 and

Φi ≤ Cϕ∥ϕ∥1X
(
DiV0 + ν(V0)

i∑
j=1

(
i

j

)
DjΦi−j + πR(ψ)ν(V0)Ei+11X

)
(127)

with the convention
∑0

j=1 = 0 and with Cϕ := (1−µR(|ϕ|))−1 where µR(|ϕ|) is given in (121).
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It follows from (126) that

∥Wm∥V0 ≤ Dm−2 + ν(V0)

m−2∑
j=0

(
m− 2

j

)
Dj ∥Φm−2−j∥V0 + πR(ψ) ν(V0)Em−1∥1X∥V0 . (128)

Moreover, if Condition (121) holds, then the norms (∥Φi∥V0)m−2
i=0 can be recursively bounded

from (127) by

∥Φi∥V0 ≤ Cϕ

(
Di + ν(V0)

[ i∑
j=1

(
i

j

)
Dj ∥Φi−j∥V0 + πR(ψ)Ei+1∥1X∥V0

])
. (129)

Consequently, for every x ∈ X, Theorem 8.2 provides explicit bounds for Sm−2(g, x) with
g ∈ BVm and for Sm−2(x). In the atomic case (more generally if bi ≤ ν(Vi)), the di’s in (117)
are zero (see Remark 5.7), so that the constants Di defined in (118) and used in the previous
estimates simply depend on the integer m. Finally note that ∥1X∥Vm ≤ 1 since Vm ≥ 1X
and that πR(Vm) ≤ bm−1πR(ψ) applying Assertion (vii) of Theorem 5.3 under Condition
Dψ(Vm−1, Vm). Thus the positive constant θm of Theorem 8.2 satisfies

θm ≤ 1 + bm−1πR(ψ).

As a by-product of Theorem 8.2 we obtain the following statement on the total variation
norm of P k(x, ·)− πR.

Corollary 8.3 Let P satisfy Conditions (Mν,ψ)–Dψ(V0 : Vm) for some collection {Vi}mi=0 of
Lyapunov functions with m ≥ 2. If Condition (121) holds then

∀x ∈ X, ∀k ≥ 0,
∥∥P k(x, ·)− πR

∥∥
TV

≤ 2m

km−1
Wm(x) (130)

with Wm given in Theorem 8.2.

Proof. Note that Vm in Dψ(V0 : Vm) can be replaced with the function 1X since Vm ≥ 1X.
Let x ∈ X. Recall that the sequence (∥Pn(x, ·) − πR∥TV)n≥0 is non-increasing. Let j ≥ 0.
Then we deduce from (125) that

(j + 1)m−1
∥∥P 2j(x, ·)− πR

∥∥
TV

≤
2j∑
n=j

(n+ 1)m−2
∥∥Pn(x, ·)− πR

∥∥
TV

≤ θmWm(x)

with θm := 1 + πR(Vm)∥1X∥Vm = 2 since Vm = 1X here. Thus∥∥P 2j(x, ·)− πR

∥∥
TV

≤ 2m

(2j)m−1
Wm(x).

Next, using the sum
∑2j+1

n=j+1, we obtain the same inequality for ∥P 2j+1(x, ·)−πR

∥∥
TV

replacing

(2j)m−1 with (2j + 1)m−1. This proves (130). □

In the case ψ := 1S , Condition (121) is proved to be equivalent to πR(1S) > 1/2 in Proposi-
tion 8.5. This condition πR(1S) > 1/2 has been used in others works and proved to imply the
aperiodicity condition (see the bibliographic comments in Subsection 8.5). This last fact still
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holds for general first-order small-function ψ, and this is easily seen via Corollary 8.3 when P
satisfies Conditions (Mν,ψ)–Dψ(V0 : Vm) for some m ≥ 2. Indeed, under these assumptions,
the function h∞

R := limnR
n1X is zero on X from Theorem 5.3. Now, if Condition (121) is

moreover assumed, then it follows from Corollary 8.3 that limk ∥P k(x, ·) − πR∥TV = 0 for
every x ∈ X, so that z := 1 is the only eigenvalue of modulus one for P on B(C) ≡ B1X(C):
Theorem 4.14 then implies that P is aperiodic.

8.2 Proof of Theorem 8.2

To prove Theorem 8.2 recall that ϕ := ψ−πR(ψ)1X and let us introduce the following functions
under Conditions (M ν,ψ)–Dψ(V0 : Vm) :

∀i ∈ {0, . . . ,m− 2}, ∀N ≥ 1, Φi,N :=
N∑
n=0

(n+ 1)i
∣∣Pnϕ∣∣. (131)

The following lemma plays a crucial role in the proof of Theorem 8.2.

Lemma 8.4 Let P satisfy Conditions (Mν,ψ)–Dψ(V0 : Vℓ) for some collection {Vi}ℓi=0 of
Lyapunov functions with ℓ ≥ 2. Let (gn)n≥0 ∈ B N

Vℓ
and ζ ∈ BVℓ such that |gn| ≤ ζ ≤ Vℓ and

πR(gn) = 0 for every n ≥ 0. Then we have for every N ≥ 1 (with the convention
∑0

j=1 = 0)

N∑
n=0

(n+ 1)ℓ−2
∣∣Pngn∣∣ ≤ Dℓ−2 V0 +

( +∞∑
k=1

ν(Rk−1ζ)

)
Φℓ−2,N

+ ν(V0)

[ ℓ−2∑
j=1

(
ℓ− 2

j

)
Dj Φℓ−2−j,N + πR(ψ)Eℓ−1 1X

]
. (132)

Let us admit Lemma 8.4 for the moment and prove Theorem 8.2.

Proof of Theorem 8.2. Note that Φi,N ≤ Φi for every N ≥ 1, with Φi given in (120). If
g ∈ BVm is such that ∥g∥Vm ≤ 1 and πR(g) = 0, then Inequality (124) in [0,+∞] with Wm

given in (126) directly follows from Inequality (132) applied to ℓ := m, gn := g, ζ := Vm, and
from

+∞∑
k=1

ν(Rk−1Vm) ≤
+∞∑
k=1

ν(Rk−1V1) ≤ D0 ν(V0) (133)

thanks to (119b) applied with i := 1. The formulation in (124) given for any g ∈ BVm is then
easily deduced considering the function (g − πR(g)1X)/∥g − πR(g)1X∥Vm .

Next, to prove Inequality (125), recall that θm = 1 + πR(Vm)∥1X∥Vm , and first note that

∀h ∈ BVm , ∥h− πR(h)1X∥Vm ≤ θm∥h∥Vm .

Now let (hn)n≥0 ∈ B N
Vm be such that ∥hn∥Vm ≤ 1 and set fn := hn − πR(hn)1X. For any

n ≥ 0, we have ∥fn∥Vm ≤ θm, so that gn := fn/θm is such that |gn| ≤ Vm and πR(gn) = 0.
Then, applying Inequality (132) to ℓ := m, ζ := Vm, we obtain that

∀x ∈ X, ∀N ≥ 1,
N∑
n=0

(n+ 1)m−2
∣∣(Pnhn)(x)− πR(hn)

∣∣ ≤ θmWm(x)
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using again (133). Taking the suppremum bound over the functions h0, . . . , hN , we obtain
that

∀x ∈ X, ∀N ≥ 1,

N∑
n=0

(n+ 1)m−2∥Pn(x, ·)− πR

∥∥′
Vm

≤ θmWm(x)

from which we deduce (125).

Now observe that Assumptions Dψ(V0 : Vm) obviously imply that, for every i = 0, . . . ,m−
2, Assumptions Dψ(V0 : Vi+2) hold too. Therefore, for any i = 0, . . . ,m − 2, it follows
from Inequality (132) with ℓ := i + 2 applied to gn := ϕ/∥ϕ∥1X , ζ := |ϕ|/∥ϕ∥1X and from
Condition (121) that

1− µR(|ϕ|)
∥ϕ∥1X

Φi,N ≤ Di V0 + ν(V0)

[ i∑
j=1

(
i

j

)
Dj Φi−j,N + πR(ψ)Ei+1 1X

]

since
∑+∞

k=1 ν(R
k−1|ϕ|) = µR(|ϕ|). Note that the above functions gn and ζ satisfy the assump-

tions of Lemma 8.4 since |gn| ≤ ζ ≤ 1X ≤ Vℓ. Recall that
∑0

j=1 = 0 by convention in (132).
When N→+∞, the previous inequality for i = 0 shows that the series Φ0 is convergent and
satisfies (127) for i := 0. Next this inequality for i ∈ {1, . . . ,m − 2} ensures that the series
Φi is convergent from the convergence of the (Φj)

i−1
j=0, and that Φi satisfies Inequality (127).

The proof of Theorem 8.2 is complete, provided that Lemma 8.4 is proved. □

Proof of Lemma 8.4. Let (gn)n≥0 ∈ B N
Vℓ

and ζ ∈ BVℓ such that |gn| ≤ ζ ≤ Vℓ and πR(gn) = 0

for every n ≥ 0. Note that µR(gn) :=
∑+∞

k=1 ν(R
k−1gn) = 0 since πR(gn) = 0. Then, from

Formula (17) and
∑n

k=1 ν(R
k−1gn) = −

∑+∞
k=n+1 ν(R

k−1gn) with the convention
∑0

k=1 = 0,
we obtain that

∀n ≥ 0, Pngn = Rngn +

n∑
k=1

ν(Rk−1gn)P
n−kψ

= Rngn +
n∑
k=1

ν(Rk−1gn)P
n−kϕ − πR(ψ)

( +∞∑
k=n+1

ν(Rk−1gn)

)
1X. (134)

First, using the non-negativity of R and |gn| ≤ Vℓ ≤ Vℓ−1, it follows from (119a) with i = ℓ−1
that

AN :=

N∑
n=0

(n+1)ℓ−2 |Rngn| ≤
+∞∑
n=0

(n+1)ℓ−2Rn|gn| ≤
+∞∑
n=0

(n+1)ℓ−2RnVℓ−1 ≤ Dℓ−2 V0. (135)
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Second, using again the convention
∑0

k=1 = 0 and the inequality |gn| ≤ ζ, we have

BN :=

N∑
n=0

(n+ 1)ℓ−2

∣∣∣∣ n∑
k=1

ν(Rk−1gn)P
n−kϕ

∣∣∣∣ ≤
N∑
n=0

(n+ 1)ℓ−2
n∑
k=1

ν(Rk−1|gn|)
∣∣Pn−kϕ∣∣

=
N∑
k=1

ν(Rk−1|gn|)
N∑
n=k

(n+ 1)ℓ−2
∣∣Pn−kϕ∣∣

≤
N∑
k=1

ν(Rk−1ζ)

N∑
n=0

(n+ 1 + k)ℓ−2
∣∣Pnϕ∣∣

=
ℓ−2∑
j=0

(
ℓ− 2

j

)( N∑
k=1

kj ν(Rk−1ζ)

)
Φℓ−2−j,N

≤
ℓ−2∑
j=0

(
ℓ− 2

j

)( +∞∑
k=1

kj ν(Rk−1ζ)

)
Φℓ−2−j,N

where the Φi,N ’s are defined in (131). Then, separating the term for j = 0 in the last sum
and using ζ ≤ Vℓ ≤ Vj+1 for j = 1, . . . , ℓ− 2, it follows from (119b) that

BN ≤
( +∞∑
k=1

ν(Rk−1ζ)

)
Φℓ−2,N + ν(V0)

ℓ−2∑
j=1

(
ℓ− 2

j

)
Dj Φℓ−2−j,N . (136)

Third, recall that, for any k ≥ 1, Σℓ−2
k :=

∑k
n=1 n

ℓ−2 =
∑ℓ−1

j=1 aj,ℓ k
j from (122). Then

CN := πR(ψ)

( N∑
n=0

(n+ 1)ℓ−2

∣∣∣∣ +∞∑
k=n+1

ν(Rk−1gn)

∣∣∣∣)1X
≤ πR(ψ)

( +∞∑
n=0

(n+ 1)ℓ−2
+∞∑

k=n+1

ν(Rk−1|gn|)
)
1X

≤ πR(ψ)

( +∞∑
n=0

(n+ 1)ℓ−2
+∞∑

k=n+1

ν(Rk−1Vℓ)

)
1X = πR(ψ)

( +∞∑
k=1

ν(Rk−1Vℓ)
k∑

n=1

nℓ−2

)
1X

≤ πR(ψ)

( ℓ−1∑
j=1

aj,ℓ

+∞∑
k=1

kj ν(Rk−1Vℓ)

)
1X

≤ πR(ψ)ν(V0)

( ℓ−1∑
j=1

aj,ℓDj

)
1X = πR(ψ) ν(V0)Eℓ−11X (137)

using (119b) (note that |gn| ≤ Vℓ ≤ Vj+1 for j = 1, . . . , ℓ − 1) and the definition of Eℓ−1

in (123).

From the triangular inequality applied to (134), we obtain that

N∑
n=0

(n+ 1)ℓ−2|Pngn| ≤ AN +BN + CN .

Therefore Inequality (132) follows from (135)–(137). The proof of Lemma 8.4 is complete.
□
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8.3 Examples

8.3.1 Case ψ := 1S

When ψ := 1S for some S ∈ X ∗, Condition D1S (V0 : Vm) is: There exists a collection {Vi}mi=0

of Lyapunov functions with m ≥ 1 such that

∀i ∈ {0, . . . ,m− 1}, Vi+1 ≤ Vi and ∃bi > 0, PVi ≤ Vi − Vi+1 + bi 1S . (D1S (V0 : Vm))

Proposition 8.5 Let P satisfy Condition (M ν,1S ) for some couple (ν, S) ∈ M∗
+,b × X ∗.

Then Condition (121) is equivalent to πR(1S) > 1/2. Moreover, under this condition, the
constant Cϕ := (1− µR(|ϕ|))−1 involved in (127) and (129) is given by

Cϕ = (2πR(1S)− 1)−1.

Proof. If ψ := 1S , then ϕ = 1S − πR(1S)1X, so that |ϕ| = πR(1Sc)1S + πR(1S)1Sc . Thus
πR(|ϕ|) = 2πR(1Sc)πR(1S). Hence we have µR(|ϕ|) = πR(|ϕ|)/πR(1S) = 2πR(1Sc), from which
the desired statements are easily deduced. □

Using Proposition 8.5, let us detail the conclusions of Theorem 8.2 under Conditions (M ν,1S )–
D1S (V0 : Vm) with (ν, S) ∈ M∗

+,b×X in the casesm := 2 andm := 3. Recall that the positive
constants di (see (117)) are

∀i ∈ {0, . . . ,m− 1}, di := max

(
0,
bi − ν(Vi)

ν(1X)

)
with constants bi given in D1S (V0 : Vm). Moreover note that, in case ψ := 1S , we have
∥ϕ∥1X ≤ max(πR(1S), 1− πR(1S)) ≤ 1.

Case m := 2

Let P satisfy Condition (Mν,1S ) with πR(1S) > 1/2 and Conditions D1S (V0 : V2) for some
Lyapunov functions V0, V1, V2. Note that Σ0

k := k, i.e. a1,2 = 1 in (122). Moreover we have
D0 := 1 + d0, D1 := (1 + d0)(1 + d1) from (118) and E1 = D1 from (123). Consequently it
follows from (124) and (126) applied with m := 2 that

W2 = (1 + d0)V0 + ν(V0)
[
(1 + d0) Φ0 + π(1S) (1 + d0)(1 + d1) 1X

]
(138)

and we have the following estimate from (127) with i := 0:

Φ0 ≤ (1 + d0)

2π(1S)− 1
V0 +

π(1S)ν(V0)(1 + d0)(1 + d1)

2π(1S)− 1
1X.

It follows that W2 ≤ c0V0 + π(1S)c11X ≤ c0V0 + c11X with the constants c0, c1 defined by

c0 := (1 + d0)

(
1 +

ν(V0) (1 + d0)

2πR(1S)− 1

)
c1 := ν(V0)(1 + d0)(1 + d1)

(
ν(V0) (1 + d0)

2πR(1S)− 1
+ 1

)
.

Apply (124) with m := 2 to get

∀g ∈ BV2 , ∀x ∈ X, S0(g, x) =

+∞∑
n=0

∣∣(Png)(x)− πR(g)
∣∣ ≤ ∥g − πR(g)1X∥V2 W2(x)

≤ ∥g − πR(g)1X∥V2 ĉ2 V0(x) (139)

where ĉ2 := c0 + c1∥1X∥V0 . Similarly Inequalities (125), where θ2 ≤ 1 + b1πR(ψ), and (130)
hold with W2 defined in (138).
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Case m := 3

Let P satisfy Condition (Mν,1S ) with πR(1S) > 1/2 and Conditions D1S (V0 : V3) for some
Lyapunov functions V0, V1, V2, V3. Here we have Σ1

k = k(k + 1)/2, i.e. a1,3 = a2,3 = 1/2 from
(122). Thus we get from (118) and (123)

i = 0, 1, Di =

i∏
j=0

(1 + di), D2 = (1 + d2)(D0 + 2D1), E1 = D1, E2 =
D1 +D2

2
.

As in the Case m := 2, we get from (126) with m := 3

W3 := D1 V0 + ν(V0)
[
D0Φ1 +D1Φ0 + π(1S)E2 1X

]
(140)

and from (127) with i := 0, 1

Φ0 ≤
D0

2π(1S)− 1
V0+

π(1S)ν(V0)E1

2π(1S)− 1
1X, Φ1 ≤

D1

2π(1S)− 1
V0+

ν(V0)D1

2π(1S)− 1
Φ0+

π(1S)ν(V0)E2

2π(1S)− 1
1X.

Thus, we obtain W3 ≤ c0V0 + c11X where

c0 := D1

[
1 +

ν(V0)D0

2πR(1S)− 1

]2
c1 := ν(V0)

[
E2 +

ν(V0)D1
2 +D0E2ν(V0)

2πR(1S)− 1
+

ν(V0)
2D0D1

2

(2πR(1S)− 1)2

]
.

Consequently it follows from (124) with m := 3 that

∀g ∈ BV3 , ∀x ∈ X,
+∞∑
n=0

(n+ 1)
∣∣(Png)(x)− πR(g)

∣∣ ≤ ∥g − πR(g)1X∥V3 W3(x)

≤ ∥g − πR(g)1X∥V3 ĉ3 V0(x) (141)

with ĉ3 := c0 + c1∥1X∥V0 . (142)

Similarly Inequalities (125), where θ3 ≤ 1+b2πR(ψ), and (130) hold withW3 defined in (140).

8.3.2 Jarner-Roberts’s drift conditions

Recall that Jarner-Roberts’s drift condition is the following: There exists a Lyapunov function
V such that

∃S ∈ X ∗, ∃α ∈ [0, 1), ∃b, c > 0, PV ≤ V − c V α + b 1S . (143)

This is the most classical one leading to nested modulated drift conditions D1S (V0 : Vm).
The details are recalled in the next proposition. Let ⌊·⌋ denote the integer part function
on R.

Proposition 8.6 If P satisfies Condition (143), then P satisfies D1S (V0 : Vm) with Integer
m ≡ m(α) := ⌊(1− α)−1⌋ ≥ 1 and the following Lyapunov functions

Vm := 1X ≤ Vm−1 := am−1V
αm−1 ≤ · · · ≤ V1 := a1V

α1 ≤ V0 := a0V (144)

with α1 := 1− 1/m ∈ [0, 1) and when m ≥ 2

∀i = 2, . . . ,m− 1, αi = (α1 − 1) i+ 1,

where the ai’s are explicit constants strictly larger than one.
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Assume that the set S in (143) is a first-order small-set (i.e. P satisfies Condition (Mν,1S ))
and that πR(1S) > 1/2, so that Condition (121) holds from Proposition 8.5. If m(α) ≥ 2
(i.e. α ≥ 1/2), then for any measurable and bounded function g : X→R, i.e. g ∈ B1X , and
for any x ∈ X, Theorem 8.2 combined with Proposition 8.6 provides an explicit bound for∑+∞

n=0(n + 1)m(α)−2|(Png)(x) − πR(g)|. For instance the bounds (139) in case m(α) := 2
(i.e. α ∈ [1/2, 2/3)), or the bounds (141) in case m(α) := 3 (i.e. α ∈ [2/3, 3/4)), apply.

Proof. The construction of the Lyapunov functions Vi is based on the following fact. If W is
a measurable function from X to [1,+∞) and if 0 < θ2 < θ1 < 1 are such that

∃b, c > 0, PW θ1 ≤W θ1 − cW θ2 + b 1S ,

then ∃b′, c′ > 0, PW θ2 ≤W θ2 − c′W θ3 + b′ 1S with θ3 := 2θ2 − θ1. (145)

Indeed we know from [JR02, Lem. 3.5] that

∀η ∈ (0, 1], ∃bη, cη > 0, PW ηθ1 ≤W ηθ1 − cη (W
θ1)θ2/θ1+η−1 + bη1S .

Then (145) is obtained with η := θ2/θ1 < 1. Next note that α1 = 1− 1/m ≤ α, so that

PV ≤ V − c V α1 + b 1S (146)

from (143). Of course we can replace c with c1 < 1. Recall that m := ⌊(1− α)−1⌋. Then:

� If α1 = 0, i.e. m = 1 or α ∈ [0, 1/2), then D(V0 : V1) holds with V0 := c−1
1 V ≥ V1 := 1X.

� If α1 = 1/2, i.e. m = 2 or α ∈ [1/2, 2/3), then we deduce from (146) and Property (145)
applied to W := V, θ1 = 1, θ2 = α1 that

∃b1, c2 > 0, PV α1 ≤ V α1 − c2 V
α2 + b11S (147)

with α2 := 2α1− 1 = 0. Again note that we can choose c2 < 1. Then the procedure stops,
and Conditions D(V0 : V2) hold with V0 := c−1

1 c−1
2 V ≥ V1 := c−1

2 V α1 ≥ V2 := 1X.

� If α1 > 1/2, then Property (145) can be used recursively to provide inequalities of the
form PV αi−1 ≤ V αi−1 − ci V αi + bi−11S with ci < 1 and αi = 2αi−1−αi−2 = (α1−1) i+1.
Actually (145) can only be used until the value i = m since αm = 0 and αi < 0 for i > m.
Then Conditions D(V0 : Vm) hold with Vi given in (144), where ai = [

∏m
k=i+1 ck]

−1.

□

8.3.3 Application to V−geometric rate of convergence

Assume that P satisfies Condition (Mν,ψ) and the V−geometric drift condition Gψ(δ, V )
(see Example 5.2). Then, for every m ≥ 1, P satisfies Conditions Dψ(V0 : Vm) with

Vm := V and ∀i ∈ {0, . . . ,m− 1}, Vi =
V

(1− δ)m−i , bi :=
b

(1− δ)m−i . (148)

Recall that, if P satisfies (Mν,1S )–G1S (δ, V ) and is aperiodic, then P is V−geometically
ergodic from Theorem 6.2. In the next statement, strengthening the aperiodicity assumption
with the condition π(1S) > 1/2, we present a simpler proof of the V−geometric ergodicity of
P , with moreover an explicit control of the rate of convergence.
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Corollary 8.7 Assume that P satisfies Conditions (Mν,1S )–G1S (δ, V ) with πR(1S) > 1/2.
Then P is V−geometrically ergodic and for every τ ∈ (0, 1), we have

∀g ∈ BV , ∀n ≥ 0, ∥Png − πR(g)1X∥V ≤ ĉ3(1 + π(V )∥1X∥V )
τ (1− δ)3

ρn ∥g∥V with ρ := τ1/n0

where ĉ3 is provided in (142) using D1S (V0 : Vm) and Vi’s given in (148) with m := 3, and
n0 is the smallest positive integer number such that ĉ3(1 + π(V )∥1X∥V ) ≤ (n0 + 1)τ(1− δ)3.

Proof. Using here Condition D1S (V0 : V3) and V0, V1, V2, V3 given (148), it follows from (141)
that

∀n ≥ 1, ∀g ∈ BV , ∀x ∈ X,
|(Png)(x)− πR(g)|

V (x)
≤ c ∥g∥V

n+ 1
with c :=

ĉ3(1 + π(V )∥1X∥V )
(1− δ)3

.

Recall that the operator-norm of any bounded linear operator L on (BV , ∥ · ∥V ) is defined by:
∥L∥V := sup{∥Lg∥V : g ∈ BV , ∥g∥V ≤ 1}. From the above inequality we then obtain that
∥Pn − Π∥V ≤ c/(n + 1) with Π := 1X ⊗ πR. Let τ ∈ (0, 1) and n0 ≡ n0(τ) be the smallest
positive integer such that c/(n0+1) ≤ τ . Then, writing n = qn0+ r with r ∈ {0, . . . , n0−1},
we deduce that

∀n ≥ 1, ∥Pn −Π∥V ≤ ∥(P −Π)r∥V ×
(
∥(P −Π)n0∥V

)q ≤ c

τ
ρn with ρ := τ1/n0

since ∥(P −Π)r∥V ≤ c and τ−r/n0 ≤ τ−1. □

8.4 Complements on Condition (121) using some iterate of P

Let P satisfy Conditions (Mν,ψ)–Dψ(V0 : Vm) with (ν, ψ) ∈ M∗
+,b ×B∗

+. Recall that Condi-
tion (121) is

µR(|ϕ|) =
πR(|ϕ|)
πR(ψ)

< 1 where ϕ ≡ ϕψ := ψ − πR(ψ)1X.

When this condition does not hold, Theorem 8.2 and Corollary 8.3 may not be relevant:
Indeed recall that Condition (121) ensures that Inequalities (127) for the Φi’s hold, from
which the V0−weighted norm of Wm can be deduced (see (128) and Cases m := 2, 3 in
Subsection 8.3.1). To overcome this problem, considering some iterate P ℓ instead of P may
be of interest. To that effect recall that the minorization condition of order ℓ for some integer
ℓ ≥ 1 is the following one:

∃(νℓ, ψℓ) ∈ M∗
+,b × B∗

+, P ℓ ≥ ψℓ ⊗ νℓ. (149)

This condition is nothing else but Condition (Mνℓ,ψℓ
) for the Markov kernel P ℓ, and ψℓ is

called a ℓ−order small function for P . The following statement is then obvious.

Corollary 8.8 Let us assume that, for some ℓ ≥ 1, the Markov kernel P ℓ satisfies Condi-
tions (Mνℓ,ψℓ

) and Dψℓ
(V0 : Vm) for some (νℓ, ψℓ) ∈ M∗

+,b × B∗
+ and for some collection

{Vi}mi=0 of Lyapunov functions. Then Theorem 8.2 and Corollary 8.3 apply to P ℓ.

Of course, for Corollary 8.8 to be relevant, Condition (121) for P ℓ must be satisfied. This
requires in particular being able to calculate the iterate P ℓ, which is in any case also nec-
essary to check that P ℓ satisfies Conditions (M νℓ,ψℓ

) and Dψℓ
(V0 : Vm). This problem is
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circumvented in the following statement, in which the minorization and nested modulated
drift conditions are initially assumed for P . More precisely, let P satisfy Conditions (Mν,ψ)–
Dψ(V0 : Vm) with µR(|ϕ|) ≥ 1, so that Condition (121) does not hold. The next theorem
states that, under the strong aperiodicity condition ν(ψ) > 0, there exists an integer ℓ ≥ 2
such that the assumptions of Corollary 8.8 hold with some small-function ψℓ for P

ℓ satisfying
Condition (121), so that all the conclusions of Theorem 8.2 and Corollary 8.3 apply to P ℓ.

Theorem 8.9 Let P satisfy Conditions (Mν,ψ)–Dψ(V0 : Vm) with m ≥ 2 for some (ν, ψ) ∈
M∗

+,b × B∗
+ such that ν(ψ) > 0. Then

1. πR is the unique P ℓ−invariant probability measure for each ℓ ≥ 1.

2. There exists an integer ℓ0 ≥ 1 such that the following assertions hold for every ℓ ≥ ℓ0:

(a) the Markov kernel P ℓ satisfies (Mν,ψℓ
)–Dψℓ

(V0 : Vm) with ψℓ := P ℓ−1ψ;

(b) Condition (121) holds for the small-function ψℓ := P ℓ−1ψ and rewrites as

µR(|ϕℓ|) :=
πR(|ϕℓ|)
πR(ψℓ)

< 1 with ϕℓ := ψℓ − πR(ψℓ)1X. (150)

Using these properties, all the conclusions of Theorem 8.2 and Corollary 8.3 apply to the
Markov kernel P ℓ replacing the constant Cϕ by (1− µR(|ϕℓ)|)−1.

In (150) we have πR(ψℓ) = πR(ψ) from the P−invariance of πR. Thus (150) reads as follows

µR(|ϕℓ|) = µR(|P ℓ−1ψ − πR(ψ)1X|) =
πR(|P ℓ−1ψ − πR(ψ)1X|)

πR(ψ)
< 1.

When ℓ := 1, this is nothing else than µR(|ϕ|) < 1. When µR(|ϕ|) ≥ 1, Theorem 8.9 states
that the condition µR(|ϕℓ|) < 1 is fulfilled for ℓ large enough. The proof of Theorem 8.9 is
based on the following lemma.

Lemma 8.10 Let P satisfy Condition (Mν,ψ) for some (ν, ψ) ∈ M∗
+,b × B∗

+ such that
ν(ψ) > 0, and Condition Dψ(V,W ) for some couple (V,W ) of Lyapunov functions on
X. For every ℓ ≥ 1, set ψℓ := P ℓ−1ψ. Then P ℓ satisfies Conditions (M ν,ψℓ

)–Dψℓ
(V,W ),

that is

P ℓ ≥ ψℓ ⊗ ν (151a)

∃bℓ > 0, P ℓV ≤ V −W + bℓ ψℓ. (151b)

Proof. For ℓ := 1, Inequalities (151a)–(151b) are just (Mν,ψ)–Dψ(V,W ). Let ℓ ≥ 2 be fixed.
Inequality (151a) follows from (Mν,ψ) and the non-negativity of the kernel P ℓ−1. To obtain
(151b), let Vd := V + d1X with d := max(0, (b − ν(V ))/ν(1X)) where b is the constant in
Dψ(V,W ), so that P satisfies R(Vd,W ) from Lemma 5.8 used under Condition Dψ(V,W ).
Namely we have: RVd ≤ Vd−W . Iterating this inequality shows that RℓVd ≤ Vd−W . Then,
under (Mν,ψ), it follows from Formula (17) in Lemma 3.2 applied to Vd that

P ℓVd = RℓVd +
ℓ∑

k=1

ν(Rk−1Vd)P
ℓ−kψ ≤ Vd −W +

ℓ∑
k=1

ν(Rk−1Vd)P
ℓ−kψ
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which is equivalent to

P ℓV ≤ V −W +
ℓ∑

k=1

ν(Rk−1Vd)P
ℓ−kψ

since P ℓVd = P ℓV + d1X using the definition of Vd and P ℓ is a Markov kernel. It remains to
prove that the last term in the previous inequality is bounded from above by bℓ ψℓ = bℓP

ℓ−1ψ
for some bℓ > 0. To do this, prove that, for any k ∈ {1, . . . , ℓ}, P ℓ−kψ ≤ cℓ,kP

ℓ−1ψ for some
cℓ,k > 0. In fact, we have P ℓ−1ψ ≥ ν(ψ)k−1P ℓ−kψ for every k ∈ {1, . . . , ℓ} so that we can set
ck ≡ cℓ,k := ν(ψ)−(k−1). Indeed, this is trivial for k := 1 and for k ∈ {2, . . . , ℓ}, this follows
from the minorization conditions (151a) applied to ψ, i.e. the relation P jψ ≥ ν(ψ)P j−1ψ for
j ≥ 1. This proves the desired inequality. □

Proof of Theorem 8.9. We know from Theorem 5.3 that µR(1X) < ∞ and that the function
h∞

R := limnR
n1X is zero on X. Moreover it follows from the strong aperiodicity condition

ν(ψ) > 0 and Theorem 4.7 that limn→+∞ ∥δxPn − πR∥TV = 0, from which we deduce the
two following facts: first πR is the unique invariant probability measure for each iterate P ℓ;
second there exists ℓ0 ≥ 1 such that

µR(|P ℓ0−1ψ − πR(ψ)1X|) =
πR(|P ℓ0−1ψ − πR(ψ)1X|)

πR(ψ)
< 1

since Lebesgue’s theorem w.r.t. πR ensures that limn πR(|Pnψ−πR(ψ)1X|) = 0. As previously
quoted, this condition is nothing else than Property (150) for ℓ := ℓ0, that is µR(|ϕℓ0 |) < 1.
Let ℓ ≥ ℓ0. Using Conditions (M ν,ψ)–Dψ(V0 : Vm) for P we deduce from Lemma 8.10 that
P ℓ satisfies (Mν,ψℓ

)–Dψℓ
(V0 : Vm) with ψℓ := P ℓ−1ψ. Moreover Theorem 5.3 applied to P ℓ

and the fact that πR is the unique P ℓ−invariant probability measure ensure that

πR = πRℓ
:= µRℓ

(1X)
−1µRℓ

= πR(ψℓ)µRℓ
= πR(ψ)µRℓ

with µRℓ
:=

+∞∑
k=1

νRk−1
ℓ ∈ M+

∗

where Rℓ := P ℓ − ψℓ ⊗ ν is the residual kernel associated with P ℓ under the minorization
condition (Mν,ψℓ

). In particular note that µRℓ
= µR. Consequently Condition (121) for P ℓ

under (M ν,ψℓ
)–Dψℓ

(V0 : Vm) writes as

µRℓ
(|ϕℓ|) = µR(|ϕℓ|) =

πR(|ϕℓ|)
πR(ψℓ)

< 1 where ϕℓ := ψℓ − πR(ψℓ)1X,

which is exactly (150). □

The proof of Lemma 8.10 ensures that

P ℓV ≤ V −W + bℓ ψℓ with bℓ :=

ℓ∑
k=1

cℓ,k ν(R
k−1Vd) (152)

where Vd := V + d1X with d := max(0, ν(1X)
−1(b − ν(V ))) and where cℓ,k are any positive

constant such that we have: ∀k ∈ {1, . . . , ℓ}, P ℓ−kψ ≤ cℓ,kP
ℓ−1ψ. Such constants cℓ,k exist,

for instance cℓ,k = ν(ψ)−(k−1) (see the proof of Lemma 8.10). If P ℓ is computable, then the
constant bℓ in (151b) can be computed using directly the Markov kernel P ℓ rather than using
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formula in (152). Actually the general minorization and nested modulated drift conditions
for P ℓ in Corollary 8.8 are the following ones with ψℓ := P ℓ−1ψ:

∃ νℓ ∈ M∗
+,b, ∀x ∈ X, P ℓ ≥ P ℓ−1ψ ⊗ νℓ

∀i ∈ {0, . . . ,m− 1}, ∃bℓ,i > 0, P ℓVi ≤ Vi − Vi+1 + bℓ,i P
ℓ−1ψ.

Under the assumptions of Theorem 8.9, the two previous conditions are satisfied for every
ℓ ≥ 1, and Property (150) holds for ℓ large enough.

8.5 Further comments and bibliographic discussion

Theorem 8.2 and Corollary 8.3 may be relevant whenever explicit modulated drift conditions
are known: for such examples stated with ψ := 1S , e.g. see [FM00, FM03b, DFM16] in
the context of Metropolis algorithm, [LH07, LH12] for queueing systems, [JT02] for Markov
chains associated with the mean of Dirichlet processes. The main classical results on the
rate of convergence of iterates in the non-geometric case are now recalled. The condition
π(1S) > 1/2 is also discussed at the end of this subsection.

A) On the subgeometric convergence rates. In continuation of the pioneering works [Pit74]
based on recurrence times moments and [NT83, TT94] using spitting techniques, the poly-
nomial rates of convergence were first addressed in [JR02] under the nested modulated
drift conditions D1S (V0 : Vm) w.r.t. petite sets, of which Jarner-Roberts’s drift condi-
tion (143) is a special case (see Subsection 3.5-A for the definition of a petite set). Then
explicit bounds for ∥Pn(x, ·) − π

∥∥
TV

have been proposed in [FM03b, DMS07] thanks
to coupling methods under the sub-geometric drift condition PV ≤ V − ϕ ◦ V + b1S
(where ϕ is essentially some non-negative concave increasing differentiable function on
[1,+∞)). This so-called sub-geometric drift condition encompasses Jarner-Roberts’s.
Actually, whatever the form of the starting single drift condition (e.g. the sub-geometric
one or Jarner-Roberts’s), the nested modulated drift conditions Dψ(V0 : Vm) must be im-
plemented in practice anyway, see [FM03b, Rem. 3]. This is recalled for Jarner-Roberts’s
drift condition in Proposition 8.6 based on [JR02, proof of Th. 3.6]. Readers can also
consult [DFMS04] for various statements and examples on different rates of convergence,
[But14, DFM16] for rates of convergence in Wasserstein distance, and finally [DMPS18,
Sec. 17.3] for further bibliographical complements. An alternative operator-type ap-
proach is presented in [Del17] inspired by the work of Yosida-Kakutani [YK41]. The
works [JR02, AFV15] are discussed below.

B) Comments on Jarner-Roberts’s paper [JR02]. Let P satisfy Conditions (Mν,1S ) and
D1S (V0 : Vm) with m ≥ 1 and some petite set Si in each modulated drift condition. Let
π denote the P−invariant probability measure. It is proved in [JR02, Th. 3.2] that

∀x ∈ X, lim
n→+∞

(n+ 1)m−1
∥∥Pn(x, ·)− π

∥∥′
Vm

= 0, (154)

provided that P also satisfies the standard η−irreducibility and aperiodicity assumptions
w.r.t. some positive measure η (also see [FM03b, Th. 1]). The polynomial asymptotics
(154) ensures that ∥Pn(x, ·) − π∥TV ≤ c(x)/nm−1 for every x ∈ X, but with unknown
constant c(x). In particular the explicit bounds of ∥P k(x, ·)−π∥TV in [FM03b, Th. 2] and
[DMS07, Th. 2.1] do not seem to provide any information on the quantitative polynomial
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rate of convergence in (154) (see also [CF09, Pro. 2.2]). Estimate (130) in Corollary 8.3
provides c(x) = cV0(x) with an explicit constant c.

C) On the results in [AFV15] under Jarner-Roberts’s drift condition. Using a coupling con-
struction in the context of subgeometric Markov chains, rates of convergence are ad-
dressed in [AFV15, Th. 1] in terms of series of the form

∑+∞
n=0 r(n)|(Png)(x)− (Png)(x′)|

where (r(n))n≥0 is some sequence of positive real numbers related to a subgeometric
drift condition. In particular their results apply to Markov kernels satisfying (Mν,1S )
and Jarner-Roberts’s drift condition (143). Under these conditions (and some additional
minor assumptions), it is proved in [AFV15, Cor. 1, homogeneous case with ξ = 1] that
there exists a constant C > 0 such that for any (x, x′) ∈ X2 and any g ∈ B1X

+∞∑
n=0

(n+ 1)m−1|(Png)(x)− (Png)(x′)| ≤ C ∥g∥1X
(
V (x) + V (x′)− 1

)
with m := ⌊(1− α)−1, where α is the constant in (143) (as in Proposition 8.6). Thus, if
π(V ) <∞, then Sm−1(g, x) ≤ C ∥g∥1X(V (x)+π(V )−1). The fact that Sm−1(g, x) can be
estimated in [AFV15, Cor. 1], while Theorem 8.2 only provides an estimate for Sm−2(g, x),
is due to the additional condition π(V ) < ∞ which is imposed in [AFV15, Cor. 1], but
not in Theorem 8.2. Indeed recall that the only moment condition guaranteed under
Assumption (143) is π(V α) <∞, and that the assumption π(V ) <∞ actually generates
an additional modulated drift condition (see Proposition 5.12).

D) Comments on [MT09, Th. 14.0.1]. If P satisfies the assumptions of Theorem 8.2 with
m := 2 (thus requiring two nested modulated drift conditions), then

∀x ∈ X,
+∞∑
n=0

∥∥Pn(x, ·)− π
∥∥′
V2

≤ ĉ2 V0(x)

with explicit constant ĉ2 (see (139)). This statement may be surprising on first reading
compared with the classical result [MT09, Th. 14.0.1]. Indeed, we know from [MT09,
Th. 14.0.1] that, if P satisfies Condition (M ν,1S ) and the single modulated drift condi-
tion D1S (V,W ) for some Lyapunov functions V and W such that π(V ) <∞, then there
exist a P−absorbing set A ∈ X and a (non-explicit) constant c > 0 such that

∀x ∈ A,

+∞∑
n=0

∥∥Pn(x, ·)− π
∥∥′
W

≤ c V (x) (155)

provided that P is irreducible and aperiodic. But again, note that the assumption π(V ) <
∞ in [MT09, Th. 14.0.1] for Lyapunov function V in Condition D1S (V,W ) generates
another modulated drift condition D1S (L, V ) for some Lyapunov function L ≥ V (see
Proposition 5.12). Hence the assumptions of [MT09, Th. 14.0.1] actually involve two
nested modulated drift conditions too.

E) On the constant c in (155). Using some refinements on the modulated drift condition,
the authors in [FM03a, Prop. 13] present an explicit bound in [MT09, Th. 14.0.1], i.e. an
explicit constant c in (155) (consider λ = δx and µ = π in [FM03a, Prop. 13]). These
statements imply that the inequality π(1D) > 1/2 for some small-set D holds: This
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inequality is nothing else than Condition (121) from Proposition 8.5. Indeed the Lyapunov
function W in the modulated drift condition D1S (V,W ) considered in [FM03a, Prop. 13]
satisfies W ≥ b/(1− a) on Dc for some a ∈ (0, 1) and some small-set D ∈ X ∗ containing
the small-set S of D1S (V,W ), and where b denotes here the constant in D1S (V,W ). Thus
we have π(1Dc) ≤ π(W )(1− a)/b. Since the condition π(V ) <∞ is required in [FM03a,
Prop. 13] for obtaining the bound (155), it follows from D1S (V,W ) that π(W ) ≤ bπ(1S).
Thus we have π(1Dc) ≤ (1− a)π(1S), from which we deduce that

π(1D) ≥ π(1S) ≥
π(1Dc)

1− a
=

1− π(1D)

1− a
.

Hence we obtain that π(1D) ≥ 1/(2− a). Thus, as claimed, the condition π(1D) > 1/2 is
assumed in [FM03a, Prop. 13].

F) Again on Condition (121). As in [FM03a] (see the previous point), the assumption
π(1D) > 1/2 for some small-set D occurs in the nested modulated drift conditions in
[FM03b, p. 78] introduced for the study of polynomial ergodicity (see [FM03b, Eq. (50)]
and apply the arguments of the previous point). Similarly the assumption π(1S) > 1/2
is present in the geometric rate of convergence obtained in [Ros95, Th. 12], see [Jer16]
and [QH21, Prop. 17]. In fact, technical conditions linking the set S to the data V , δ
and b of Condition G1S (δ, V ) always lead to impose a restrictive assumption on π(1S).
Such a technical condition is assumed on P in [HM11], and the extension to the general
case requires the use of averaged Markov kernels (

∑N
k=0 P

k)/(N +1) for N large enough.
Finally, let us mention that conditions on S, V , δ and b occur in reversibility case too.
Indeed, considering a reversible Markov kernel P w.r.t. invariant probability measure
π, the authors in [TM22, Prop. 1] provide a L2(π)−rate of convergence when P satisfies
Conditions (Mν,1S )–G1S (δ, V ) with a small-set S satisfying the condition of [HM11], that
is S = {V ≤ s} for s > 2b/(1 − δ). This condition actually implies that π(1S) > 2/3.
Indeed

π(1Sc) = π(1{V >s}) ≤
π(V )

s
≤ bπ(1S)

s(1− δ)
<
π(1S)

2

from Markov inequality and (1 − δ)π(V ) ≤ bπ(1S) derived from G1S (δ, V ) and the
P−invariance of π. Thus π(1S) > 2/3. Accordingly the discussion in [QH21, QH22]
concerning the trade-off that must be made in [Ros95, Th. 12] between, on the one hand,
the condition π(1S) > 1/2 requiring a sufficiently large small-set S and, on the other
hand, the total mass ν(1X) requiring S not to be too large, generalizes to all the papers
cited above and also to the framework of Theorem 8.2. To overcome this problem in
the geometric case, the authors of [YR23] have introduced the notion of large-sets and
a generalized geometric drift condition, see in particular [YR23, Th. 2.6] where a basic
part of the proof is a modification of arguments used in [Ros95]. In the polynomial case,
Theorem 8.9 provides an alternative, using a ℓ−order small-function with ℓ ≥ 2.

9 Geometric rate of convergence of the iterates

In Subsection 9.1 the geometric rate of convergence of the iterates of P is studied on some
general Banach spaceB by introducing the spectral radius of the residual kernel R onB. This
general framework is then applied under the first-order minorization condition (Mν,ψ) and
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the geometric drift condition Gψ(δ, V ) to obtain the rate of convergence, first for V−weighted
norm in Subsection 9.2 to complete Theorem 6.2, second for L2(πR)−norm in Subsection 9.3
with the specific reversible case in Subsection 9.4, and finally for V α−weighted norm in
Subsection 9.5 for α belonging to some interval A ⊂ (0, 1]. Further statements on the
reversible and positive reversible cases are provided in Subsection 9.6. The spaces L1(πR)
and L2(πR), as well as the standard Lebesgue spaces (L1(πR), ∥ · ∥1), (L2(πR), ∥ · ∥2) and
(L∞(πR), ∥ · ∥∞) w.r.t. the probability measure πR, are defined in Section 2. Finally, when
L is a bounded linear operator on a Banach space B, we write L ∈ L(B) for short. If B
is composed of complex-valued measurable functions on X, or of classes modulo πR of such
functions, then for any non-negative kernel K on X we simply write K ∈ L(B) to express that
the functional action of K on B defines a bounded linear operator on B. The prerequisites
in spectral theory are those given by (S1)-(S3) in Subsection 6.2 (see page 57).

9.1 Geometric rate of convergence on a Banach space

Let P satisfy Condition (Mν,ψ), as well as the two conditions h∞
R = 0 and µR(1X) < ∞

which are satisfied for example under the modulated drift condition Dψ(V0, V1). Under these
conditions, all the conclusions of Theorem 4.1 hold true: The P−harmonic functions are
constant on X; P is irreducible and recurrent; The positive measure µR satisfies µR(ψ) = 1 and
is the unique P−invariant positive measure η (up to a positive multiplicative constant) such
that η(ψ) < ∞; Finally πR := µR(1X)

−1µR (see (26)) is the unique P−invariant probability
measure on (X,X ). Let (B, ∥ · ∥) be a Banach space satisfying the following assumptions:

Assumptions (B). Either the set B is composed of C-valued measurable functions on X and
B1X ⊂ B ⊂ L1(πR); or B is composed of classes modulo πR of C-valued measurable functions
on X and L∞(πR) ⊂ B ⊂ L1(πR). Moreover, in both cases, the norm ∥ · ∥ on B is assumed
to satisfy the following condition:

∃c > 0, ∀g ∈ B, πR(|g|) ≤ c∥g∥. (156)

If P ∈ L(B), then P is said to be geometrically ergodic on (B, ∥ · ∥) if

∃ρ ∈ (0, 1), ∃cρ > 0, ∀g ∈ B, ∀n ≥ 1, ∥Png − πR(g)1X∥ ≤ cρ ρ
n∥g∥. (157)

In this case we define the following real number ϱB ∈ (0, 1)

ϱB ≡ ϱB(P ) := inf
{
ρ ∈ (0, 1) such that Property (157) holds

}
. (158)

The power series ρ(z) used below is that introduced to define the aperiodicity condition (see
(38)-(39)). Finally, when the residual kernel R belongs to L(B), we denote by rB the spectral
radius of R on (B, ∥ · ∥).

Theorem 9.1 Assume that P satisfies (Mν,ψ) with h
∞
R = 0, µR(1X) <∞, and is aperiodic.

Let (B, ∥ · ∥) be a Banach space satisfying Assumptions (B) and assume that P ∈ L(B).
Then R ∈ L(B). Moreover, if rB < 1, then P is geometrically ergodic on (B, ∥ · ∥). More
precisely the radius of convergence of the power series ρ(z) :=

∑+∞
n=1 ν(R

n−1ψ) zn is larger
than 1/rB, and the following alternative holds:

(a) If Equation ρ(z−1) = 1 has no solution z ∈ C such that rB < |z| < 1, then ϱB ≤ rB.
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(b) Otherwise, we have ϱB = max
{
|z| : z ∈ C, ρ(z−1) = 1, rB < |z| < 1

}
.

Based on the definition of the spectral radius rB of R on B, the following simple lemma is
the first key point to prove Theorem 9.1.

Lemma 9.2 Let us assume that P satisfies Condition (Mν,ψ) with h
∞
R = 0 and µR(1X) <∞,

and that P ∈ L(B) where (B, ∥ · ∥) is a Banach space satisfying Assumptions (B). Then
R ∈ L(B), and the following assertions hold:

1. For every z ∈ C such that |z| > rB and for every g ∈ B, the series g̃z :=
∑+∞

k=0 z
−(k+1)Rkg

absolutely converges in B.

2. The radius of convergence of ρ(z) :=
∑+∞

n=1 ν(R
n−1ψ) zn is larger than 1/rB.

Proof. Recall that the operator-norm of any L ∈ L(B) is denoted by ∥L∥ for simplicity.
From (Mν,ψ) and the P−invariance of πR we know that πR ≥ πR(ψ)ν with πR(ψ) > 0 (see
Theorem 3.6). Thus

∀g ∈ B, ν(|g|) ≤ πR(ψ)
−1πR(|g|) ≤ c πR(ψ)

−1∥g∥ (159)

due to (156). From the definition of R and (159), we obtain that, for every g ∈ B, the
function Rg (or its class modulo πR) belongs to B with

∥Rg∥ ≤ ∥Pg∥+ ν(|g|)∥ψ∥ ≤
(
∥P∥+ c πR(ψ)

−1∥ψ∥
)
∥g∥

where ∥P∥ is the operator-norm of P . Note that ∥ψ∥ is well-defined since ψ is bounded,
so that ψ (or its class) belongs to B. Thus R ∈ L(B). Now prove Assertion 1. From the
definition of rB we know that

∀γ ∈ (rB,+∞), ∃cγ > 0, ∀g ∈ B, ∀n ≥ 1, ∥Rng∥ ≤ cγ γ
n ∥g∥. (160)

Let z ∈ C be such that |z| > rB and let γ ∈ (rB, |z|). Then for every g ∈ B we have

|z|−(k+1)∥Rkg∥ ≤ |z|−1cγ (γ/|z|)k ∥g∥,

from which we deduce that
∑+∞

k=0 |z|−(k+1)∥Rkg∥ < ∞. This provides Assertion 1. since
(B, ∥ · ∥) is a Banach space. Now prove Assertion 2.. Let γ > rB. From (159) and (160) we
obtain that

0 ≤ ν(Rkψ) ≤ c πR(ψ)
−1∥Rkψ∥ ≤ c πR(ψ)

−1 cγ γ
k ∥ψ∥

so that the series
∑+∞

n=1 ν(R
n−1ψ) zn converges for every z ∈ C such that |z| < 1/γ. Hence

the radius of convergence of the power series ρ(z) is larger than 1/γ, thus larger than 1/rB
since γ is any real number in (rB,+∞). □

Recall that, in case B := BV (C), the series involved in Lemma 9.2 are those used in
Section 6.2 to study the invertibility of the operator zI − P for z ∈ C of modulus one, see
Lemmas 6.3-6.4. From these lemmas and the compactness of the spectrum, the geometric
ergodicity on BV (C) was then easily deduced in Theorem 6.2, i.e. ϱB < 1, but without control
of the rate of convergence because Lemmas 6.3-6.4 only focus on the complex numbers of
modulus one. Using Lemma 9.2 and repeating on the general space B the arguments of
Section 6.2, the proof of Theorem 9.1 as a whole is therefore a refinement, often even a
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simple copy, of that of Theorem 6.2. Indeed it can be similarly shown that, for any z ∈ C
such that |z| > rB, the operator zI − P is invertible on B if, and only if, ρ(z−1) ̸= 1. Then
the alternative (a)-(b) of Theorem 9.1 is obtained noticing that ϱB is nothing else but the
spectral radius of the restriction P0 of P to the subspace B0 := {g ∈ B : πR(g) = 0} of B.
For the reader’s convenience, the proof of Theorem 9.1 is postponed to Appendix D, where
the following additional statements are also obtained in Case (b) of Theorem 9.1.

Proposition 9.3 Let P satisfy the assumptions of Theorem 9.1 with rB < 1. Then the
following properties hold in Case (b) of Theorem 9.1. For every r ∈ (rB, 1) the set

Sr := {z ∈ C, ρ(z−1) = 1, r ≤ |z| < 1}

is finite, and it is non-empty for r ∈ (rB, 1) sufficiently close to rB. Moreover every z ∈ Sr
is an eigenvalue of P on B with

Ez := {g ∈ B : Pg = zg} = C · ψ̃z

where ψ̃z ∈ B is non-zero and is defined by ψ̃z :=
∑+∞

k=0 z
−(k+1)Rkψ.

9.2 Rate of convergence in V−geometric ergodicity

When P is V−geometrically ergodic for some Lyapunov function V (see (72) in Theorem 6.2),
we define the following real number ϱV ∈ (0, 1)

ϱV ≡ ϱV (P ) := inf
{
ρ ∈ (0, 1) such that Property (72) holds

}
. (161)

In other words ϱV is nothing else but ϱB with B := BV (C). To apply Theorem 9.1 in the
case B := BV (C), we first prove the following statement, in which rV denotes for short the
spectral radius of the residual kernel R on BV (C) (i.e. rV ≡ rBV (C) with the notation of
Theorem 9.1).

Proposition 9.4 Let P satisfy (M ν,ψ)–Gψ(δ, V ). Then rV := limn ∥Rn∥1/nV satisfies

∀n ≥ 1, rV ≤ ∥Rn∥1/nV = ∥RnV ∥1/nV (162)

and
rV = lim

n
∥RnV ∥1/nV < 1.

Proof. Under (Mν,ψ), the operator-norm ∥Rn∥V equals to ∥RnV ∥V from the non-negativity
of Rn, and

∀n ≥ 1, rV = lim
k→+∞

∥Rkn∥
1
kn
V ≤ ∥Rn∥

1
n
V

from Gelfand’s formula and ∥Rkn∥V ≤ ∥Rn∥ k
V . Then (162) holds true. Now, using Con-

dition Dψ(V0 : V2) with V2 := V and V0, V1 given in (148) (case m = 2), it follows from
Proposition 8.1 that

∑+∞
n=0(n+ 1)RnV2 ≤ D1 V0, thus:

∀n ≥ 1, RnV = RnV2 ≤
D1

n+ 1
V0 =

D1

(1− δ)2(n+ 1)
V
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since V0 = V/(1− δ)2. From ∥Rn∥V = ∥RnV ∥V , there exists n0 ≥ 1 such that ∥Rn0∥V ≤ 2/3
(for instance). Next, writing n = kn0 + r with r ∈ {0, . . . , n0 − 1} and setting θ := (2/3)1/n0 ,
A := max(1, ∥R∥V )n0 , we obtain that

∥Rn∥V = ∥Rr(Rn0)k∥V ≤ ∥R∥rV
(
2

3

)k
≤ max(1, ∥R∥V )n0

(
2

3

)(n−r)/n0

≤ 3A

2
θn

thus rV ≤ θ < 1 using Gelfand’s formula. □

Under Conditions (Mν,ψ)–Gψ(δ, V ) we have h∞
R = 0, µR(1X) <∞ and πR(V ) <∞ (see the

beginning of Section 6). Moreover the Banach space (BV (C), ∥·∥V ) satisfies Assumptions (B)
since 1X ≤ V and

∀g ∈ BV (C), πR(|g|) ≤ πR(V ) ∥g∥V .

When P satisfies (Mν,ψ)–Gψ(δ, V ) and is aperiodic, we know from Theorem 6.2 that P is
V−geometrically ergodic, i.e. ϱV < 1. Corollary 9.5 below is thus a refinement of Theo-
rem 6.2 since it provides a bound (even the exact value in Case (b)) of the real number ϱV .
Corollary 9.5 is a direct consequence of Proposition 9.4 and Theorem 9.1.

Corollary 9.5 Assume that P satisfies (Mν,ψ)–Gψ(δ, V ) and is aperiodic. Then the radius
of convergence of the power series ρ(z) :=

∑+∞
n=1 ν(R

n−1ψ) zn is larger than 1/rV . Moreover
the alternative (a)− (b) of Theorem 9.1 and the additional statements of Proposition 9.3 hold
with B := BV (C), ϱB := ϱV and rB := rV .

9.3 Geometric ergodicity on L2(πR)

Let P satisfy Conditions (Mν,ψ)–Gψ(δ, V ), so that πR is the unique P−invariant probability
measure. The operator-norm on (L2(πR), ∥ · ∥2) is also denoted by ∥ · ∥2. Recall that P ∈
L(L2(πR)), more precisely ∥P∥2 = 1. Indeed we have P1X = 1X and ∥Pg∥2 ≤ ∥g∥2 for every
g ∈ L2(πR) since

∥Pg∥ 2
2 =

∫
X

∣∣∣∣ ∫
X
g(y)P (x, dy)

∣∣∣∣2πR(dx) ≤
∫
X

∫
X
|g(y)|2P (x, dy)πR(dx) =

∫
X
|g(x)|2 πR(dx)

from the Cauchy-Schwarz inequality w.r.t. the probability measure P (x, dy) and from the
P−invariance of πR. If P is geometrically ergodic on L2(πR), i.e. when (157) holds with
(B, ∥ · ∥) := (L2(πR), ∥ · ∥2), then the corresponding real number ϱL2(πR)(P ) in (158) is
denoted for short by ϱ2. Recall that, if L ∈ L(L2(πR)), then its adjoint L∗ ∈ L(L2(πR)) is
defined by:

∀(f, g) ∈ L2(πR)× L2(πR),

∫
X
(Lf)(x) g(x)πR(dx) =

∫
X
f(x) (L∗g)(x)πR(dx). (163)

The residual kernel R is also a bounded linear operator on (L2(πR), ∥ · ∥2): in fact it is a
contraction on L2(πR), i.e. ∥R∥2 ≤ 1, since 0 ≤ R ≤ P . Let R∗ be the adjoint operator of R
on L2(πR), and define the following [0,+∞]−valued quantity

ϑV := lim sup
n→+∞

∥∥∥∥R∗nV

V

∥∥∥∥ 1/n

∞
, (164)
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where ∥ · ∥∞ ≡ ∥ · ∥∞,πR is defined in (9). Recall that the spectral radius rV of R on BV (C)
satisfies rV < 1 from Proposition 9.4. We simply denote by r2 the spectral radius of R on
L2(πR) (i.e. r2 ≡ rL2(πR) with the notation of Theorem 9.1). Note that r2 ≤ 1 from Gelfand’s
formula since R is a contraction on L2(πR).

Theorem 9.6 Assume that P satisfies (Mν,ψ)–Gψ(δ, V ) with πR(V
2) <∞ and is aperiodic.

If ϑV < ∞, then r2 ≤ (rV ϑV )
1/2. Next, if ϑV < 1/rV , then r2 < 1 and P is geometrically

ergodic on L2(πR). More precisely the radius of convergence of the power series ρ(z) :=∑+∞
n=1 ν(R

n−1ψ) zn is larger than 1/r2. Moreover the alternative (a)-(b) of Theorem 9.1 and
the additional statements of Proposition 9.3 hold with B := L2(πR), ϱB := ϱ2 and rB := r2.

In the proof below we use the following well-known fact. Let L ∈ L(B) for some Banach
space (B, ∥ · ∥) and assume that there exists a dense subset D in B and a positive constant
d such that: ∀h ∈ D, ∥Lh∥ ≤ d∥h∥. Then the operator-norm ∥L∥ of L on (B, ∥ · ∥) is less
than d. Indeed, let g ∈ B and (hn)n ∈ Dn be such that limn ∥g − hn∥ = 0. Then

∥Lg∥ ≤ ∥L(g − hn)∥+ ∥Lhn∥ ≤ ∥L∥ ∥g − hn∥+ d ∥hn∥.

When n→+∞ this provides ∥Lg∥ ≤ d ∥g∥ since limn ∥hn∥ = ∥g∥.
Proof of Theorem 9.6. Assume that ϑV < ∞, and let (ϑ, r) ∈ (ϑV ,+∞) × (rV ,+∞). From
the definition of ϑV and rV we know that

∃n0 ≥ 1, ∀n ≥ n0, R
∗nV ≤ ϑnV πR−a.s. and ∃d > 0, ∀n ≥ 1, RnV ≤ d rnV. (165)

Let g ∈ B1X(C) (i.e. g : X→C is bounded and measurable). We have for every n ≥ n0

∥Rng∥ 2
2 =

∫
X

(∫
X

g(y)

V (y)1/2
V (y)1/2Rn(x, dy)

)2

πR(dx)

≤
∫
X

(∫
X

|g(y)|2

V (y)
Rn(x, dy)

)
(RnV )(x)πR(dx)

≤ d rn
∫
X
(Rn

|g|2

V
)(x)V (x)πR(dx)

= d rn
∫
X

|g(x)|2

V (x)
(R∗nV )(x)πR(dx)

≤ d (rϑ)n
∫
X
|g(x)|2 πR(dx)

using successively the Cauchy-Schwarz inequality w.r.t. the non-negative measure Rn(x, dy),
the second inequality in (165), the definition of the adjoint operator R∗n of Rn noticing that
|g|2/V and V belong to L2(πR) since g ∈ B1X(C), V ≥ 1 and πR(V

2) < ∞, and finally using
the first inequality in (165). We have proved that

∀g ∈ B1X(C), ∥Rng∥2 ≤ d1/2(rϑ)n/2 ∥g∥2.

From the density of B1X(C) in L2(πR) it follows that the operator-norm ∥Rn∥2 of Rn on
L2(πR) satisfies ∥Rn∥2 ≤ d1/2(rϑ)n/2, from which we deduce that r2 ≤ (rϑ)1/2 from Gelfand’s
formula. This provides r2 ≤ (rV ϑV )

1/2 since r and ϑ are arbitrarily close to rV and ϑV
respectively. Next, if ϑV < 1/rV , then r2 < 1 and the other assertions of Theorem 9.6 follows
from Theorem 9.1 applied with (B, ∥ · ∥) := (L2(πR), ∥ · ∥2), observing that this Banach space
obviously satisfies Assumptions (B). □
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9.4 Geometric ergodicity on L2(πR) in the reversible case

Again P is assumed to satisfy (Mν,ψ)–Gψ(δ, V ). Recall that P is said to be reversible with
respect to its (unique) invariant probability measure πR if

πR(dx)P (x, dy) = πR(dy)P (y, dx).

This is equivalent to the condition P ∗ = P where P ∗ is the adjoint operator of P on L2(πR).
In other words P is reversible if, and only if, P is self-adjoint, that is:

∀(f, g) ∈ L2(πR)× L2(πR),

∫
X
(Pf)(x) g(x)πR(dx) =

∫
X
f(x) (Pg)(x)πR(dx). (166)

Geometric ergodicity on L2(πR) (case B := L2(πR)) in the reversible case is particularly
interesting since not only can the value ρ := ϱ2 ≡ ϱL2(πR)(P ) ∈ (0, 1) be considered in
Property (157), but also the corresponding constant cϱ2 is equal to one. Namely:

Lemma 9.7 Assume that P is reversible and is geometrically ergodic on L2(π) for some
P−invariant probability measure π. Then

∀g ∈ L2(π), ∀n ≥ 1, ∥Png − π(g)1X∥2 ≤ ϱn2 ∥g∥2 (167)

where ϱ2 ≡ ϱL2(π)(P ) ∈ (0, 1) is given in (158).

Proof. To obtain Property (167) note that ϱ2 is the spectral radius of the operator P − Π
where Π := 1X ⊗ π: This follows from the definition of ϱ2 and Equality Pn − Π = (P − Π)n

due to the P−invariance of π. Moreover, since P −Π is self-adjoint from the reversibility of
P , we know that ϱ2 equals to the operator-norm ∥P −Π∥2. Thus

∀n ≥ 1, ∥Pn −Π∥2 = ∥(P −Π)n∥2 ≤ ∥P −Π∥ n
2 = ϱ2

n

from which we deduce (167). □

Recall that rV denotes the spectral radius of the residual kernel R on BV (C) and that ϱV
is defined in (161). Under the assumptions of the following theorem we know that rV < 1 and
ϱV < 1 from Proposition 9.4 and Corollary 9.5. Finally recall that r2 denotes the spectral
radius of R on L2(πR).

Theorem 9.8 Let P satisfy Conditions (Mν,ψ)–Gψ(δ, V ) with πR(V
2) < ∞. If P is re-

versible and aperiodic, then

r2 ≤
(
rV max(rV , ϱV )

)1/2
< 1 (168)

and P is geometrically ergodic on L2(πR). More precisely the radius of convergence of the
power series ρ(z) :=

∑+∞
n=1 ν(R

n−1ψ) zn is larger than 1/r2, and Property (167) holds with
ϱ2 satisfying the following alternative:

(a) If Equation ρ(x−1) = 1 has no solution in the interval (−1,−r2), then ϱ2 ≤ r2.

(b) Otherwise, we have ϱ2 = max
{
|x| : ρ(x−1) = 1, x ∈ (−1,−r2)

}
.

Moreover the additional statements of Proposition 9.3 hold with B := L2(πR), ϱB := ϱ2,
rB := r2, and with set Sr for r ∈ (r2, 1) given here by: Sr := {x ∈ (−1,−r2), ρ(x−1) = 1}.
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The proof of Theorem 9.8 is based on the following proposition.

Proposition 9.9 If P satisfies Conditions (Mν,ψ)–Gψ(δ, V ) with πR(V
2) < ∞ and is re-

versible, then we have ϑV ≤ max(ϱV , rV ) where ϑV is defined in (164).

To prove Proposition 9.9 we use the two following lemmas. Recall that, for any non-negative
measurable function f , we denote by f · πR the non-negative measure defined on (X,X ) by
(f · πR)(1A) :=

∫
X 1A(x)f(x)πR(dx) for every A ∈ X .

Lemma 9.10 Let P satisfy Conditions (Mν,ψ)–Gψ(δ, V ). Then there exists ζ ∈ B∗
+ such

that ν = ζ · πR. Moreover T := ψ ⊗ ν defines a bounded linear operator on L2(πR), and its
adjoint operator T ∗ on L2(πR) is defined by:

T ∗ = ζ ⊗ (ψ · πR). (169)

Proof. From (Mν,ψ) and the P−invariance of πR we have πR ≥ πR(ψ)ν, so that ν is absolutely
continuous w.r.t. πR, i.e.: there exists a non-negative πR−integrable function ζ0 such that
ν = ζ0 · πR. Thus we have πR ≥ πR(ψ)(ζ0 · πR), so that

∀A ∈ X ,
∫
A

(
1X − πR(ψ)ζ0

)
dπR ≥ 0.

Therefore the set A0 = {x ∈ X : ζ0(x) > πR(ψ)
−1} is such that πR(A0) = 0. Then, defining

ζ(x) = 0 for x ∈ A0 and ζ(x) = ζ0(x) for x ∈ X\A0, we obtain that ν = ζ ·πR with ζ bounded
by πR(ψ)

−1 on X. This proves the first assertion. Next we have from T = ψ ⊗ (ζ · πR)

∀(f, g) ∈ L2(πR)
2,

∫
X
(Tf)(x) g(x)πR(dx) =

∫
X
(ζ · πR)(f)ψ(x) g(x)πR(dx)

=

∫
X

∫
X
f(y)ζ(y)πR(dy)ψ(x)g(x)πR(dx)

=

∫
X
f(y)

∫
X
ψ(x)g(x)πR(dx) ζ(y)πR(dy)

=

∫
X
f(y) (ψ · πR)(g)ζ(y)πR(dy)

from which we deduce that T ∗ = ζ ⊗ (ψ · πR). □

Lemma 9.11 Assume that P satisfies (Mν,ψ)–Gψ(δ, V ) and is reversible. Let ζ ∈ B∗
+ be

given in Lemma 9.10. Then the following equalities of linear operators on L2(πR) hold

∀n ≥ 1, Pn = R∗n +

n∑
k=1

Pn−kζ ⊗ (Rk−1ψ · πR). (170)

Note that Formula (170) is not the adjoint version of (17). However, starting from Equal-
ity P = R∗+T ∗ and using Formula (169), the proof by induction of (170) is identical to that
of (17), except that function equalities must be considered here in L2(πR). For completeness,
a proof of Lemma 9.11 is provided in Appendix E.
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Proof of Proposition 9.9. Recall that
∑+∞

k=1R
k−1ψ = ν(1X)

−11X from (35). Thus

∀n ≥ 1,
n∑
k=1

(Rk−1ψ · πR)(V ) =
+∞∑
k=1

(Rk−1ψ · πR)(V )−
+∞∑
k=n

(Rkψ · πR)(V )

= ν(1X)
−1πR(V )− εn with εn :=

+∞∑
k=n

(Rkψ · πR)(V )

from monotone convergence theorem. Applying (170) with g := V and using the previous
equality, we can write that for every n ≥ 1

R∗nV = PnV −
n∑
k=1

(Rk−1ψ · πR)(V )Pn−kζ

= PnV −
n∑
k=1

(Rk−1ψ · πR)(V )
(
Pn−kζ − ν(1X)1X

)
− ν(1X)

( n∑
k=1

(Rk−1ψ · πR)(V )
)
1X

= PnV − πR(V )1X −
n∑
k=1

(Rk−1ψ · πR)(V )
(
Pn−kζ − ν(1X)1X

)
+ ν(1X) εn1X. (171)

Let γ > max(ϱV , rV ). Note that the series ψ̃γ :=
∑+∞

k=1 γ
−kRk−1ψ absolutely converges

in BV from γ > rV and the definition of rV . Moreover there exists dγ > 0 such that:
∀k ≥ 1, Rkψ ≤ dγ∥ψ∥V γkV . Set aγ := dγ∥ψ∥V πR(V

2)/(1− γ). Then

∀n ≥ 1, εn ≤ aγγ
n and 0 ≤

n∑
k=1

γ−k(Rk−1ψ · πR)(V ) ≤ (ψ̃γ · πR)(V )

with (ψ̃γ · πR)(V ) < ∞ since ψ̃γ ∈ BV and πR(V
2) < ∞ by hypothesis. Finally, from the

definition of ϱV and γ > ϱV , we know that there exists cγ > 0 such that:

∀n ≥ 1, ∀g ∈ BV (C), |Png − πR(g)1X| ≤ cγ∥g∥V γn V.

Since V, ζ belong to BV (C) and ν(1X) = πR(ζ) from the definition of ζ in Lemma 9.10, the
previous inequality can be applied to both V and ζ in (171). We then deduce from the
triangular inequality in (171) and the above facts that

∀n ≥ 1,
R∗nV

V
≤ cγ γ

n∥V ∥V + cγ γ
n∥ζ∥V

n∑
k=1

γ−k(Rk−1ψ · πR)(V ) + ν(1X)aγγ
n 1X
V

≤
[
cγ + cγ ∥ζ∥V (ψ̃γ · πR)(V ) + ν(1X)aγ

]
γn

using 1X ≤ V . Thus we have ϑV ≤ γ, and finally ϑV ≤ max(ϱV , rV ) since γ is arbitrarily
close to max(ϱV , rV ). □

Proof of Theorem 9.8. From Theorem 9.6 we know that r2 ≤ (rV ϑV )
1/2, so that the bound

(168) is deduced from Proposition 9.9. The conclusions of Theorem 9.8 then follow from
Property (167) and Theorem 9.1 applied with B = L2(πR), ϱB = ϱ2, and rB = r2 since the
following equality holds here:

{z ∈ C : r2 ≤ |z| < 1, ρ(z−1) = 1} = {x ∈ (−1,−r2) : ρ(x−1) = 1}.
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Indeed, let z ∈ C be such that ρ(z−1) = 1 and r2 < |z| < 1. Then z is an eigenvalue of
P on L2(πR) from Proposition 9.3, i.e. ∃h ∈ L2(πR), h ̸= 0, Ph = zh. From reversibility
we then obtain that z ∈ R (apply (166) with f = g = h). Moreover Equation ρ(x−1) =∑+∞

n=1 ν(R
n−1ψ)x−n = 1 has no solution x ∈ (r2, 1) since ρ(1) = µR(ψ) = 1. The claimed

equality is proved. □

Remark 9.12 If P satisfies the assumptions of Theorem 9.8, then P is also V−geometrically
ergodic, and the alternative (a)-(b) of Theorem 9.1 holds with B := BV (C), ϱB := ϱV and
rB := rV (see Corollary 9.5). In fact, as in Theorem 9.8, it can be deduced from reversibility
and µR(ψ) = 1 that Equation ρ(z−1) = 1 can be only addressed on the interval (−1,−rV ),
that is: Under the assumptions of Theorem 9.8 the following alternative holds

(a) If Equation ρ(x−1) = 1 has no solution x ∈ (−1,−rV ), then ϱV ≤ rV .

(b) Otherwise, we have ϱV = max
{
|x| : x ∈ (−1,−rV ), ρ(x−1) = 1

}
.

Indeed the alternative of Corollary 9.5 can be restricted to the interval (−1,−rV ) proceeding
as in Theorem 9.8. More precisely, apply Proposition 9.3 with B := BV (C) and observe that
BV (C) ⊂ L2(πR) from πR(V

2) < ∞: Then the arguments used at the end of the proof of
Theorem 9.8 can be repeated.

9.5 From V−geometric ergodicity to V α−geometric ergodicity

Recall that the modulated drift condition Dψ(V0 : V2) derived from Gψ(δ, V ) with V2 := V
and V0 := V/(1−δ)2 plays a central role in Proposition 9.4 to obtain rV < 1. Here we present
an alternative approach using Lyapunov function V α for suitable exponents α ∈ (0, 1], in order
to obtain a simple upper bound of the spectral radius of R on BV α(C). More specifically
we restrict this study to the case when P satisfies Conditions (Mν,1S )–G1S (δ, V ) for some
S ∈ X ∗, and we define the following set associated with the residual kernel R := P − 1S ⊗ ν:

A :=
{
α ∈ (0, 1] : RV α ≤ δα V α

}
. (172)

Note that RV α = PV α − ν(V α)1S .

Proposition 9.13 Let P satisfy Conditions (Mν,1S )–G1S (δ, V ) for some S ∈ X ∗ such that
K := supx∈S(PV )(x) <∞. Then the set A is non-empty and reduces to

A =
{
α ∈ (0, 1] : ∀x ∈ S, (RV α)(x) ≤ δα V (x)α

}
. (173)

Moreover we have A = (0, α̂0] with α̂0 := supA, α̂0 ∈ (0, 1], and

∀α ∈ A, rV α ≤ ∥R∥V α ≤ δα (174)

where ∥R∥V α (resp. rV α) denotes the operator norm (resp. the spectral radius) of R on
BV α(C). Finally, if S is an atom, then α̂0 = 1.

Under Assumptions (Mν,1S )–G1S (δ, V ) with V bounded on S, we have K < ∞. That K is
finite is necessary to obtain (175) in the following proof.
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Proof. Let α ∈ (0, 1]. If x ∈ X \ S, then we have (PV α)(x) ≤ δα V (x)α from G1S (δ, V ) and
Jensen’s inequality w.r.t. P (x, dy). Hence the definitions (172) and (173) of the set A are
equivalent. Next, if x ∈ S, then we have (PV α)(x) ≤ Kα from Jensen’s inequality, thus

∀α ∈ (0, 1], ∀x ∈ S, (PV α)(x)− δα V (x)α − ν(V α) ≤ Kα − δα − ν(1X)

using 1X ≤ V . Moreover we have

lim
α→ 0

(
Kα − δα − ν(1X)

)
= − ν(1X) (175)

with ν(1X) > 0. Thus the left hand side of the above inequality is negative for every x ∈ S
provided that α ∈ (0, 1] is small enough. We have proved that, for α ∈ (0, 1] small enough, we
have RV α ≤ δα V α. This shows that A ̸= ∅. Now prove that α̂0 := supA ∈ A. Let (αn)n∈N ∈
AN be such that limn ↗ αn = α̂0. Let x ∈ X. We have limn V (x)αn = V (x)α̂0 . Moreover we
deduce from Lebesgue’s theorem w.r.t. P (x, dy) and ν(dy) that limn(PV

αn)(x) = (PV α̂0)(x)
and limn ν(V

αn) = ν(V α̂0) (use V αn ≤ V , (PV )(x) < ∞ and ν(V ) < ∞). Since αn ∈ A for
any n, this easily implies that α̂0 ∈ A. If S is an atom (i.e. ν(·) := P (a0, ·) for some a0 ∈ S),
then we have

∀α ∈ (0, 1], ∀x ∈ S, PV α(x)− δα V α(x)− ν(V α) = −δα V α(x) ≤ 0,

so that Inequality RV α ≤ δαV α holds on the set S. Thus, in atomic case, we have A =
(0, 1] from the definition (173) of A. Now assume that S is not an atom and prove that
(0, α̂0) ⊂ A. Let x ∈ S. Note that σx(·) := P (x, ·)−ν(·) is a positive measure on (X,X ) from
Condition (Mν,1S ): In fact σ := σx(1X) = 1 − ν(1X) does not depend on x and is positive
since S is not an atom. Thus the following probability measures are well-defined on (X,X ):

∀x ∈ S, σ̂x(dy) :=
1

σ
σx(dy) =

1

σ

(
P (x, dy)− ν(dy)

)
. (176)

Let α ∈ (0, α̂0). We deduce from Jensen’s inequality and from α̂0 ∈ A that for every x ∈ S

(PV α)(x)− ν(V α) = σσ̂x
(
(V α̂0)α/α̂0

)
≤ σ

(
σ̂x
(
V α̂0

))α/α̂0 = σ1−α/α̂0
(
(PV α̂0)(x)− ν(V α̂0)

)α/α̂0

≤ σ1−α/α̂0 δα V (x)α.

This gives: ∀x ∈ S, (RV α)(x) ≤ σ1−α/α̂0 δα V (x)α ≤ δα V (x)α since σ ≤ 1 and α < α̂0.
Hence α ∈ A from (173). We have proved that (0, α̂0) ⊂ A. Thus A = (0, α̂0).

It remains to prove (174). Let α ∈ A. Inequality RV α ≤ δαV α implies that ∥R∥V α ≤ δα

since ∥R∥V α = ∥RV α∥V α from the non-negativity of R. This proves the second inequality in
(174). The first one is obvious from Gelfand’s formula. □

According to the notation (161), for every α ∈ (0, 1] the real number ϱV α ≡ ϱV α(P ) stands
for the lower bound of all the positive real number ρ such that ∥Pn − 1X ⊗ πR∥V α = O(ρn),
where ∥ · ∥V α denotes here the operator norm on BV α(C). Thus P is V α−geometrically
ergodic if, and only if, ϱV α < 1.

Corollary 9.14 Let P satisfy Conditions (Mν,1S )–G1S (δ, V ) for some S ∈ X ∗ such that
K := supx∈S(PV )(x) <∞. If P is aperiodic, then the following assertions hold.

1. For every α ∈ (0, 1], P is V α−geometrically ergodic (i.e. ϱV α < 1).
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2. For every α ∈ A the following alternative holds:

(a) If Equation ρ(z−1) = 1 has no solution z ∈ C, δα < |z| < 1, then ϱV α ≤ δα.

(b) Otherwise, we have ϱV α = max
{
|z| : z ∈ C, ρ(z−1) = 1, δα < |z| < 1

}
.

In Case 2.(b) Proposition 9.3 applies with B := BV α(C) and any r ∈ (δα, 1).

Proof. Let α ∈ (0, 1]. If x ∈ X \ S, then we have (PV α)(x) ≤ δα V (x)α from G1S (δ, V )
and Jensen’s inequality. Moreover, for every x ∈ S, we have (PV α)(x) ≤ Kα again from
Jensen’s inequality. Consequently P satisfies Conditions (Mν,1S ) and G1S (δ

α, V α), so that
P is V α−geometrically ergodic from Theorem 6.2 applied with the Lyapunov function V α.
Moreover, if α ∈ A, then the real number ϱV α satisfies the claimed alternative applying
Corollary 9.5 with the Lyapunov function V α and using the upper bound δα of rV α provided
by (174). □

Let us now specify the alternative of Corollary 9.14 for α ∈ A = (0, α̂0] according to
whether Case 2.(a) or 2.(b) holds for the specific value α̂0.

Corollary 9.15 Let P satisfy the assumptions of Corollary 9.14. Then the following asser-
tions hold.

(i) If Case 2.(a) of Corollary 9.14 is fulfilled for α̂0, then we have: ∀α ∈ (0, α̂0], ϱV α ≤ δα.

(ii) If Case 2.(b) is fulfilled for α̂0, then there exists a unique α̂ ∈ (0, α̂0) such that δα̂ = ϱV α̂0 ,
and

∀α ∈ (α̂, α̂0], ϱV α = ϱV α̂0 , ∀α ∈ (0, α̂], ϱV α ≤ δα.

Proof. Case (i) means that there is no solution z ∈ C of Equation ρ(z−1) = 1 such that
δα̂0 < |z| < 1, so that the same holds when δα < |z| < 1 for α ∈ (0, α̂0], thus ϱV α ≤ δα from
Corollary 9.14. Case (ii) means that there exists a solution z0 ∈ C of Equation ρ(z−1) = 1
such that δα̂0 < |z0| = ϱV α̂0 < 1, and that this equation has no solution z ∈ C such that
ϱV α̂0 < |z| < 1. The existence and uniqueness of α̂ ∈ (0, α̂0) such that δα̂ = ϱV α̂0 hold since
α 7→ δα is bijective from (0, α̂0) into (δα̂0 , 1). From Corollary 9.14 we obtain that ϱV α = ϱV α̂0

for every α ∈ (α̂, α̂0] since z0 satisfies δα < |z0| < 1 from δα < δα̂ = ϱV α̂0 = |z0|. On the
other hand, again from Corollary 9.14 we have ϱV α ≤ δα for every α ∈ (0, α̂] since there is
no solution z ∈ C of Equation ρ(z−1) = 1 such that δα < |z| < 1 from ϱV α̂0 = δα̂ ≤ δα. □

Figure 1 helps to get a picture of the status of the value δα w.r.t. the convergence rate
ϱV α in the alternative of Corollary 9.15. Note that the upper bound of ϱV α degrades when
α→ 0, which is consistent with limα→ 0 V

α = 1X and the fact that P is not 1X-geometrically
ergodic in general (i.e. P is not uniformly ergodic in general, see Example 3.7).

Recall that A = (0, α̂0] with α̂0 ∈ (0, 1] from Proposition 9.13, and that A = (0, 1] when S
is an atom. In the non-atomic case a positive lower bound of α̂0 can be obtained using (175)
(i.e. consider α ∈ (0, 1] such that Kα − δα ≤ ν(1X)). The next statement provides a more
accurate estimate of α̂0.

Proposition 9.16 Let P satisfy Conditions (Mν,1S )–G1S (δ, V ) for some S ∈ X ∗ which
is not an atom. Assume that K := supx∈S(PV )(x) < ∞ and define M := K − ν(V ),
σ := 1 − ν(1X) ∈ (0, 1). Then there exists α0 ∈ (0, 1] such that Mα0σ1−α0 ≤ δα0, and such
an α0 belongs to A, i.e. (0, α0] ⊂ A.
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δα

0 1α̂0

δα̂0
ϱV α

Case (i) of Corollary 9.15

α

δα

0 1α̂ α̂0

ϱV α ϱV α = ϱ
V α̂0

= δα̂

Case (ii) of Corollary 9.15

Figure 1: Status of the value δα w.r.t. ϱV α for α ∈ A = (0, α̂0] according to Cases (i) or (ii)
in Corollary 9.15: upper bound in dashed-line, exact value in full-line.

Proof. Recall that σ ∈ (0, 1) since S is not an atom. For any x ∈ S let σ̂x be the probability
measure defined in (176). It follows from Jensen’s inequality that

∀α ∈ (0, 1], ∀x ∈ S, (PV α)(x)−ν(V α) = σσ̂x(V
α) ≤ σ

(
σ̂x(V )

)α
= σ1−α

(
(PV )(x)−ν(V )

)α
,

from which we deduce that

∀α ∈ (0, 1], ∀x ∈ S, (PV α)(x)− ν(V α)− δαV (x)α ≤ σ1−αMα − δα

since V ≥ 1X. The claimed conclusion then follows from limα→ 0 σ
1−αMα − δα = σ − 1 < 0.

Hence there exists α0 ∈ (0, 1] such that Mα0σ1−α0 ≤ δα0 , and such an α0 belongs to A from
the definition (173) of A. □

9.6 Further results in the reversible and positive reversible cases

In the particular case when P is reversible and R is self-adjoint on L2(πR) too, the proof of
Theorem 9.8 is simpler using Inequality r2 ≤ rV and Proposition 9.4. This is detailed in the
following proposition.

Proposition 9.17 Assume that P satisfies Conditions (Mν,ψ)–Gψ(δ, V ) with πR(V
2) <∞,

and that P is reversible and aperiodic. Let ζ ∈ B∗
+ be given in Lemma 9.10. Then the

residual kernel R is self-adjoint on L2(πR) if, and only if, ζ = c ψ for some positive constant
c. Moreover, in this case, P is geometrically ergodic on L2(πR) and the last assertion of
Theorem 9.8 holds with r2 = ∥R∥2 ≤ rV < 1.

Proof. Since P is reversible, R is self-adjoint on L2(πR) if and only if T := ψ⊗ν is self-adjoint
on L2(πR). Thus, the first assertion is obvious from Lemma 9.10. Next, assume that R is
self-adjoint on L2(πR). Then we know that r2 = ∥R∥2. Moreover recall that r2 ≤ (rV ϑV )

1/2

from Theorem 9.6. Thus we have r2 ≤ rV since ϑV ≤ rV from R∗ = R and the definitions of
ϑV and rV . That rV < 1 is proved in Proposition 9.4. Hence we have r2 < 1, and the others
assertions of Proposition 9.17 follow from Theorem 9.1 applied with B := L2(πR). □

Although the residual kernel R is not necessarily self-adjoint when P is reversible (see
Proposition 9.17), this scenario is not unrealistic, as illustrated in the following proposition.

Proposition 9.18 Let P satisfy Conditions (M ν,1S )–G1S (δ, V ) for some (ν, S) ∈ M∗
+,b ×

X ∗ such that ν(1Sc) = 0. If the function ζ ∈ B∗
+ in Lemma 9.10 is such that d :=

104



infx∈S ζ(x) > 0, then P also satisfies Conditions (Mν1,ψ1)-Gψ1(δ, V ) with ψ1 :=
√
c ζ and

ν1 :=
√
c ν where c = (supx∈S ζ(x))

−1. If moreover P is reversible, then the residual kernel
R1 := P − ψ1 ⊗ ν1 is self-adjoint on L2(πR).

Proof. We have ν = ζ · πR from Lemma 9.10, with here ζ = 0 on Sc since ν(1Sc) = 0. Thus

P ≥ 1S ⊗ ν ≥ c ζ ⊗ ν.

Hence P ≥ ψ1 ⊗ ν1 with ψ1 :=
√
c ζ and ν1 :=

√
c ν = ψ1 · πR. Moreover we deduce from

G1S (δ, V ) that
PV ≤ δV + b 1S ≤ δV + b d−1ζ = δV + b d−1c−1/2ψ1,

thus P satisfies Gψ1(δ, V ). Finally, under Conditions (Mν1,ψ1)–Gψ1(δ, V ), Lemma 9.10
implies that T1 := ψ1 ⊗ ν1 = ψ1 ⊗ (ψ1 · πR) is self-adjoint on L2(πR). Consequently
R1 := P − ψ1 ⊗ ν1 is self-adjoint when P is reversible. □

If the spectral radius rV of R on BV (C) is easier to compute or to estimate than the spectral
radius r2 of R on L2(πR) (using for instance (162)), then the alternative of Theorem 9.8 in
reversible case can be replaced with the following one.

Proposition 9.19 Assume that P satisfies Conditions (Mν,ψ)–Gψ(δ, V ) with πR(V
2) <∞,

and that P is reversible and aperiodic. Let ΠR := 1X ⊗ πR. Then the following alternative
holds.

(a) If Equation ρ(x−1) = 1 has no real solution x ∈ (−1,−rV ), then we have ϱ2 ≤ rV , thus :
∀n ≥ 1, ∥Pn −ΠR∥2 ≤ r nV .

(b) Otherwise, we have ϱ2 = ϱV , thus: ∀n ≥ 1, ∥Pn −ΠR∥2 ≤ ϱnV .

The proof of Proposition 9.19 below is obtained by combining the results of both Theorem 9.8
and Corollary 9.5. Similarly, combining Theorem 9.8 and Corollary 9.14, it can be proved
that the alternative (a) − (b) of Proposition 9.19 holds true with Lyapunov function V α for
α ∈ A (in place of V ) and with the explicit upper bound δα of rV α (in place of rV ).

Proof. Under the assumptions of Proposition 9.19, Equation ρ(x−1) = 1 in the alternative
(a)− (b) of Theorem 9.8 only focusses on real numbers x ∈ (−1,−r2). The same restriction
holds in V−geometric ergodicity w.r.t. to the interval (−1,−rV ) as observed in Remark 9.12.

Assume that Equation ρ(x−1) = 1 has no real solution x ∈ (−1,−rV ). Then we have
ϱV ≤ rV from Remark 9.12. Thus r2 ≤ (rV max(rV , ϱV ))

1/2 ≤ rV from Theorem 9.8. This
inequality r2 ≤ rV combined with Theorem 9.8 provides the following alternative. If Equation
ρ(x−1) = 1 has no solution x ∈ (−1,−r2), then we have ϱ2 ≤ r2 ≤ rV . If Equation ρ(x

−1) = 1
has solutions x ∈ (−1,−r2), then these solutions necessarily belong to [−rV ,−r2), so that
ϱ2 ≤ rV from Theorem 9.8. Each case of the previous alternative provides ϱ2 ≤ rV , thus
Case (a) of Proposition 9.19 is proved.

Now prove Case (b). Assume that Equation ρ(x−1) = 1 has solutions in (−1,−rV ). Then

ϱV = max
{
|x| : x ∈ (−1,−rV ), ρ(x−1) = 1

}
from Remark 9.12, in particular we have ϱV > rV . It then follows from Theorem 9.8 that
r2 ≤ (rV max(rV , ϱV ))

1/2 < ϱV and that

ϱ2 = max
{
|x| : x ∈ (−1,−r2), ρ(x−1) = 1

}
= ϱV .

This proves Case (b). □
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Finally recall that a reversible Markov kernel P is said to be positive if the following
condition holds

∀g ∈ L2(πR),

∫
X
(Pg)(x) g(x)πR(dx) ≥ 0. (177)

The relevant fact to apply Theorem 9.8 to the positive reversible case is that any eigenvalue
z ∈ C of P (i.e. ∃h ∈ L2(πR), h ̸= 0, Ph = zh) is in fact a non-negative real number. Indeed
we know that z ∈ R from reversibility. Moreover Condition (177) applied to h implies that
z πR(h

2) = πR(Ph · h) ≥ 0 with πR(h
2) > 0 since h ̸= 0 in L2(πR). Thus z ≥ 0.

Proposition 9.3 and the previous fact then imply that Case (a) of Theorem 9.8 holds when
P is positive reversible,that is:

Corollary 9.20 Let P satisfy Conditions (Mν,ψ)–Gψ(δ, V ) with πR(V
2) < ∞. If P is

aperiodic and positive reversible, then P is geometrically ergodic on L2(πR) with ϱ2 ≤ r2,
where r2 ∈ (0, 1) is the spectral radius of the residual kernel R on L2(πR).

If P is reversible, then P 2 is reversible too, and it is positive since

∀g ∈ L2(πR),

∫
X
(P 2g)(x) · g(x)πR(dx) =

∫
X
(Pg)(x) · Pg(x)πR(dx) ≥ 0.

Then the following statement can be deduced from Corollary 9.20.

Corollary 9.21 Assume that P satisfies Condition (Mν,ψ) with µR(1X) < ∞, and is irre-
ducible, aperiodic and reversible. Moreover assume that P 2 satisfies Conditions (M ν2,ψ2)-
Gψ2(δ2, V ) for some (ν2, ψ2) ∈ M∗

+,b × B∗
+, δ2 ∈ (0, 1) and Lyapunov function V such that

πR(V
2) <∞. Then P is geometrically ergodic on L2(πR) and we have ϱ2 ≤

√
r2(R2), where

r2(R2) is the spectral radius of R2 := P 2 − ψ2 ⊗ ν2 on L2(πR).

Proof of Corollary 9.21. Recall that πR is the unique P−invariant probability measure
under the assumptions on P (see Corollary 3.13). Next, we know from the assumptions on
P 2 that P 2 admits a unique invariant probability measure which is given by πR2

. Since πR

is also P 2−invariant, it follows that πR2
= πR. We deduce from Corollary 9.20 applied to

P 2 under Conditions (Mν2,ψ2)–Gψ2(δ2, V ) that P 2 is geometrically ergodic on L2(πR) with
ϱ2(P

2) ≤ r2(R2) with R2 := P 2 − ψ2 ⊗ ν2. Now, writing any integer n ≥ 1 as n = 2k + r
with r ∈ {0, 1} and defining ΠR := 1X ⊗ πR, we obtain that

Pn −ΠR = (P −ΠR)
2k+r = (P −ΠR)

r
(
(P 2)k −ΠR

)
from which we easily deduce that ϱ2(P ) ≤

√
ϱ2(P 2) ≤

√
r2(R2). □

Let us finally complete Corollary 9.21 proving the following statement.

Corollary 9.22 If P satisfies Conditions (Mν,ψ)–Gψ(δ, V ) with (ν, ψ) ∈ M∗
+,b × B∗

+, and

is strongly aperiodic (i.e. ν(ψ) > 0), then P 2 satisfies Conditions (M ν,Pψ)-GPψ(δ
2, V ).

Using the conditions (Mν,Pψ)−GPψ(δ
2, V ) for P 2, the conclusions of Corollary 9.21 apply

to R2 = P 2 − Pψ ⊗ ν = PR, where R := P − ψ ⊗ ν is the residual kernel of P w.r.t the
minorization condition (M ν,ψ).

Proof. It follows from (Mν,ψ) and one iteration of Gψ(δ, V ) that

P 2 ≥ Pψ ⊗ ν and P 2V ≤ δ2V + δbψ + bPψ ≤ δ2V +
(
δbν(ψ)−1 + b

)
Pψ

using the non-negativity of P and Pψ ≥ ν(ψ)ψ due to (M ν,ψ) for the last inequality. □
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9.7 Further comments and bibliographic discussion

A bibliographic discussion on the V−geometric rate of convergence is presented in Subsec-
tion 6.3. The general presentation in Theorem 9.1 based on the condition rB < 1 is new to
the best of our knowledge. Actually Theorem 9.1 is the extended version of [HL24], which
focused solely on V−geometric ergodicity. Here the case B = BV (C) is obtained in Sub-
section 9.2 under Conditions (M ν,ψ)–Gψ(δ, V ) as a by-product of Theorem 9.1. It should
be noted that the condition rV < 1 is here obtained in a much more elementary way than
in [HL24] thanks to Proposition 8.1, see Proposition 9.4. More generally, all the arguments
used in this section, including those in Appendix D, are based solely on the spectral theory
prerequisites (S1)-(S3) presented in Subsection 6.2 (page 57).

The rate of convergence in L2(πR) is classically studied for reversible Markov kernels. Here
the first application of Theorem 9.1 to the case B := L2(πR) is addressed in Theorem 9.6 for
general Markov kernels, introducing the quantity ϑV linked to the adjoint operator of R on
L2(πR), see (164). To our knowledge this result is new. The computation used for bounding
∥Rng∥ 2

2 in the proof of Theorem 9.6 is inspired by [TM22]. The second application in
Theorem 9.8 concerns the reversible case. It is in fact a weak version of the classical result in
[RR97], stating that an aperiodic and reversible Markov kernel satisfying Conditions (Mν,1S )–
G1S (δ, V ) with πR(V

2) <∞ is geometrically ergodic on L2(πR) with ϱ2 ≤ ϱV , see also [RT01,
Bax05, KM12, DMPS18]. The proof in [RR97] is based on an argument involving spectral
measures. Explicit rates of convergence are obtained in [Bax05, TM22] under minorization
and geometric drift conditions. In Theorem 9.8 the geometric ergodicity on L2(πR) is proved,
but Inequality ϱ2 ≤ ϱV is only obtained when max(rV , r2) < ϱV , in which case we actually
have ϱ2 = ϱV according to the alternative stated in both Corollary 9.5 and Theorem 9.8.
Complements and examples for reversible Markov kernels, in particular in connection with
MCMC algorithms, can be found in [RR04] and [DMPS18, Chap. 2 and 22]. The positive
reversible assumption addressed in Corollaries 9.20-9.21 is detailed in [DMPS18, Def. 22.4.6
and examples therein]. Finally recall that the geometric ergodicity of P on L2(πR) implies
the geometric ergodicity on Lp(πR) for every p ∈ (1,+∞) from the Riesz-Thorin interpolation
theorem, e.g. see [Ros71, DMPS18]. For a general study of positive operators on Lebesgue’s
space Lp with applications to Markov kernels, the reader can consult [Hin00, Hin02, Wu04,
GW06].

The drift inequality RV α ≤ δα V α for some suitable exponents α ∈ (0, 1] was intro-
duced in [HL24] to study Poisson’s equation and the V α−geometric ergodicity under Condi-
tions (Mν,1S )–G1S (δ, V ). Here the focus is only on the V α−geometric ergodicity. The fact
that such exponents form an interval A ⊂ [0, 1) completes this study (see Proposition 9.13).
Recall that we have A = (0, 1] in atomic case. In fact this equality A = (0, 1] may also
occur for non-atomic small-set S, even in the case of a continuous state space X, see [HL24,
Ex. 5.1]. Using the function series g̃ of Corollary 6.1, the inequality rV α ≤ δα proved in
Proposition 9.13 can be used to obtain a simple bound for the V α−weighted norm of solu-
tions to Poisson’s equation. This bound detailed in [HL24] involves the constant (1− δα)−1,
which is large when the drift inequality RV α ≤ δα V α is only satisfied for α close to zero.
In such a case, the bounds (70) and (71) for the V−weighted norm of solutions to Poisson’s
equation are more relevant.

Finally, we emphasize the following point which is important in practice and not addressed
in our work: What is called rate of convergence in this section only concerns the real number
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ϱB in (158). The constant cρ in (157) is not investigated here (see the references given in
Subsection 6.3 on this topic). We simply recall that the most favourable case is reversibility,
since in this case ϱ2 can be considered in (157) (case B := L2(πR)) with associated constant
cϱ2 = 1 (see (167)).

10 Examples

In this section, the M & D conditions are discussed for two classes of Markov kernels. The first
class is associated with the Markov kernel of the mean of the Dirichlet process. The second
one concerns the Metropolis-Hastings (MH) Markov kernels with a focus on two specific
instances: the so-called symetric random walk MH Markov kernel and the independent MH
Markov kernel. Such an analysis allows us to illustrate a large part of the material provided in
this document. Each example is accompanied by brief bibliographic comments to introduce
the framework involving such Markov models, but also to help the reader go further.

These two classes of Markov models lead to classical applications in statistics and applied
probability. These applications require a number of numerical controls for which the results
of the previous sections may be relevant. It is important to point out that there are a large
collection of Markov models in time series analysis, in system control, in stochastic operations
research, for which such material has been developed. It is beyond the scope of this section to
be exhaustive. We refer the reader to books such as [Mey08, MT09, DMS14, DMPS18, Mey22]
for an overview of the applicability of the M & D conditions to the asymptotic control of
a Markov kernel. Note that checking M & D conditions are often somewhat easy. The
random walks on half line in Subsection 7.2.2 (considered with a single fixed theta) is a
typical instance of the calculations providing a drift inequality. However the two examples
discussed here show that this is far from always the case, in particular when the state space
X is multi-dimensional. Thus, some technical passages concerning the proof of these drift
conditions are simply summarized and a precise reference is provided allowing the reader to
easily find the needed technical complements.

10.1 Markov chain for the mean of the Dirichlet process

Let µ ∈ M∗
+,b be any finite positive measure on (X := R,X ) where X is the Borel σ−algebra

on R. Let µ0 := µ/µ(1R) be the probability measure associated with µ. Throughout this
subsection, the probability measure µ0 is assumed not to be a Dirac measure. Let us introduce
the following sequence of r.v. (Xn)n≥0

X0 := x ∈ R, ∀n ≥ 1, Xn := f(Xn−1, (Un,Wn)) (178)

where f
(
x, (u,w)

)
:= ux+(1−u)w, (Un,Wn)n≥1 is a sequence of i.i.d. random vectors, such

that Un andWn are independent,Wn ∼ µ0, and finally Un has a Beta probability distribution
with parameters (µ(1R), 1), that is with the probability density function with respect to the
Lebesgue measure on (R,X ): x 7→ µ(1R)x

µ(1R)−11(0,1)(x). Then (Xn)n≥0 is a homogeneous
Markov chain with state space X = R and transition kernel P given by

∀x ∈ R,∀A ∈ X , P (x,A) = Px(X1 ∈ A) = P(f(x, (U1,W1)) ∈ A). (179)

Such a homogeneous Markov chain has been introduced in [FT89] to analyse the probability
distribution of the mean of a Dirichlet process. This is the basic tool for an MCMC method
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for sampling this probability distribution (see comments in Subsection 10.1.5).

In Subsection 10.1.1, the minorization condition (Mν,1S ) is shown to hold true for any
compact set S. Next various drift conditions are provided. Since any compact set is a
first-order small set, these conditions are essentially derived from the control of the difference

PV0(x)− V0(x) = Ex[V0(X1)]− V0(x) = E
[
V0(xU1 + (1− U1)W1)

]
− V0(x) (180)

for x large enough for some Lyapunov function V0. An appropriated moment condition on
the probability measure µ0 is required for the function PV0 to be well-defined. We essentially
follow [GT01, JT02].

10.1.1 Minorization condition

Let us somewhat explicit the transition kernel P in (179) according to [GT01, p. 579, (15)]:

∀x ∈ R, ∀A ∈ B(R),
P (x,A) = P(W1 ∈ A,W1 = x) + P(W1 ∈ A,U1(x−W1) +W1 ∈ A)

= µ0({x})δx(A) + (1− µ0({x}))P(W1 ∈ A,U1(x−W1) +W1 ∈ A |W1 ̸= x)

≥ cP(W1 ∈ A,U1(x−W1) +W1 ∈ A |W1 ̸= x) =: c

∫
A
p(x, y)dy (181)

where c := 1 − supx∈D0
µ0({x}) with D0 defined as the set of discontinuity points of the

distribution function of µ0, and finally where p(x, ·) denotes the density probability function
with respect to the Lebesgue measure on R associated with the conditional probability dis-
tribution of X1 given X0 = x,X1 ̸= x. Note that c > 0 since the probability measure µ0 is
assumed not to be a Dirac measure. Using a similar way to Proposition 3.1, the minorizing
measure ν ∈ M∗

+,b is obtained in assessing infx∈S p(x, y) with the compact set S = [−κ, κ]
for some κ > 0. Specifically, it is obtained in [GT01, (17)] that

∀x ∈ R,∀A ∈ B(R), P (x,A) ≥ 1S(x) ν(1A) where ν(dy) := c min(p(−κ, y), p(κ, y))dy
(182)

using that x 7→ p(x, y) is non-decreasing for x < y and non-increasing for y < x. If [a, b] with
−∞ ≤ a < b ≤ +∞ is the smallest interval containing the support of the probability measure
µ0, then the function y 7→ min(p(−κ, y), p(κ, y)) is shown in [GT01, p. 580] to be positive on
the interval [a, b]. In other words, the transition kernel P satisfies the minorization condition
(Mν,1S ) for any compact set S := [−κ, κ]. We refer to [GT01, (15)-(16)-(17)] for details.

Finally, assume that the compact set S is large enough so that S ∩ [a, b] ̸= ∅. Then
ν(1S) ≥ ν(1S∩[a,b]) > 0. Hence the transition kernel is strongly aperiodic.

Note that if x ∈ [a, b], then X1 := f(x, (U1,W1)) = U1x + (1 − U1)W1 ∈ [a, b] from
U1 ∈ [0, 1], W1 ∈ supp(µ0) ⊂ [a, b]. Thus Xn ∈ [a, b] for every n ≥ 1 and the interval [a, b]
is P−absorbing. Let us assume that supp(µ0) is bounded. Then [a, b] is compact and if
X0 := x ∈ [a, b] then [a, b] may be considered as the state space (Xn)n≥0. Since we know
from Subsection 10.1.1 that [a, b] is a first-order small set, it follows that the homogeneous
Markov chain (Xn)n≥0 is uniformly ergodic. More precisely, we know from Example 3.7 that

∀n ≥ 1, ∀x ∈ [a, b], ∥Pn(x, ·)− qµ∥TV ≤ 2(1− ν(1R))
n.
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10.1.2 A basic modulated drift condition

Let us introduce the following moment condition on the probability measure µ0:∫
R
ln(1 + |x|)µ0(dx) <∞. (183)

Consider the Lyapunov function x 7→ V0(x) := 1 + ln(1 + |x|) on R. Note that the moment
condition (183) is equivalent to E[V0(W1)] <∞. Without lost of generality it can be assumed
that µ(1X) < 2. Indeed, if µ(1X) ≥ 2, it suffices to replace V0 with the Lyapunov function
x 7→ µ(1R)(1 + ln(1 + |x|))/2 in the following computations. We get from (180) that

∀x ∈ R, (PV0)(x)− V0(x) = E
[
ln

|xU1 + (1− U1)W1|
1 + |x|

]
≤ E[Z(x)]

with Z(x) := ln
|x|U1 + (1− U1)|W1|

1 + |x|
. (184)

We have
lim

|x|→+∞
Z(x)

P−a.s.
= lnU1 (185)

and, for any x ∈ R, Z(x) ≤ ln(1 + |W1|) using 0 ≤ U1 ≤ 1. Since the r.v. ln(1 + |W1|) is
integrable from (183), the dominated convergence theorem provides

lim
|x|→+∞

E[Z(x)] = E[lnU1] = − 1

µ(1R)
< −1 (186)

since µ(1R) < 2. It follows that there exists κ > 0 such that

∀x ∈ [−κ, κ]c, (PV0)(x)− V0(x) ≤ −1.

Since the function x 7→ (PV0)(x) is bounded on the compact [−κ, κ], there exists b0 > 0 such
that

∀x ∈ R, (PV0)(x) ≤ V0(x)− 1R + b0 1S

where S := [−κ, κ]. Thus, the transition kernel P satisfies the modulated drift condition
D1S (V0, 1R), Since it also satisfies Condition (Mν,1S ) from Subsection 10.1.1, the following
assertions follow from Section 5:

(i) The P−harmonic functions are constant on R

(ii) P is irreducible and recurrent.

(iii) πR := µR(1X)
−1µR (see (26)) is the unique P−invariant probability measure on (R,X ),

we have πR(1S) > 0, and P is Harris-recurrent.

Furthermore, it follows fom [FT89, Th. 1] that πR is the probability distribution of
the mean of a Dirichlet process with (measure) parameter µ. Such a context is briefly
discussed in Subsection 10.1.5. Accordingly, the probability measure πR is denoted by
qµ in the sequel.

(iv) The following convergence in total variation of Theorem 4.7 holds

∀x ∈ R, lim
n→+∞

∥δxPn − qµ∥TV = 0.
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(v) Let R := P − 1S ⊗ ν be the residual kernel associated with P . For any g ∈ B, we have
g̃ :=

∑+∞
k=0R

kg ∈ BV0 and

∥g̃∥V0 ≤ (1 + d0)∥g∥1R with d0 := max

(
0 ,

b0 − ν(V0)

ν(1X)

)
where b0 is the positive constant given in D1S (V0, 1R). For any g ∈ B such that qµ(g) =
0, the function g̃ satisfies Poisson’s equation

(I − P )g̃ = g.

10.1.3 Polynomial ergodicity

Let us introduce the following moment condition on the probability measure µ0:

∃s > 1,

∫
R
lns(1 + |x|)µ0(dx) <∞. (187)

Consider the following Lyapunov function x 7→ V (x) := 1 + lns(1 + |x|) on R. The moment
condition (187) reads as E[V (W1)] <∞. Next we get from (180)

∀x ∈ R, (PV )(x)− V (x) ≤ E
[(

ln(1 + |x|) + Z(x)
)s − ( ln(1 + |x|)

)s]
(188)

with Z(x) defined in (184) and satisfying the convergences (185) and (186). The objective is
to show that there exists c > 0 such that, for |x| large enough,

(PV )(x)− V (x) ≤ −c V (x)
s−1
s .

From (188), it is sufficient to prove that there exists a > 0 such that

lim
|x|→+∞

E

[(
ln(1 + |x|) + Z(x)

)s − ( ln(1 + |x|)
)s

V (x)
s−1
s

]
= −a.

Since V (x)
s−1
s ∼ lns−1(1+ |x|)) as |x| → +∞, it is equivalent to prove that there exists b > 0

such that

lim
|x|→+∞

E

[(
ln(1 + |x|) + Z(x)

)s − ( ln(1 + |x|)
)s

lns−1(1 + |x|)

]
= −b. (189)

Following the same way as in Subsection 10.1.2, it is proved below that

lim
|x|→+∞

(
ln(1 + |x|) + Z(x)

)s − ( ln(1 + |x|)
)s

lns−1(1 + |x|)
a.s.−−−−−→

|x|→+∞
s lnU1. (190)

We have from the mean value theorem that, for every x ∈ R, there exists ξ(x) between
ln(1 + |x|) and ln(1 + |x|) + Z(x) such that(

ln(1 + |x|) + Z(x)
)s − ( ln(1 + |x|)

)s
= sZ(x) ξ(x)s−1.

Note that lim|x|→+∞ Z(x)/ ln(1 + |x|) = 0 from (185). Thus we have

lim
|x|→+∞

ξ(x)s−1

lns−1(1 + |x|)
= 1
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and the P−almost sure convergence (190) also follows from (185). Next, using again (185)
and lnU1 < 0, we get |ξ(x)s−1|/ lns−1(1 + |x|) ≤ 1 for x large enough. We know from
Subsection 10.1.2 that Z(x) ≤ ln(1+|W1|) which is integrable from (187). Then it follows from
(190) and the dominated convergence theorem that (189) holds with b = E[s lnU1] = s/µ(1R).

Since the function x 7→ (PV )(x) is bounded on any compact, we obtained that there exists
c > 0, b > 0 such that

∀x ∈ R, (PV )(x) ≤ V (x)− c V (x)
s−1
s + b 1S

where S := [−κ, κ] for some κ > 0. We know from Subsection 10.1.1 that S is a first-
order small set, so that P satisfies Condition (Mν,1S ). From Proposition 8.6 (see (144)),
P also satisfies the nested modulated drift conditions D1S (V0 : Vm) with m := ⌊s⌋ ≥ 1,
Vm := 1X, V0 := a0V for some a0 > 0. Note that the set S in (Mν,1S ) and D1S (V0 : Vm) may
be chosen large enough in order to satisfies qµ(1S) > 1/2, so that Condition (121) holds from
Proposition 8.5. If s ≥ 2 then for any measurable and bounded function g : X→R and for
any x ∈ X, Theorem 8.2 provides a bound for

+∞∑
n=0

(n+ 1)⌊s⌋−2|(Png)(x)− qµ(g)|.

For instance the bounds (139) in case s ∈ [2, 3) or the bounds (141) in case s ≥ 3 can be
used.

10.1.4 Geometric ergodicity

Assume that there exists s > 0 such that∫
R
|v|sµ0(dv) >∞. (191)

Introduce the Lyapunov function x 7→ V (x) := 1+|x|s on R. Note that the moment condition
(191) is equivalent to E[V (W1)] <∞. Then, it follows from (180) that

∀x ∈ R, (PV )(x)− V (x) ≤ |x|s (E
[
Y (x)s

]
− 1)

where Y (x) := U1 + (1 − U1)|W1|/|x|. Since Y (x) ≤ 1 + |W1| for every |x| ≥ 1 and the r.v.
Y (x) P−a.s. converges to U1, it follows from the dominated convergence theorem that

lim
|x|→+∞

E
[
Y (x)s

]
= E

[
U1

s
]
=

µ(1R)

µ(1R) + s
< 1.

Let any δ ∈ (E[U1
s], 1). Then there exits κ > 0 such that

∀|x| > κ, (PV )(x)− V (x) ≤ |x|s(E
[
U1

s
]
− 1) ≤ (δ − 1)V (x).

Next, since PV is bounded on the compact S := [−κ, κ], there exists b > 0 such that
(PV )(x) ≤ b for any x ∈ S. Thus minorization condition (Mν,1S ) holds for this compact set
S. Moreover the above inequality shows that Condition D1S (V, V1) holds with V1 := (1−δ)V .
Equivalently, G1S (δ, V ) holds true.

Since P satisfies Conditions (Mν,1S )-G1S (δ, V ) and is strongly aperiodic, then the follow-
ing assertions hold from Sections 6 and 9:
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(i) P is V−geometrically ergodic, that is

∃ρ ∈ (0, 1), ∃cρ > 0, ∀g ∈ BV (C), ∀n ≥ 1, ∥Png − qµ(g)1X∥V ≤ cρ ρ
n∥g∥V . (192)

(ii) Let g ∈ BV be such that qµ(g) = 0. Then the function series g :=
∑+∞

k=0 P
kg absolutely

converges in (BV , ∥ · ∥V ) and

∥g∥V ≤ cρ(1− ρ)−1∥g∥V .

Note that g is qµ−centred and satisfies Poisson’s equation (I − P )g = g. From Corol-
lary 6.1, we also have the following alternative bound:

∥g∥V ≤ (1 + d0) (1 + qµ(V ))

1− δ
∥g∥V with d0 := max

(
0 ,

b− ν(V )

ν(1X)(1− δ)

)
.

(iii) The conclusions of Corollary 9.5 apply to

ϱV := inf
{
ρ ∈ (0, 1) such that Property (192) holds

}
10.1.5 Further comments and bibliographic discussion

Let us briefly recall here the context of the present Subsection 10.1. Let µ ∈ M∗
+,b be any

finite positive measure on (X := R,B(R)) where B(R) is the Borel σ−algebra on R. A random
probability measure on the set of probability measures on (R,B(R)), is called a Dirichlet
process and is denoted by Dµ, if for any k ≥ 1 and any finite measurable partition E1, . . . , Ek
of R, the random vector

(
Dµ(1E1),Dµ(1E2), . . . ,Dµ(1Ek

)
)
has a Dirichlet distribution with

parameters k and (µ(1E1), . . . , µ(1Ek
)) (see [Fer73]). A Dirichlet process is of fundamental

importance in Bayesian non-parametric statistics. For an overview, we refer to [GvdV17,
Chap. 4] and to [Teh17, Mur23] in a machine learning context. Specifically, we are interested
here in the so-called mean of a Dirichlet process, that is in the random variable

MDµ :=

∫
R
xDµ(dx) (193)

with probability distribution

∀A ∈ B(R), qµ(1A) := P{MDµ ∈ A}.

Let us mention that the analysis of the probability distribution of the mean functional∫
R g(x)Dµ(dx) for a measurable function g : X → R can be reduced to that of the mean
(193) since the random variables

∫
X g(x)Dµ(dx) and

∫
X x (Dµ◦g−1)(dx) have the same prob-

ability distribution (e.g. see [GvdV17, p 83]). We refer to the survey [LP09] on the mean
functional of the Dirichlet process and to [Tor23] for a recent contribution on the central limit
theorem. As mentioned in [LP09, p. 49], the mean functional of a Dirichlet process also has
interested in other topics in mathematics.

Let µ0 := µ/µ(1R) be the probability measure associated with µ, which is assumed not to
be a Dirac measure. Then we know that qµ has a p.d.f. with respect to the Lebesgue measure
on R. But this p.d.f. is of difficult use. We refer to [LP09, Section 2.2] for a discussion on
the exact probability distribution of MDµ . A natural issue is to design an MCMC algorithm
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to get (approximated) samples of this probability distribution. This is addressed in [FT89]
where the Markov chain defined in (178) and having invariant probability distribution qµ, is
introduced and analyzed. This work is continued in [GT01, JT02], where convergence rates
of the algorithm are provided. Below are a few more facts to complete the results presented
in the previous subsections.

� The random variable
∫
R |x| Dµ(dx) is Dµ−a.s. finite if, and only if, Condition (183)

holds (see [FT89, Th. 4]).

� There exits ρ > 1 such that

∀x ∈ X, ρn∥Pn(x, ·)− qµ∥TV −−−−−→
n→+∞

0

if, and only if, Condition (191) holds (see [JT02, Th. 2.3]).

� Note that the two previous results are also obtained in a more general framework of
measure-valued Markov chains in [FGW12, Ths 4 and 5].

� Let us introducce the Lyapunov function x 7→ Vβ(x) := max(logβ(1 + |x|), 1). If Con-
dition (187) holds, then (see [JT02, Th. 3.1])

∀β ∈ [0, s− 1], ∀x ∈ R, nβ∥Pn(x, ·)− qµ∥Vs−1−β
−−−−−→
n→+∞

0.

In particular, we have

∀x ∈ R, ns−1∥Pn(x, ·)− qµ∥TV −−−−−→
n→+∞

0.

Some converse statements also hold (see [JT02, Th. 3.1] for details).

10.2 Metropolis-Hasting’s Markov chain

Let X be an open subset of Rd, where Rd is equipped with the Euclidean norm ∥ · ∥. The set
X is assumed to be connected w.r.t. the topology induced on X by the norm ∥ · ∥. Finally let
X be the Borel σ−algebra on X. First, consider some probability measure π on (X,X ) which
has a p.d.f., also denoted by π, w.r.t. the Lebesgue measure on Rd, i.e. π(dx) = π(x)dx. The
function π is assumed to be positive on X. Second let K be a transition kernel on (X,X ) such
that each probability measure K(x, dy) has a p.d.f. y 7→ k(x, y) w.r.t. the Lebesgue measure
on Rd. It is assumed that K is such that {(x, y) ∈ X2, π(x)k(x, y) > π(y)k(y, x)} is of positive
Lebesgue measure. This implies that K is not reversible w.r.t. the probability measure π (see
Subsection 9.4). Let us introduce the Metropolis-Hasting (MH) Markov chain with state
space X and transition kernel P given by (see Subsection 10.2.4 for contextual comments):

∀x ∈ X,∀A ∈ X , P (x,A) :=

∫
A
p(x, y)dy + r(x)δx(A) (194a)

where

∀(x, y) ∈ X2, p(x, y) :=
1

π(x)
min

(
π(x)k(x, y), π(y)k(y, x)

)
(194b)

∀x ∈ X, r(x) := 1−
∫
X
p(x, y)dy. (194c)
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Note that r(x) is the probability for staying in x. From (194b), observe that

∀(x, y) ∈ X2, π(x)p(x, y) = min
(
π(x)k(x, y), π(y)k(y, x)

)
= π(y)p(y, x)

π(x)r(x)δx(y) = π(y)r(y)δy(x)

so that π(dx)P (x, dy) = π(dy)P (y, dx) and the Markov kernel P is π−reversible. It follows
that π is a P−invariant probability measure.

In order to simplify the presentation, the following positivity condition is assumed through-
out this subsection:

(P) The functions π and k(·, ·) are assumed to be positive on X and X2 respectively.

Under Condition (P), the function p(·, ·) is positive on X2 so that we obtain from (194a)-
(194b) that, for any set A ∈ X with positive Lebesgue measure,

∀x ∈ X, P (x,A) ≥
∫
A
p(x, y)dy > 0. (195)

Note that this implies that r(x) < 1 for every x ∈ X.
In Subsection 10.2.1, under Condition (P) and assuming that functions π and k(·, ·) are

continuous, a minorization Condition (MνS ,1S ) for some positive measure νS is shown to hold
for any compact set S ⊂ X of positive Lebesgue measure. Next convergence conditions are
provided in the two following specific cases:

1. The Independent Metropolis-Hastings (IMH) Markov chain defined by the following
condition: ∀(x, y) ∈ X2, k(x, y) ≡ q(y) for some positive measurable function q(·) on
X such that

∫
X q(y)dy = 1, that is the function (x, y) 7→ k(x, y) only depends on the

second variable.

2. The symmetric Random Walk Metropolis-Hastings (RWMH) Markov chain defined by:
∀(x, y) ∈ X2, k(x, y) ≡ q(∥x−y∥) for some positive measurable function q(·) on [0,+∞)
such that

∫
X q(∥u∥)du = 1, that is the function (x, y) 7→ k(x, y) only depends on the

distance between x and y.

We essentially follow [Tie94, MT96, RR96, JH00] for the geometric ergodic case and [FM00,
JR07] for the polynomial ergodic one.

10.2.1 Minorization condition

Recall that

∀x ∈ X, P (x, dy) ≥ p(x, y)dy

with p(x, y) given in (194b). Let S be any compact set of X with positive Lebesgue measure.
As in [MT96, Lem. 2.1], in addition to Condition (P), let us consider the following continuity
conditions on the functions π and k(·, ·):

(C) The functions π and k(·, ·) are continuous on X and X2 respectively.
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Then πS := maxx∈S π(x) ∈ (0,+∞) and kS := min(x,y)∈S2 k(x, y) > 0. It follows from (194b)
that

∀x ∈ S,∀y ∈ X, p(x, y) = min
(
k(x, y), k(y, x)

π(y)

π(x)

)
≥ min

(
k(x, y), k(y, x)

π(y)

π(x)

)
1S(y)

≥ kS
π(y)

πS
1S(y)

since 1 ≥ π(y)/πS for any y ∈ S. Thus, under Conditions (P)-(C), S is a first-order small
set for P with minorizing measure νS(dy) := (kS/πS)1S(y)π(dy) ∈ M∗

+,b. Next consider
the associated residual kernel R := P − 1S ⊗ νS . Since P satisfies (MνS ,1S ) and π(dx) is a
P−invariant probability measure such that π(1S) > 0, it follows from Theorem 3.6 that

πR := µR(1X)
−1 µR with µR :=

+∞∑
k=0

νSR
k ∈ M+

∗,b

is P−invariant with µR(1S) = 1. We have P (x, S) > 0 for every x ∈ X from (195), so that
P is irreducible (see (29)). It follows from Theorem 3.14 that π is the unique P−invariant
probability measure, thus π ≡ πR. Finally note that νS(1S) = (kS/πS)π(1S) > 0, thus P is
(strongly) aperiodic.

Now, let us check that h∞
R := limn ↓ Rn1X = 0 (see (20)). The function h∞

R is bounded
and satisfies Rh∞

R = h∞
R . Since µR(1S) = 1, we have π(h∞

R ) = 0 and ν(h∞
R ) = 0 from (25).

Thus, we have h∞
R (x) = 0 for π−almost x ∈ X and Ph∞

R = Rh∞
R + ν(h∞

R )1S = h∞
R , i.e. h∞

R

is a bounded P−harmonic function. Note that {h∞
R > 0} is also negligible for Lebesgue’s

measure on X since π(dy) = π(y)dy with positive p.d.f π on X by hypothesis. Then it follows
from (194a) that

∀x ∈ X, (Ph∞
R )(x) =

∫
X
p(x, y)h∞

R (y)dy + r(x)h∞
R (x) = r(x)h∞

R (x).

Using Ph∞
R = h∞

R , we get that (1 − r(x))h∞
R (x) = 0 for every x ∈ X. Since r(x) < 1 for any

x ∈ X, we obtain that h∞
R = 0.

Thus, under Conditions (P)-(C), the transition kernel P of the Metropolis-Hastings chain
defined by (194a)–(194b)–(194c) has the following properties from the results of Section 4:

(i) P is irreducible and aperiodic.

(ii) The probability measure π is the unique P−invariant probability measure. Moreover,
we have π ≡ πR := µR(1X)

−1µR (see (26)) with the residual kernel R := P − 1S ⊗ νS
where S ⊂ X is any compact of positive Lebesgue measure.

(iii) P is Harris-recurrent.

(iv) The P−harmonic functions are constant on X.

(v) The following convergence in total variation holds

∀x ∈ X, lim
n→+∞

∥δxPn − π∥TV = 0.
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If the state space X is bounded with π and k(·, ·) assumed to be continuous on the respective

closure X and X2
of X and X2, then it is clear that P satisfies the minorization condition

(MνX,1X) with ν1X := (kX/πX)π where πX := maxx∈X π(x), kX := min
(x,y)∈X2 k(x, y). Then we

know from Example 3.7 that

∀n ≥ 1, ∀x ∈ X, ∥Pn(x, ·)− π∥TV ≤ 2(1− kX/πX)
n.

When X is unbounded, the uniform ergodicity does not hold in general for MH kernels. For
instance, the RWMHMarkov chain is never uniformly ergodic, see [MT96, Th. 3.1]. However,
the following condition is introduced in [Tie94, Cor. 4],[MT96, Th. 2.1] for the IMH Markov
chain associated with function q(·) to be uniformly ergodic: there exits a constant M > 1
such that

∀x ∈ X, π(x) ≤Mq(x). (196)

Indeed, under Condition (196) for the IMH Markov chain, we have from (194b)

∀(x, y) ∈ X, p(x, y) = min
(
q(y), π(y)q(x)/π(x)

)
≥ 1

M
π(y).

Thus the whole state space X is a first-order small set with minorizing measure ν := π/M .
Since ν(1X) = 1/M , we have from Example 3.7 that

∀n ≥ 1, ∀x ∈ X, ∥Pn(x, ·)− π∥TV ≤ 2(1− 1/M)n.

In fact, it follows from [Wan22, Th. 2] that the previous rate of convergence is exact, that is

∀n ≥ 1, sup
x∈X

∥Pn(x, ·)− π∥TV = 2(1− 1/M)n.

10.2.2 Geometric ergodicity of an RWMH Markov kernel

The functions p(·, ·), r(·) in (194b)-(194c) are as follows for the RWMH Markov kernel

∀(x, y) ∈ X2, p(x, y) := a(x, y) k(x, y) with a(x, y) :=
1

π(x)
min

(
π(x), π(y)

)
∈ [0, 1] (197a)

∀x ∈ X, r(x) :=
∫
X
(1− a(x, y)) k(x, y)dy =

∫
Ax

c
(1− a(x, y)) k(x, y)dy (197b)

whereAx := {(x, y) ∈ X2 : a(x, y) = 1} = {(x, y) ∈ X2 : π(y) ≥ π(x)}. The basic assumptions
(P)-(C) on π and k(·, ·) read as:

� The p.d.f. π is positive and continuous on X.

� For any (x, y) ∈ X2, k(x, y) = q(∥x− y∥) with q positive and continuous on [0,+∞).

Here, the specific case of super-exponential p.d.f. π is considered, that is π satisfies the
following additional assumption:

(SE) The p.d.f. π has continuous first derivatives on X such that

lim
∥x∥→+∞

⟨ x

∥x∥
,∇ lnπ(x)⟩ = −∞ (198)

where ∇ is the gradient operator and ⟨·, ·⟩ is the scalar product associated with the
Euclidean norm ∥ · ∥.
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Under Conditions (P)-(C)-(SE), the following additional assumption on the Markov ker-
nel K

lim inf
∥x∥→+∞

K(x,Ax) = lim inf
∥x∥→+∞

∫
Ax

k(x, y)dy > 0 (199)

is used below to prove that P defined by (194a)–(194b)–(194c) satisfies Conditions (Mν,1S )–
G1S (δ, V ) for some compact set S of positive Lebesgue measure and some Lyapunov func-
tion V .

Let us introduce the following function on X : V (x) := cπ(x)−1/2. Since π satisfies (P)-(C)
and vanishes in tails from (198), c may be chosen in order to have V ≥ 1X, so that V is a
Lyapunov function. Next, we have from (194a) and (197a)-(197b) and the definition of the
set Ax that

∀x ∈ X, (PV )(x) =

∫
X
a(x, y) k(x, y)V (y)dy + V (x)

∫
Ax

c

(
1− a(x, y))k(x, y)dy

=

∫
Ax

k(x, y)V (y)dy + V (x)

∫
Ax

c

(
1− a(x, y) + a(x, y)

V (y)

V (x)

)
k(x, y)dy.

Then, it follows from the definitions of the set Ax and of the Lyapunov function V that

∀x ∈ X,
(PV )(x)

V (x)
=

∫
Ax

(
π(x)

π(y)

)1/2

k(x, y)dy +

∫
Ax

c

(
1− π(y)

π(x)
+

(
π(y)

π(x)

)1/2
)
k(x, y)dy.

(200)
Thus, since 0 < π(y) < π(x) on Ax

c we have

∀x ∈ X,
(PV )(x)

V (x)
≤ 2. (201a)

Next, under Conditions (P)-(C)-(SE), it can be shown that

lim sup
∥x∥→+∞

(PV )(x)

V (x)
= lim sup

∥x∥→+∞

∫
Ax

c
k(x, y)dy = lim sup

∥x∥→+∞
K(x,Ax

c) = 1− lim inf
∥x∥→+∞

K(x,Ax) < 1

from (199). In fact, this property follows from geometric considerations involving suitable
subsets of X, depending on x and constructed from Condition (199). Details of this geometric
study and the proof of the above property are given in [JH00, p 350-352]. Therefore, for R > 0
large enough, there exists δ ∈ (0, 1) such that

for any x ∈ X such that ∥x∥ ≥ R,
(PV )(x)

V (x)
≤ δ. (201b)

Finally, P satisfies Conditions (M νS ,1S ) since the compact ball S := {x ∈ X : ∥x∥ ≤ R} is a
small-set with respect to some minorizing measure νS from Subsection 10.2.1. Moreover, the
inequalities (201a)-(201b) show that P satisfies the drift condition G1S (δ, V ) with positive
constant b given by:

b := sup
∥x∥≤R

[
(PV )(x)− δV (x)

]
.

Consequently, P is reversible, satisfies Conditions (MνS ,1S )–G1S (δ, V ) and is strongly
aperiodic. Then the following assertions hold true from Sections 6 and 9 (see Theorem 6.2,
Corollary 9.5, and Remark 9.12):
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(i) P is V−geometrically ergodic, that is

∃ρ ∈ (0, 1), ∃cρ > 0, ∀g ∈ BV (C), ∀n ≥ 1, ∥Png − π(g)1X∥V ≤ cρ ρ
n∥g∥V .

(ii) For any g ∈ BV such that π(g) = 0, the π−centred function series g :=
∑+∞

k=0 P
kg

absolutely converges in (BV , ∥ · ∥V ) with

∥g∥V ≤ cρ(1− ρ)−1∥g∥V .

Note that g is π−centred and satisfies Poisson’s equation (I − P )g = g. From Corol-
lary 6.1, we also have the following bound:

∥g∥V ≤ (1 + d0) (1 + π(V ))

1− δ
∥g∥V with d0 := max

(
0 ,

b− ν(V )

ν(1X)(1− δ)

)
.

(iii) The conclusions of Remark 9.12 apply to

ϱV := inf
{
ρ ∈ (0, 1) such that Property (192) holds

}
Likewise, all material of Sections 9.4 and 9.6 on the geometric ergodicity in L2(π) of reversible
Markov kernels is relevant for P .

10.2.3 Polynomial ergodicity of an RWMH Markov kernel

As shown in [JT03], exponential or lighter tails of π is necessary and essentially sufficient
for geometric ergodicity of the RWMH Markov kernel. Here polynomial tails for probability
measure π are considered, in which case polynomial ergodicity of the MH Markov kernel is
the best convergence rate we can expect. In contrast to geometric case, it turns out that
the choice of the p.d.f. q(∥ · ∥) has a direct impact on the polynomial convergence rates
(see [JR07, Section 3]). As in [JR07], the discussion is restricted to the case when π is
spherically symmetric and the probability measure with p.d.f. q(∥ · ∥) is heavy-tailed. The
assumptions on the set X ⊂ Rd are those presented at the beginning of Subsection 10.2.
Recall that a positive function f(·) on (0,+∞) is said to be a normalized slowly varying
function if f(u) = c exp

( ∫ u
a (ε(v)/v)dv

)
for u ≥ a with some positive constants a, c and

limv→+∞ ε(v) = 0 (see [BGT87, p. 15]).

� Let π be a continuous strictly positive and spherically symmetric density function on
X which has the following representation for ∥x∥ large enough

π(x) =
f(∥x∥)
∥x∥d+r

,

where r > 0 and f is a normalized slowly varying function such that lim∥x∥→+∞ f(∥x∥) ∈
(0,+∞).

� The function q(·) is positive on [0,+∞) and there exists η ∈ (0, 2) such that, for ∥x∥
large enough,

q(∥x∥) = fq(∥x∥)
∥x∥d+η

,

where fq is a normalized slowly varying function such that lim∥x∥→+∞ fq(∥x∥) ∈ (0,+∞).
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Then, for any s ∈ (η, r + η), the following Jarner-Roberts’s drift condition

PV ≤ V − c V
s−η
s + b 1S (202)

holds with V (x) := max(∥x∥s, 1), some positive constants c, b and a centred compact ball S
(see [JR07, Prop. 6 and p. 811-812] for the details). Thus, from Proposition 8.6 (see (144)),
P also satisfies the nested modulated drift conditions D1S (V0 : Vm) where m := ⌊s/η⌋ ≥ 1,
V0 = aV for some a > 1 and Vm := 1X. We know from Subsection 10.2.1 that S is a
first-order small set so that the RWMH Markov kernel P satisfies (Mν,1S )–D1S (V0 : Vm).
Note that the set S may be chosen large enough in order to satisfy π(1S) > 1/2, so that
Condition (121) holds from Proposition 8.5. If s ≥ 2η, then for any measurable and bounded
function g : X→R and for any x ∈ X, Theorem 8.2 provides a bound for

+∞∑
n=0

(n+ 1)⌊s/η⌋−2|(Png)(x)− π(g)|.

To be more explicit, consider for instance the case s ∈ [2η, 3η) (i.e. m = 2). Then we have
the following bound in total-variation norm from Corollary 8.3 and the material p. 84:

∀x ∈ X, ∀n ≥ 0,
∥∥Pn(x, ·)− π

∥∥
TV

≤ 4(c0V0(x) + c1∥1X∥V0)
n

with

c0 := (1 + d0)

(
1 +

ν(V0) (1 + d0)

2π(1S)− 1

)
c1 := ν(V0)(1 + d0)(1 + d1)

(
ν(V0) (1 + d0)

2π(1S)− 1
+ 1

)
∀i ∈ {0, 1}, di := max

(
0,
bi − ν(Vi)

ν(1X)

)
with constants bi given in D1S (V0 : Vm). In this case, the bounds (139) also hold. Similarly,
in case s ≥ 3η, the bounds (141) can be used.

10.2.4 Further comments and bibliographic discussion

The MH Markov kernel defined by (194a)-(194b)-(194c) is associated with the Markov chain
generated by the so-called Metropolis-Hastings algorithm. Such a kind of homogeneous
Markov chain is in force in Markov Chain Monte Carlo (MCMC) algorithms for sampling
the probability distribution π, called the target distribution. A major fact, in particular in
Bayesian framework, is that π has only to be known up to a multiplicative constant for P
to be well-defined. Here, the rationale underlying the Markov dynamics is: use an easy sam-
pled auxiliary Markov chain {Yn}n≥0 with transition kernel K, called the proposal kernel,
to generate a path of the MH Markov chain {Xn}n≥0 with Markov kernel P which has π as
P−invariant probability measure and converges in distribution to π. Given that the current
state is Xn = xn, get a candidate state yn from the proposal probability distribution distri-
bution K(xn, ·): Then either accept this candidate as the value of Xn+1 (i.e. Xn+1 := yn)
with probability a(xn, yn), or stay at xn (i.e. Xn+1 := xn) with probability 1 − a(xn, yn) .
This Markov dynamics corresponds to the definition (194a)-(194b)-(194c) of P , where (194b)
can be reformulated in the usual form:

∀(x, y) ∈ X2, p(x, y) = a(x, y)k(x, y) with a(x, y) := min

(
1,
π(y)k(y, x)

π(x)k(x, y)

)
∈ [0, 1].
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In the case of an IMH Markov chain, the candidate state is selected according to the proba-
bility distribution q(·) irrespective the state xn. In the case of the RWMH Markov chain, the
candidate state is selected according to the probability distribution q(∥·−xn∥). Using xn as a
realization of the random variable Xn with (approximate) probability distribution π requires
that (Xn)n≥0 converges in distribution to π and that n is large enough. Thus, since a long
time ago, such algorithms have been a central support for much research on convergence and
convergence rates of Markov chains. There is a plethora of literature on MCMC. We refer
for instance to [RR04, RC04, BGJM11] for an overview of the topic.

Note that the basic conditions (P)-(C) can be weakened. We refer for instance to [JH00].
However note that, without conditions (P)-(C), a compact set of positive Lebesgue measure
may not be a first-order small-set even if it is always a ℓ−order small-set for some ℓ ≥ 1. Thus,
an analysis may have to consider multiple-step transitions which is highly problematical for
MCMC due to the untractability of P ℓ for ℓ ≥ 2.

When P is an IMH Markov kernel, Condition (196) was introduced to obtain uniform er-
godicity. It follows from the definitions in Example 3.7 and Theorem 6.2 that 1X−geometric
ergodicity is equivalent to uniform ergodicity, which turns to be equivalent to assume Con-
dition (196) from [MT96, Th. 2.1] (see also [Wan22, Th. 1]). Under this condition, the
convergence rate is explicit. Note that checking Condition (196) is not easy in the standard
multidimensional settings of MCMC. Moreover such a condition makes it possible to use a
direct independent sampling of π, the accept-reject method using the instrumental p.d.f. q(·)
(see [RC04, Section 2.3]). Polynomial rates of convergence of the IMH Markov kernel are ob-
tained in [JR02] when the condition (196) is violated. The result [JR07, Prop. 9] illustrates
how the polynomial rate depends on the relative heaviness of π and q(·).

Recall that, if the RWMH Markov kernel P satisfies Conditions (Mν,1S )–G1S (δ, V ), then
π is such that π(V ) < ∞ (see the beginning of Section 6). Under these conditions, it is
well-known from [JT03, Th. 2.2] that the Lyapunov function V is such V (x) ≥ c exp(s∥x∥)
for some positive constants c, s > 0 and ∥x∥ is large enough, so that

∫
X exp(s∥x∥)π(x)dx <

∞. Thus, the probability measure π must have exponential or lighter tails for P to be
geometrically ergodic, irrespective of the proposal p.d.f. q(∥ · ∥). Note that the family
of super-exponential p.d.f. π includes all the examples provided in the standard references
[MT96, RR96, JH00] on geometric ergodicity of RWMH Markov kernels. In the MCMC
context, Condition (199) means that the acceptance probability is uniformly bounded away
from zero. For super-exponential p.d.f. π, Condition (199) is also necessary for P to be
geometrically ergodic from [JH00, Th. 4.1]. The following sufficient condition for (199) is
introduced in [JH00, Th. 4.3]

lim sup
∥x∥→+∞

⟨ x

∥x∥
,

∇π(x)
∥∇π(x)∥

⟩ < 0. (203)

This condition is shown in [JH00, Th. 4.4.] to be stable under translation, addition and
multiplication. It is used to show that a very large class of probability measures π satisfies
Condition (203) (see [JH00, Th. 4.6 and (46)]), including those with tails at least as light as
multivariate Gaussian considered in [RR96].

In contrast to the geometric ergodicity, the order of polynomial ergodicity depends on
the tails of both π and q(∥ · ∥). We refer to [JR07, and references therein] for such dis-
cussions in one-dimensional and multi-dimensional state spaces. Note that the Lyapunov
function V (x) = max(∥x∥s, 1) is used here in the polynomial case instead of the standard
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Lyapunov function V (x) = π(x)−α which leads to suboptimal convergence rates for spheri-
cally asymmetric target distributions π (see [JR07, Subsection 3.3]). In the case discussed in
Subsection 10.2.3, we know from [JR02] that the drift inequality (202) provides the rate

lim
n→+∞

n
s
η
−1∥∥Pn(x, ·)− π

∥∥
TV

= 0.

As recalled in Subsection 10.2.3, explicit polynomial rate of convergence can be deduced
from Section 8, but here we only focus on the optimality of the exponent in the polyno-
mial rate. More specifically, when s ↑ r + η, we obtain from the above convergence that
supδ(limn n

δ
∥∥Pn(x, ·) − π

∥∥
TV

= 0) ≥ r/η. In fact, we have an equality from [JT03, Prop.
4.2]. We refer to [JR07, Subsection 3.3] for results supporting the idea that, for polyno-
mial target density π, using heavy-tailed proposal p.d.f. q(∥ · ∥) can improve the polynomial
convergence rate.

Below are a few more references on various issues connected to RWMH and IMH Markov
kernel:

� [Tie94, RR06] for Harris-recurrence.

� [BJ24b] for a recent overview of various methods for obtaining geometric convergence
rates, [BJ24a] for a recent contribution on this topic, and finally [DFMS04, Section 3.2
and references therein] for conditions to get subgeometric rates of convergence.

� [RR11, DCWY19] on the mixing time and convergence time.

� When P is π−reversible, the V−geometric ergodicity is shown to be equivalent to the
L2(π)−geometric ergodicity in [RR97] (see Subsection 9.7). This result was motivated
by an analysis of a specific MCMC simulation algorithm. We refer to [Qin24] for a
recent overview on convergence of MCMC and especially for L2−convergence. Finally,
functional inequalities techniques are used in [ALPW24, and references therein] for
analysing the L2(π)−spectral gap and the L2(π)−mixing times of MH Markov kernels.

11 Poisson’s equation: Beyond first-order small-functions

Recall that the modulated drift condition D1E (V0, V1) for some E ∈ X ∗ and Lyapunov
functions V0 and V1 is:

∃b0 > 0 : PV0 ≤ V0 − V1 + b01E .

To derive such a condition for P , we need to search for a set E and Lyapunov functions V0
and V1 such that Γ := PV0 − V0 + V1 ≤ 0 outside the set E. If such elements exist, then all
that remains is to check that Γ is bounded from above on E. In general, this last requirement
poses no problem (e.g. see Section 10). In order to apply the results of Sections 3–9, the set E
in the modulated drift condition D1E (V0, V1) must be a first-order small-set. Unfortunately,
this condition is not automatically satisfied, mainly due to the size of the set E. Actually,
whatever the method used, the fact that the set E in D1E (V0, V1) is not necessarily a first-
order small-set makes the study more complex. This is why higher-order small-sets or petite
sets were introduced in the regenerative method, see Subsection 3.5.

If the set E in Condition D1E (V0, V1) is not a first-order small-set, it turns out that
E can generally be written as a finite union of first-order small-sets. Moreover, in this
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case, E is a ℓ−order small-set for some ℓ ≥ 2 (see Subsection 11.3). Thus, based on these
two observations and focussing on the bound of solutions to Poisson’s equation under the
modulated drift condition, Theorem 5.4 is extended:

� In Subsection 11.1, under the drift Condition Dψ(V0, V1) with ψ =
∑s

i=1 biψi, where
the ψi’s are assumed to be first-order small-functions.

� In Subsection 11.2, under the drift Condition Dψ(V0, V1) with ψ ∈ B∗
+ assumed to be

a small-function of order ℓ ≥ 2.

11.1 M & D conditions with several first-order small-functions

In this subsection the assumptions on P are the following ones: There exists an integer s ≥ 2
such that

∃
{
(νi, ψi)

}s
i=1

∈
(
M∗

+,b × B∗
+

)s
, ∀i = 1, . . . , s : P ≥ ψi ⊗ νi. (M1:s)

∃{bi}si=1 ∈ [0,+∞)s : PV0 ≤ V0 − V1 +

s∑
i=1

biψi (D1:s(V0, V1))

for some Lyapunov functions V0 and V1. In other words, P satisfies for every i = 1, . . . , s the
first-order minorization condition (Mνi,ψi

) with some (νi, ψi) ∈ M∗
+,b × B∗

+, as well as the
V1−modulated drift condition with some linear combination of the first-order small-functions
ψi in the last term. In Subsection 11.1.1, some of the results of Section 3 are extended under
the minorization conditions (M1:s). Next, in Subsection 11.1.2, the results of Section 5 on
Poisson’s equation are generalized under Conditions (M1:s)–D1:s(V0, V1).

11.1.1 Invariant probability measure

Under Condition (M1:s) for some s ≥ 2, let us define the associated residual kernel

R := P −
s∑
i=1

ψi ⊗ νi (204)

as well as the following positive measures

∀i = 1, . . . , s : µi :=

+∞∑
k=0

νiR
k. (205)

Note that µi is positive since µi ≥ νi. It is worth noticing that µi is not the positive measure
µRi

:=
∑+∞

k=0 νiR
k
i associated with the residual kernel Ri := P −ψi⊗ νi defined from the sole

Condition (Mνi,ψi
).

Proposition 11.1 Let P satisfy Condition (M1:s). Then we have

∀n ≥ 1, 0 ≤ Rn ≤ Pn and Pn = Rn +
s∑
i=1

n∑
k=1

Pn−kψi ⊗ νiR
k−1. (206)

Moreover, for i = 1, . . . , s, the function series
∑+∞

k=0R
kψi point-wise converges and are

bounded on X, and we have

0 ≤
s∑
i=1

νi(1X)
+∞∑
k=0

Rkψi = 1X − h∞
R ≤ 1X where h∞

R := lim
n

↘ Rn1X. (207)

123



This proposition is an easy extension of Lemmas 3.2-3.3. The proof is only sketched below.

Proof. The first property in (206) follows from 0 ≤ R ≤ P . For the second one, we prove by
induction that

∀n ≥ 1, Tn := Pn −Rn =

s∑
i=1

n∑
k=1

Pn−kψi ⊗ νiR
k−1. (208)

Equality (208) is clear for n = 1 from the definition (204) of R. Next we have for any n ≥ 2

Rn = Rn−1R = (Pn−1 − Tn−1)(P − T1) = Pn − Pn−1T1 − Tn−1R,

so that Tn = Pn−1T1+Tn−1R. Hence, if Formula (208) holds for Tn−1 with some n ≥ 2, then

∀g ∈ B, Tng = Pn−1T1g + Tn−1Rg =
s∑
i=1

νi(g)P
n−1ψi +

s∑
i=1

n∑
k=2

νi(R
k−1g)Pn−kψi

which is the desired formula for Tn. Properties in (206) are proved. Now observe that we
have

∑s
i=1 νi(1X)ψi = (I −R)1X from P1X = 1X and the definition (204) of R. Thus

∀n ≥ 0,

s∑
i=1

νi(1X)

n∑
k=0

Rkψi =

( n∑
k=0

Rk
)
(I −R)1X = 1X −Rn+11X.

Since 0 ≤ R1X ≤ 1X and R is a non-negative kernel, we have 0 ≤ Rn+11X ≤ Rn1X for any
n ≥ 0, so that the sequence (Rn1X)n≥0 is non-increasing and converges point-wise. This
provides Property (207). □

In Theorem 11.3 below we prove that a suitable linear combination
∑s

i=1 aiµi with µi
defined in (205) is a finite positive P−invariant measure provided that each µi is finite. This
result cannot be derived from Theorem 3.6 under each condition (M νi,ψi

). In other words,
the positive measures µi in (205) are not P−invariant a priori. Indeed, as already observed,
µi is not the positive measure µRi

, and anyway the condition µi(1X) < ∞ does not imply
that µRi

(1X) < ∞. To find the specific linear combination
∑s

i=1 aiµi providing a positive
P−invariant measure, we need to prove Lemma 11.2 below. Let us introduce the following
non-negative s× s−matrix M and column vector uν ∈ (0,+∞)s defined by:

M :=
(
µj(ψi)

)
(i,j)∈{1,...,s}2 and uν =

(
ν1(1X), . . . , νs(1X)

)⊤
(209)

where (·)⊤ denotes the transpose operator.

Lemma 11.2 Let P satisfy Conditions (M1:s). Then the positive measures µi in (205)
satisfy

∀i ∈ {1, . . . , s}, µi(ψi) ∈ [0, 1].

Moreover, if each positive measure µi is finite (i.e.
∑s

i=1 µi(1X) < ∞), then M⊤uν = uν ,
and there exists a column vector a := (a1, . . . , as)

⊤ ∈ [0,+∞)s with
∑s

j=1 aj > 0 such that

Ma = a, that is: ∀i ∈ {1, . . . , s},
s∑
j=1

µj(ψi) aj = ai. (210)
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Proof. Since R ≤ Ri := P − ψi ⊗ νi we have

∀i = 1, . . . , s, 0 ≤ µi(ψi) =
+∞∑
k=0

νi(R
kψi) ≤

+∞∑
k=0

νi(R
k
i ψi) = µRi

(ψi) ≤ 1

from Proposition 3.4 applied under Condition (M νi,ψi
). The first assertion is proved. Now

assume that
∑s

i=1 µi(1X) < ∞. Recall that h∞
R is defined in (207). We have νj(h

∞
R ) =

limn νj(R
n1X) for j = 1, . . . , s from Lebesgue’s theorem, so that νj(h

∞
R ) = 0 since µj(1X) =∑+∞

k=0 νj(R
k1X) < ∞ by hypothesis. Next, integrating (207) w.r.t. νj for j ∈ {1, . . . , s}

provides

∀j ∈ {1, . . . , s},
s∑
i=1

µj(ψi) νi(1X) = νj(1X), i.e. M
⊤uν = uν ,

from the definition (205) of µj and νj(h
∞
R ) = 0. Note that uν ̸= 0, more precisely m :=

min{νi(1X) : i = 1, . . . , s} is positive. ThusM⊤ is a non-negative matrix with 1 as eigenvalue.
Moreover we have 1 ≤ m−1uν with 1 = (1, . . . , 1)⊤ where we use here the canonical order
relation on Rs.

Let ∥ · ∥∞ denote the supremum norm on Rs. Setting A := M⊤ we have for every n ≥ 1
and every x ∈ Rs

∥Anx∥∞ ≤ ∥An1∥∞∥x∥∞ ≤ m−1∥Anuν∥∞∥x∥∞ ≤ m−1∥uν∥∞∥x∥∞ (211)

since A is non-negative and Anuν = uν . Thus, we have ∥An∥∞ ≤ m−1∥uν∥∞ where ∥An∥∞
denotes the matrix-norm of An associated with ∥ · ∥∞, and 1 is an eigenvalue of A. This
proves that the spectral radius of A := M⊤ is one. Accordingly M is a non-negative matrix
with spectral radius one. Then (210) follows from the Perron-Frobenius theorem applied to
the matrix M (e.g. see [Sen81, p. 28]) and [BP79, Th. 2.1.1, p. 26]). □

Theorem 11.3 Assume that P satisfies Condition (M1:s) and that every positive measure
µi in (205) is finite, i.e.

∑s
i=1 µi(1X) < ∞. Let {aj}sj=1 ∈ [0,+∞)s with

∑s
j=1 aj > 0 given

in Lemma 11.2. Then

µR :=
s∑
i=1

aiµi

is a finite positive P−invariant measure. Consequently πR := µR(1X)
−1 µR is a P−invariant

probability measure.

Proof. Note that µR is positive since so are the µi’s and
∑s

j=1 aj > 0. From the definitions
(204) and (205) of R and µi we obtain that

∀A ∈ X , µR(P1A) = µR(R1A) +
s∑
i=1

µR(ψi)νi(1A)

=
s∑
i=1

aiµi(R1A) +
s∑
i=1

( s∑
j=1

ajµj(ψi)

)
νi(1A)

=

s∑
i=1

aiµi(1A)−
s∑
i=1

aiνi(1A) +

s∑
i=1

( s∑
j=1

ajµj(ψi)

)
νi(1A)

= µR(1A) +

s∑
i=1

νi(1A)

(
− ai +

s∑
j=1

ajµj(ψi)

)
.
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It follows from (210) that µR is P−invariant. □

11.1.2 Poisson’s equation

Under Conditions (M1:s)–D1:s(V0, V1) we first study the kernel series
∑+∞

k=0R
k where R is

the residual kernel defined in (204).

Theorem 11.4 Let P satisfy Conditions (M1:s)–D1:s(V0, V1) and define

d1:s := max
i=1,...,s

max

(
0,
bi − νi(V0)

νi(1X)

)
.

Then
+∞∑
k=0

Rk1X ≤
+∞∑
k=0

RkV1 ≤ V0 + d1:s1X ≤ (1 + d1:s)V0 (212a)

∀i ∈ {1, . . . , s},
+∞∑
k=0

νi
(
Rk1X

)
≤

+∞∑
k=0

νi
(
RkV1

)
≤ (1 + d1:s) νi(V0) <∞. (212b)

Proof. To simplify the presentation, set d := d1:s, and let V0,d := V0 + d1X. Then

RV0,d = PV0,d −
s∑
i=1

νi(V0,d)ψi = PV0 + d1X −
s∑
i=1

(
νi(V0) + d νi(1X)

)
ψi

≤ V0 − V1 +
s∑
i=1

biψi + d1X −
s∑
i=1

(
νi(V0) + d νi(1X)

)
ψi from D1:s(V0, V1)

= V0,d − V1 +
s∑
i=1

(
bi − νi(V0)

νi(1X)
− d

)
νi(1X)ψi

≤ V0,d − V1

from the definition of d. Equivalently we have V1 ≤ V0,d −RV0,d, thus

∀n ≥ 1,
n∑
k=0

RkV1 ≤
n∑
k=0

RkV0,d −
n+1∑
k=1

RkV0,d ≤ V0,d −Rn+1V0,d ≤ V0,d

since we have Rn+1V0,d ≥ 0. This provides (212a) using V1 ≥ 1X and V0 ≥ 1X. Note that
νi(V0) < ∞ from (M1:s)–D1:s(V0, V1). Then Inequalities (212b) are deduced from (212a)
and the monotone convergence theorem w.r.t. each positive measure νi. □

Recall that 1 is an eigenvalue of the matrix M = (µj(ψi))i,j=1,...,s with associated non-
zero and non-negative eigenvector a = (a1, . . . , as)

⊤, see (210). Consequently, 1 is a simple
eigenvalue of M if, and only if, {x ∈ Rs :Mx = x} = R · a.

Corollary 11.5 Assume that P satisfies Conditions (M1:s)–D1:s(V0, V1). Then we have∑s
i=1 µi(V1) <∞ , so that the P−invariant probability measure πR := µR(1X)

−1 µR of Theo-
rem 11.3 is well-defined and such that πR(V1) <∞. Moreover we have

πR =

s∑
i=1

πR(ψi)µi (213a)

Mp = p with p := (πR(ψ1), . . . , πR(ψs))
⊤. (213b)
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Finally, if the eigenvalue 1 of M is simple, then πR is the unique P−invariant probability
measure.

Proof. We have
∑s

i=1 µi(V1) < ∞ from (212b) and the definition (205) of µi. Then we
deduce from Theorem 11.3 that the P−invariant probability measure πR := µR(1X)

−1 µR is
well-defined and satisfies πR(V1) <∞. Now let η be any finite positive P−invariant measure.
Then it follows from (206) that

∀n ≥ 1, ∀A ∈ X , η(1A) = η(Pn1A) = η(Rn1A) +
s∑
j=1

η(ψj)
n∑
k=1

νj(R
k−11A).

Note that 0 ≤ η(Rn1A) ≤ η(Rn1X) and that limnR
n1X = 0 (point-wise) from (212a). Thus

limn η(R
n1A) = 0 from Lebesgue’s theorem since η is finite by hypothesis (i.e. η(1X) < ∞).

When n→+∞ in the above equality we then obtain that

η =
s∑
j=1

η(ψj)µj

from the definition (205) of µi. It follows from this equality applied to the small-functions
ψi for i = 1, . . . , s that Mb = b with b := (η(ψ1), . . . , η(ψs))

⊤. Note that the previous facts
applied with η := πR provides (213a)-(213b). Finally assume that 1 is a simple eigenvalue of
M . Then there exists c > 0 such that b = c a, so that η = c

∑s
j=1 ajµj . This provides the

uniqueness of the P−invariant probability measure. □

To solve Poisson’s equation under Conditions (M1:s)–D1:s(V0, V1) we need to prove the
following lemma. We denote by Is the identity s× s−matrix.

Lemma 11.6 Let P satisfy Condition (M1:s) with
∑s

i=1 µi(1X) <∞. For i ∈ {1, . . . , s}, let
ϕi := ψi − πR(ψi)1X, and define the following s× s−matrix

M0 :=
(
µj(ϕi)

)
(i,j)∈{1,...,s}2 .

If the eigenvalue 1 ofM = (µj(ψi))(i,j)∈{1,...,s}2 is simple, then the matrix Is−M0 is invertible.

Proof. Using µj(ϕi) = µj(ψi)− πR(ψi)µj(1X) it follows that

M0 =M − p ·m⊤ with p := (πR(ψ1), . . . , πR(ψs)
)⊤

and m := (µ1(1X), . . . , µs(1X)
)⊤
.

Thus we have Is −M0 = Is −M + p · m⊤. Next, let x ∈ Rs be such that (Is −M0) · x = 0,
that is

(Is −M) · x = − p ·m⊤ · x = −
( s∑
i=1

µi(1X)xi

)
p. (214)

Recall thatMp = p (see (213b)). Hence we have (Is−M)2 ·x = 0. Moreover denote by ∥ ·∥∞
the matrix-norm associated with the supremum norm on Rs. Then we have supn≥1 ∥Mn∥∞ <
∞ from (211) using the fact that a matrix and its transpose have the same norm. It follows
that Ker(Is−M)2 = Ker(Is−M), so that the previous equality (Is−M)2 ·x = 0 implies that
(Is −M) · x = 0. Finally, since 1 is assumed to be a simple eigenvalue of M by hypothesis,
we obtain that Ker(Is−M) = R · p, thus x = c p for some c ∈ R. From (214) we deduce that

c
s∑
i=1

µi(1X)πR(ψi) = 0.
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Thus we have c = 0 (i.e. x = 0) since
∑s

i=1 µi(1X)πR(ψi) = πR(1X) = 1 from (213a). We
have proved that Ker(Is −M0) = {0}, so that Is −M0 is invertible. □

Now we study Poisson’s equation under Conditions (M1:s)–D1:s(V0, V1).

Theorem 11.7 Let P satisfy Conditions (M1:s)–D1:s(V0, V1) and let R be defined in (204).
Then the following assertions hold.

1. For any g ∈ BV1, the function series g̃ :=
∑+∞

k=0R
kg absolutely converges on X (point-wise

convergence). Moreover we have g̃ ∈ BV0 and

∥g̃∥V0 ≤ (1 + d1:s)∥g∥V1 (215)

with d1:s given in Theorem 11.4.

2. Assume moreover that the eigenvalue 1 of the matrix M := (µj(ψi))(i,j)∈{1,...,s}2 is simple,
and set (Is −M0)

−1 := (αi,j)(i,j)∈{1,...,s}2 where the matrix M0 is defined in Lemma 11.6.
Finally let ϕi := ψi − πR(ψi)1X for i ∈ {1, . . . , s}. Then, for any g ∈ BV1 such that
πR(g) = 0, the following function

g̃P := g̃ +

s∑
i,j=1

αi,j µi(g)ϕ̃j with g̃ :=

+∞∑
k=0

Rkg, ϕ̃i :=

+∞∑
k=0

Rkϕi (216)

satisfies Poisson’s equation (I − P )g̃P = g with the following bounds

∥g̃P∥V0 ≤ (1 + d1:s)∥g∥V1
(
1 + (1 + d1:s)

s∑
i,j=1

νi(V0) |αi,j | ∥ϕj∥V1
)
. (217)

Proof. Let g ∈ BV1 . Using |g| ≤ ∥g∥V1V1 and |Rkg| ≤ Rk|g| ≤ ∥g∥V1RkV1, Assertion 1. follows
from (212a). Now, let us prove Assertion 2. Since the eigenvalue 1 of M is assumed to be
simple, we know from Corollary 11.5 that πR is the unique P−invariant probability measure
and that πR(|g|) <∞ since πR(V1) <∞. Now for every n ≥ 1 define g̃n :=

∑n
k=0R

kg. Then,
using P = R+

∑s
i=1 ψi ⊗ νi we have

g̃n − P g̃n = g̃n −Rg̃n −
s∑
i=1

νi(g̃n)ψi = g −Rn+1g −
s∑
i=1

νi(g̃n)ψi. (218)

Repeating the same arguments as in the proof of Assertion 2. of Theorem 5.4 and taking the
limit when n goes to infinity in (218) we obtain that

(I − P )g̃ = g −
s∑
i=1

µi(g)ψi. (219)

Now assume that πR(g) = 0. Using ϕi := ψi − πR(ψi)1X and 0 = πR(g) =
∑s

i=1 µi(g)πR(ψi)
from (213a) we obtain that

(I − P )g̃ = g −
s∑
i=1

µi(g)ϕi. (220)
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Recall that M0 :=
(
µj(ϕi)

)
(i,j)∈{1,...,s}2 . Applying Equality (220) to g := ϕi for i ∈ {1, . . . , s},

provides the following function system:

Γ = (Is −M0)Φ with Φ := (ϕ1, . . . , ϕs)
⊤ and Γ :=

(
(I − P )ϕ̃1, . . . , (I − P )ϕ̃s

)⊤
.

Since the eigenvalue 1 of M is assumed to be simple, we know from Lemma 11.6 that the
matrix Is −M0 is invertible. Hence, we have Φ = (Is −M0)

−1Γ, that is

∀i ∈ {1, . . . , s} ϕi = (I − P )

( s∑
j=1

αi,jϕ̃j

)
,

where the αi,j ’s denote the coefficients of the matrix (Is − M0)
−1. From these equalities

and (220) it follows that, for every g ∈ BV1 such that πR(g) = 0, the function g̃P defined in
(216) satisfies Poisson’s equation (I − P )g̃P = g. Finally note that for i = 1, . . . , s we have
|µi(g)| ≤ (1+d1:s)νi(V0)∥g∥V1 from (212b). The bound (217) for ∥g̃P∥V0 is then deduced from
(215) applied to g and ϕi. □

The following lemma provides sufficient conditions for the matrix M in Theorem 11.7 to
have λ := 1 as simple eigenvalue. Recall that any non-negative s× s−matrix A is said to be
irreducible (e.g. see [Sen81, Def. 1.6]) if

∀(i, j) ∈ {1, . . . , s}2, ∃n ≡ n(i, j) ≥ 1, An(i, j) > 0 (221)

Lemma 11.8 Let P satisfy Condition (M1:s) and M be the s× s−matrix defined in (209).
Under any of the two following conditions, the eigenvalue λ = 1 of M is simple and the vector
a in Lemma 11.2 is positive:

1. M satisfies Condition (221).

2. The non-negative s× s−matrix N :=
(
νj(ψi)

)
(i,j)∈{1,...,s}2 satisfies Condition (221).

Note that the measures µi are unknown in general, so are Mn cannot be computed. In this
case the sufficient condition on the computable s× s−matrix N is relevant.

Proof. That Condition (221) for M is sufficient for λ = 1 to be a simple eigenvalue of M is
standard from the Perron-Frobenius theorem (see [Sen81, Th. 1.5]). Under Condition (221),
it still follows from Perron-Frobenius’s theorem that the vector a is positive as an eigenvector
associated with the the eigenvalue λ = 1. Finally, since M ≥ N from µi ≥ νi, we have
Mn ≥ Nn for every n ≥ 1. Hence, if N is irreducible, so is M . □

11.1.3 The specific case of two first-order small-functions

In case s := 2, we know from Lemma 11.8 that the irreducibility condition (221) for the
matrix N := (νj(ψi))(i,j)∈{1,2}2 , is a sufficient condition for the eigenvalue 1 of matrix M
to be simple. Condition (221) for N is equivalent to: ν1(ψ2) > 0 and ν2(ψ1) > 0. Below,
this is weakened to ν1(ψ2) > 0 or ν2(ψ1) > 0, and the solution to Poisson’s equation and its
∥ · ∥V0−norm are specified. The definitions of g̃, ϕi and ϕ̃i (for i = 1, 2 here) used below are
those of Theorem 11.7.
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Proposition 11.9 Let P satisfy Conditions (M1:2)−D1:2(V0, V1) and

ν1(ψ2) + ν2(ψ1) > 0. (222)

Then the following assertions hold.

1. The eigenvalue λ = 1 of the 2× 2−matrix M in (209) is simple.

2. The matrix M0 :=
(
µj(ϕi)

)
i,j=1,2

of Lemma 11.6 is such that

∆ := det(Is −M0) = 2− µ1(ψ1)− µ2(ψ2) > 0.

3. For any g ∈ BV1 such that πR(g) = 0, the following function

g̃P := g̃ +∆−1
2∑
i=1

µi(g)ζi with

{
ζ1 := (1− µ2(ϕ2))ϕ̃1 + µ2(ϕ1)ϕ̃2

ζ2 := µ1(ϕ2)ϕ̃1 + (1− µ1(ϕ1))ϕ̃2
(223)

satisfies Poisson’s equation (I − P )g̃P = g with the following bounds

∥g̃P∥V0 ≤ (1 + d1,2)∥g∥V1
(
1 + (1 + d1,2)∆

−1
2∑
i=1

νi(V0)Mi

)
(224)

with

{
M1 := |1− γ22|(∥ψ1∥V1 + πR(ψ1)) + |γ12|

(
∥ψ2∥V1 + πR(ψ2)

)
M2 := |γ21|

(
∥ψ1∥V1 + πR(ψ1)

)
+ |1− γ11|(∥ψ2∥V1 + πR(ψ2))

where γij := µj(ψi)− πR(ψi)µj(1X) for (i, j) ∈ {1, 2}2.

Proof. Assume that the eigenvalue 1 of M is not simple. Then the trace of M is 2, so that
we have µ1(ψ1) + µ2(ψ2) = 2. Thus µ1(ψ1) = µ2(ψ2) = 1 since µi(ψi) ∈ [0, 1] for i = 1, 2
from Lemma 11.2. Recall that M⊤uν = uν with uν := (ν1(1X), ν2(1X))

⊤ from Lemma 11.2
so that µ1(ψ2) = µ2(ψ1) = 0. Since µi ≥ νi, we have ν1(ψ2) = ν2(ψ1) = 0: This contradict
(222). Assertion 1. is proved.

To prove Assertion 2., let us generically denote by C1 and C2 the first and second column
vectors of a 2 × 2−determinant. From (213a) we know that

∑2
i=1 πR(ψi) > 0. Assume that

πR(ψ1) > 0. Then, replacing C1 with πR(ψ1)C1 + πR(ψ2)C2 in ∆, we obtain that

∆ = πR(ψ1)
−1

∣∣∣∣ πR(ψ1) −µ2(ϕ1)
πR(ψ2) 1− µ2(ϕ2)

∣∣∣∣
using Formula (213a) and πR(ϕ1) = πR(ϕ2) = 0. Next, using ϕi := ψi − πR(ψi)1X and
replacing C2 with C2 − µ2(1X)C1 in the last determinant provides

∆ = πR(ψ1)
−1

∣∣∣∣ πR(ψ1) −µ2(ψ1) + µ2(1X)πR(ψ1)
πR(ψ2) 1− µ2(ψ2) + µ2(1X)πR(ψ2)

∣∣∣∣ = πR(ψ1)
−1

∣∣∣∣ πR(ψ1) −µ2(ψ1)
πR(ψ2) 1− µ2(ψ2)

∣∣∣∣ .
Finally, from Equality πR(ψ2)µ2(ψ1) = πR(ψ1)−πR(ψ1)µ1(ψ1) which follows from (213a), the
desired formula for ∆ is easily deduced. If πR(ψ1) = 0, then πR(ψ2) > 0 and the computation
od ∆ is similar. The argument for proving Assertion 1. shows that we have µ1(ψ1)+µ2(ψ2) < 2
under Condition (222). The proof of Assertion 2. is complete.

Finally Assertion 3. follows from Theorem 11.7 and the direct computation of the 2 ×
2−matrix (Is −M0)

−1. □
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Condition (222) is quite generic. This is because the support of at least one of the minoriz-
ing measures, say ν2, is a closed set strictly larger than S2. We therefore have ν2(1S1) > 0
when S1 intersects the support of ν2. This is illustrated in the following simple example.

Example 11.10 Let X := N and assume that P = (P (i, j))(i,j)∈N2 satisfies D1E (V0, V1) for
some Lyapunov functions V0, V1 and E := {0, 1, 2}. This means that

∀i ≥ 3 :
+∞∑
j=0

P (i, j)V0(j) ≤ V0(i)− V1(i)

and that b0 in D1E (V0, V1) can be defined as

b0 := max
i=0,1,2

{ +∞∑
j=0

P (i, j)V0(j)− V0(i) + V1(i)
}
<∞.

Assume that

α0 := min(P (0, 0), P (1, 0)) > 0, P (0, 2) = 0, P (1, 1) = 0, P (2, 0) = 0, P (2, 1) > 0.

Then it can be easily seen that E is not a first-order small-set. Now write E = S1 ⊔ S2
with S1 := {0, 1} et S2 := {2}. Then S1 is a first-order small-set with associated minorizing
measure ν1 := α0δ0 where δ0 is the Dirac distribution at 0. Next S2 is also a first-order
small-set, even an atom, with associated minorizing measure ν2 := P (2, ·). Finally, since
P (2, 1) > 0, we have ν2(1S1) > 0, so that Condition (222) holds.

11.2 Poisson’s equation under higher-order minorization condition

Recall that Theorem 5.4 provides a bound for the V0−weighted norm of solutions to Poisson’s
equation under the V1−modulated drift Condition Dψ(V0, V1), that is

∃b0 ≡ b0(V0, V1, ψ) > 0 : PV0 ≤ V0 − V1 + b0ψ,

where ψ ∈ B∗
+ satisfies the first-order minorization condition (Mν,ψ) with some ν ∈ M∗

+,b.
Here Theorem 5.4 is extended to Markov kernel P still satisfying Dψ(V0, V1) but assuming
now that ψ is a ℓ−order small-function for some integer ℓ ≥ 2, namely

∃ℓ ≥ 2, ∃νℓ ∈ M∗
+,b : P ℓ ≥ ψ ⊗ νℓ. (M ℓ

νℓ,ψ
)

Iterating Dψ(V0, V1) we obtain that

∀k = 1, . . . , ℓ, P kV0 ≤ V0 −
k−1∑
j=0

P jV1 + b0

k−1∑
j=0

P jψ. (225)

It follows from the previous inequality for k := ℓ that

P ℓV0 ≤ V0 − V1 + b0ψ + b0

ℓ−1∑
j=1

P jψ. (226)
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Note that Theorem 5.4 does not apply directly to the Markov kernel P ℓ under Condi-
tions Dψ(V0, V1) and (M ℓ

νℓ,ψ
). Indeed (M ℓ

νℓ,ψ
) is a first-order minorization condition for

P ℓ with minorizing measure νℓ and small-function ψ, but Inequality (226) is not (and
does not provide) Condition Dψ(V0, V1) for P ℓ because of the term b0

∑ℓ−1
j=1 P

jψ. In fact,
Lemma 11.13 below shows that the proof of Theorem 5.4 can be adapted, provided that
b0
∑ℓ−1

j=1 P
jψ ≤ aℓP

ℓψ for some aℓ ∈ (0,+∞).

Thus, let us introduce the following condition:

∀j = 1, . . . , ℓ− 1, ∃αj ∈ (0,+∞), P jψ ≤ αjP
ℓψ. (227)

which ensures that b0
∑ℓ−1

j=1 P
jψ ≤ aℓP

ℓψ with aℓ := b0
∑ℓ−1

j=1 αj . A sufficient condition for
(227) is

∃a > 0, Pψ ≤ aP 2ψ

which is satisfied if ψ ≤ aPψ from the non-negativity of P . Indeed, it can be easily seen that
Condition Pψ ≤ aP 2ψ provides (227) with αj = aℓ−j (smaller constants αj in (227) can be
found when P jψ for j = 1, . . . , ℓ are computable). In particular, under Condition (Mν,ψ) with
ν(ψ) > 0, we have ψ ≤ ν(ψ)−1Pψ, so that Condition (227) holds. However Condition (227)
is of course much weaker than (Mν,ψ).

The following lemma collects the direct consequences of Inequality (225) recalling that ψ is
a non-negative bounded function on X, and of Inequality (226) assuming that Condition (227)
holds true.

Lemma 11.11 Let P satisfy Condition Dψ(V0, V1) for some Lyapunov functions V0, V1,
and for some ψ ∈ B∗

+ satisfying (M ℓ
νℓ,ψ

) and assume that Condition (227) holds. Then the
following assertions hold:

the function Γℓ := max
k=1,...,ℓ−1

P kV0 − V0 is bounded from above on X, (228a)

and ∃(a0, aℓ) ∈ [0,+∞)2, P ℓV0 ≤ V0 − V1 + a0ψ + aℓP
ℓψ. (228b)

From the above, under the assumptions of Lemma 11.11, Inequality (228b) holds with a0 := b0
and aℓ := b0

∑ℓ−1
j=1 αj where b0 and the αj ’s are given in Dψ(V0, V1) and in Conditions (227)

respectively. However, in practice it is of course relevant to search for the smallest possible
constants.

Under the ℓ−order minorization Condition (M ℓ
νℓ,ψ

), we denote by Rℓ the submarkov kernel
defined on (X,X ) by

Rℓ := P ℓ − ψ ⊗ νℓ.

Theorem 11.12 Let P satisfy Condition Dψ(V0, V1) for some Lyapunov functions V0, V1,
and for some ψ ∈ B∗

+ satisfying (M ℓ
νℓ,ψ

). Assume that Condition (227) holds. Then the
following assertions hold:

1. There exists a unique P−invariant probability measure π on (X,X ), and π(V1) <∞.

2. For every g ∈ BV1 such that π(g) = 0, the function

g̃ :=

ℓ−1∑
k=0

P kg̃ℓ with g̃ℓ =

+∞∑
k=0

Rℓ
kg (229)
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belongs to BV0, satisfies Poisson’s equation (I − P )g̃ = g, and the following bound holds
true:

|g̃| ≤ ∥g∥V1
[
ℓ(V0 + Γℓ + cℓ1X)− aℓ ψℓ

]
with cℓ :=

max
(
0, a0 − νℓ(V0)

)
+ aℓ

(
1 + νℓ(ψ)

)
νℓ(1X)

(230)
where Γℓ is the upper bounded function given in (228a), a0, aℓ are any positive constants
such that (228b) holds, and finally ψℓ :=

∑ℓ−1
k=0 P

kψ.

In Case ℓ = 1 we have Γℓ = 0 and aℓ = 0, so that the bound (230) corresponds to (59a) in
Theorem 5.4.

The proof of Theorem 11.12 is a direct consequence of the next Lemmas 11.13, 11.14, ob-
serving moreover that the non-negative functionW0 :=

∑ℓ−1
k=0 P

kV0 introduced in Lemma 11.14
satisfies W0 ≤ ℓ(V0 + Γl) using (228a).

Lemma 11.13 Let P satisfy Conditions (M ℓ
νℓ,ψ

) and (228b) for some ℓ ≥ 2 and non-
negative measurable functions V0 and V1 on X. Then

0 ≤
+∞∑
k=0

R k
ℓ V1 ≤ V0 + cℓ1X − aℓ ψ with cℓ :=

max
(
0, a0 − νℓ(V0)

)
+ aℓ

(
1 + νℓ(ψ)

)
νℓ(1X)

. (231)

Proof. From (228b) we obtain that

RℓV0 = P ℓV0 − νℓ(V0)ψ ≤ V0 − V1 +
(
a0 − νℓ(V0)

)
ψ + aℓ P

ℓψ,

equivalently: V1 ≤ V0 −RℓV0 +
(
a0 − νℓ(V0)

)
ψ + aℓ P

ℓψ.

Moreover observe that
∑+∞

k=0R
k
ℓ ψ ≤ νℓ(1X)

−11X from Inequality (24) applied to the Markov
kernel P ℓ under the mimorization condition (M ℓ

νℓ,ψ
). Thus we have

∀n ≥ 1,
n∑
k=0

R k
ℓ V1 ≤

n∑
k=0

R k
ℓ V0 −

n+1∑
k=1

R k
ℓ V0 +

(
a0 − νℓ(V0)

) n∑
k=0

R k
ℓ ψ + aℓ

n∑
k=0

R k
ℓ P

ℓψ

≤ V0 +
max

(
0, a0 − νℓ(V0)

)
νℓ(1X)

1X + aℓ

n∑
k=0

R k
ℓ

(
Rℓψ + νℓ(ψ)ψ

)
= V0 +

max
(
0, a0 − νℓ(V0)

)
νℓ(1X)

1X + aℓ

n+1∑
k=1

R k
ℓ ψ + aℓ νℓ(ψ)

n∑
k=0

R k
ℓ ψ

≤ V0 +
max

(
0, a0 − νℓ(V0)

)
νℓ(1X)

1X +
aℓ

νℓ(1X)
1X − aℓ ψ +

aℓ νℓ(ψ)

νℓ(1X)
1X

≤ V0 +
max

(
0, a0 − νℓ(V0)

)
+ aℓ

(
1 + νℓ(ψ)

)
νℓ(1X)

1X − aℓψ.

This proves (231). □

Lemma 11.14 Let P satisfy Conditions (M ℓ
νℓ,ψ

) and (228b) for some ℓ ≥ 2 and measurable
functions V0 ≥ 0 and V1 ≥ 1X on X. Then there exists a unique P−invariant probability
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measure π on (X,X ), and we have π(V1) < ∞. Moreover, for every g ∈ BV1 such that
π(g) = 0, the function

g̃ :=
ℓ−1∑
k=0

P kg̃ℓ with g̃ℓ =
+∞∑
k=0

Rℓ
kg

satisfies the following bound

|g̃| ≤ ∥g∥V1
(
W0 + ℓ cℓ1X − aℓψℓ

)
with W0 :=

ℓ−1∑
k=0

P kV0 and ψℓ :=

ℓ−1∑
k=0

P kψ (232)

where the positive constants aℓ and cℓ are given in (228b) and (231) respectively. Moreover
g̃ satisfies Poisson’s equation (I − P )g̃ = g.

Proof. From 1X ≤ V1 and (231) we know that limk R
k
ℓ 1X = 0 (point-wise convergence) and

that
∑+∞

k=0 νℓ(R
k
ℓ 1X) ≤ νℓ(V0) + cℓνℓ(1X) <∞ from the monotone convergence theorem (use

(M ℓ
νℓ,ψ

) and (228b) to get νℓ(V0) <∞). Thus

µRℓ
:=

+∞∑
k=0

νℓR
k
ℓ

is a finite positive measure on (X,X ). Then it follows from Assertion 3. of Theorem 4.1
applied to the Markov kernel P ℓ with residual kernel Rℓ that πRℓ

:= µRℓ
(1X)

−1µRℓ
is the

unique P ℓ−invariant probability measure. Moreover we have µRℓ
(V1) < ∞ from (231) and

the monotone convergence theorem. Next the following probability measure

π :=
1

ℓ

ℓ−1∑
k=0

πRℓ
P k

is P−invariant using that πRℓ
P ℓ = πRℓ

. In fact we have π = πRℓ
since π is also P ℓ−invariant

and πRℓ
is the unique P ℓ−invariant probability measure. The first assertion of Lemma 11.14

is proved.

Now let g ∈ BV1 be such that π(g) = 0. Let us prove that the function g̃ℓ =
∑+∞

k=0Rℓ
kg

satisfies the following bound

|g̃ℓ| ≤ ∥g∥V1
(
V0 + cℓ1X − aℓψ

)
(233)

and that (I − P ℓ)g̃ℓ = g. We have |g| ≤ ∥g∥V1V1, and for k ≥ 1

|R k
ℓ g| ≤ R k

ℓ |g| ≤ ∥g∥V1R k
ℓ V1.

Then we obtain (233) using (231). Next define: ∀n ≥ 1, g̃ℓ,n :=
∑n

k=0R
k
ℓ g. Using Equality

P ℓ = Rℓ + ψ ⊗ νℓ, we obtain that

g̃ℓ,n − P ℓg̃ℓ,n = g̃ℓ,n −Rℓg̃ℓ,n − νℓ(g̃ℓ,n)ψ = g −Rn+1
ℓ g − νℓ(g̃ℓ,n)ψ

from which we deduce that (I−P ℓ)g̃ℓ = g−µRℓ
(g)ψ when n→+∞ (repeating the arguments

of the proof of Theorem 5.4). Hence we have (I − P ℓ)g̃ℓ = g since µRℓ
(g) = µRℓ

(1X)πRℓ
(g) =

µRℓ
(1X)π(g) = 0.
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We can now conclude. From (233) it follows that g̃ :=
∑ℓ−1

k=0 P
kg̃ℓ satisfies the following

bound:

|g̃| ≤
ℓ−1∑
k=0

P k|g̃ℓ| ≤ ∥g∥V1
ℓ−1∑
k=0

P k
(
V0 + cℓ1X − aℓψ

)
= ∥g∥V1

(
W0 + ℓ cℓ1X − aℓψℓ

)
with W0 :=

∑ℓ−1
k=0 P

kV0 and ψℓ :=
∑ℓ−1

k=0 P
kψ. Moreover we have

(I − P )g̃ = (I − P )
ℓ−1∑
k=0

P kg̃ℓ = (I − P ℓ)g̃ℓ = g.

The proof of Lemma 11.14 is complete. □

Now let us present an alternative statement to Theorem 11.12. Assume that P satisfies
Conditions Dψ(V0, V1) and (227). Using the following inequality (see (225) with k := ℓ)

P ℓV0 ≤ V0 −W1 + b0

ℓ−1∑
j=0

P jψ with W1 :=
ℓ−1∑
j=0

P jV1,

we obtain that

∃(a0, aℓ) ∈ [0,+∞)2, P ℓV0 ≤ V0 −W1 + a0ψ + aℓP
ℓψ. (234)

Next, under Conditions (234) and (M ℓ
νℓ,ψ

), the conclusion of Lemma 11.13 obviously extends
with W1 in place of V1. Next, for i = 0, 1, define

V̂i :=
1

ℓ

ℓ−1∑
j=0

P jVi,

and observe that V̂i =Wi/ℓ. Then, Lemma 11.14 can be straightforwardly adapted to obtain
the following statement.

Proposition 11.15 Let P satisfy the assumptions of Theorem 11.12. Then the following
assertions hold:

1. There exists a unique P−invariant probability measure π on (X,X ), and π(V̂1) <∞.

2. For every g ∈ B
V̂1

such that π(g) = 0, the function g̃ given in (229) belongs to B
V̂0
, satisfies

Poisson’s equation (I − P )g̃ = g, and

|g̃| ≤ ∥g∥
V̂1

(
V̂0 + cℓ 1X − aℓ ψ̂ℓ

)
(235)

where cℓ is defined as in Theorem 11.12 using here any positive constants a0, aℓ such that
(234) holds, and where ψ̂ℓ := (1/ℓ)

∑ℓ−1
k=0 P

kψ.

The interest of the alternative bound (235) is that the order ℓ is no longer a multiplicative
factor. Its disadvantage is that this bound uses the modified Lyapunov functions V̂0 and
V̂1. On this subject recall that V̂0 ≤ V0 + Γℓ (see (228a)), and note that V̂1 in (235) can
be replaced with any measurable function U1 such that 1X ≤ U1 ≤ V̂1 since BU1 ⊂ B

V̂1
and

∥g∥
V̂1

≤ ∥g∥U1 for every g ∈ BU1 .
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Let us conclude with some comments on Theorem 11.12. First note that the bounds (230)
and (235) may be of interest even if ψ is also a first-order small-function: Indeed, when the
mass ν(1X) of the first-order minorizing measure ν in (Mν,ψ) is too small, then the constant
d0 in the bounds (59a)-(59b) of Theorem 5.4 may be too large to be relevant. Of course
the mass νℓ(1X) involved in the bound (230) is expected to be greater. Explicit bounds for
the constants a0 and aℓ in Inequality (228b) are proposed after Lemma 11.11. However, in
practice, when the functions P ℓV0 and P ℓψ are computable, it is more relevant to estimate
constants a0 and aℓ in (228b) directly. The same holds for Condition (234). If ψ is also a
first-order small-function (i.e. Condition (Mν,ψ) holds) and if π(V0) <∞ , then the bound

Γℓ ≤
∥ψ∥1X

(
π(V0) + d0

)
π(ψ)

provided by Lemma 5.9 can be used in (230). Likewise, under the geometric drift con-
dition Gψ(δ, V ) which provides the V1−modulated drift Condition Dψ(V0, V1) with V0 :=
V/(1 − δ), V1 := V and b0 := b/(1 − δ) (see Example 5.2), the bound Γℓ ≤ b∥ψ∥1X(1 − δ)−2

can be used in (230). Indeed an easy iteration of Gψ(δ, V ) provides

∀k ≥ 0, P kV ≤ V + b∥ψ∥1X(1− δ)−11X.

However, even in the previous specific cases, it is preferable to search for an upper bound of
Γℓ simply by using the functions P kV0 for k = 1, . . . , ℓ− 1, provided that these functions are
computable.

11.3 Further comments and bibliographic discussion

That the first-order minorization condition may be restrictive for the set E involved in drift
conditions (e.g. in PV0 ≤ V0−V1+ b1E) is addressed in this section. Actually, when E is not
a first-order small-set, it can generally be written as a finite union of first-order small-sets.
Thus, a first way to overcome this issue is based on this decomposition of E. The material
is proposed in Subsection 11.1 and is new to the best of our knowledge. As an extension
of the first-order minorization condition, the results of Subsection 11.1 are interesting, but
mainly from a theoretical point of view because the matrix involved in Theorem 11.7 is not
computable in general.

The notions of higher-order small-functions (or small-sets) and petite sets have been al-
ready presented in Subsection 3.5. When the set E in the modulated drift condition can only
be written as a finite union of first-order small-sets, then E is a ℓ−order small-set for some
ℓ ≥ 2, that is P ℓ ≥ 1E ⊗ νℓ with some minorizing measure νℓ. This follows from the following
classical results (e.g. see [MT09, Prop. 5.5.5, Th. 5.5.7]: First every small-set is obviously pe-
tite; Second a finite union of petite sets is petite under irreducibility condition; Third, every
petite set is a small-set under the additional aperiodicity condition. Partly motivated by this
observation in Subsection 11.2, Theorem 11.12 and Proposition 11.15 provide an extension of
Theorem 5.4 on the bound for solutions to Poisson’s equation to the case when the function
ψ in the modulated drift condition is any higher-order small-function.

It is well-documented in the literature on Markov chains that the standard way to go
beyond the first-order minorization condition is to search for a drift condition for P involving
an explicit higher order small-set E. In particular, this means finding an explicit positive
integer ℓ and a computable minorizing measure νℓ. Note that such ℓ might be too large
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to search for the explicit minorizing measure νℓ, due to the difficult (or even impossible)
computation of the iterate P ℓ. In many of the papers cited in Subsections 5.5, 6.3 and 8.5
in link with Poisson’s equation or convergence rates, the general statements are presented in
the context of general small-sets or even petite sets. However, truly explicit bounds for the
two above themes are usually only addressed with a first-order small-set (i.e. ℓ = 1). Indeed,
finding such explicit bounds under higher-order minorization conditions (i.e. ℓ ≥ 2) remains
a difficult issue. Perhaps the most successful work in this regard is the recent paper [GLL25],
where the authors provide a nice and explicit bound for solutions to Poisson’s equation
under modulated drift conditions involving a ℓ−order small-set E. The bound obtained in
[GLL25] via a randomized stopping time is close to (59b) in case ℓ = 1, and it remains very
simple when ℓ ≥ 2. Such a bound is proposed in Theorem 11.12 and Proposition 11.15,
but the additional condition (227) is required and, above all, the bounds (230) and (235)
are far from being as simple as that in [GLL25]1. The main interest of Subsection 11.2
is that the proof of Theorem 11.12 is close to that of Theorem 5.4 (first-order case) and
quite elementary compared to the more sophisticated one in [GLL25]. Finally recall that the
interest of considering a higher-order small set has been also addressed in Subsection 8.4 to
extend polynomial convergence rates under weaker conditions than (121).

1We thank the authors of [GLL25] for sharing their work with us. It has motivated the results of Subsec-
tion 11.2 on bound for the solutions to Poisson’s equation under a higher-order minorization condition.
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A Probabilistic complements

The split chain (e.g. see [Num84, Num02]).

Let (Xn)n≥0 be a Markov chain on the space (X,X ) with kernel transition P satisfying
condition (Mν,ψ) with ν ∈ M∗

+,b, ψ ∈ B∗
+, that is

R := P − ψ ⊗ ν ≥ 0.

Let us introduce the bivariate Markov chain ((Xn, Yn))n≥0 with the state space X × {0, 1}
and the following transition kernel P̂ : for every bounded measurable function f on X×{0, 1}

E[f(Xn+1, Yn+1) | σ(Xk, Yk, k ≤ n)] = E[f(Xn+1, Yn+1) | σ(Xn)] = (P̂ f)(Xn)

with
∀A ∈ X , P̂ (x,A× {0}) = R(x,A) P̂ (x,A× {1}) = ψ(x) ν(1A).

((Xn, Yn))n≥0 is called the split chain associated with (Xn)n≥0. Note that, for any A ∈ X ,

P̂ (x,A × {0, 1}) = P̂ (x,A × {0}) + P̂ (x,A × {1}) = P (x,A) so that the marginal process
(Xn)n≥0 is indeed the original Markov with transition kernel P . Next, for any f ∈ B and
x ∈ X, E[f(Xn+1) | Xn = x, Yn+1 = 1] = ν(1X)

−1ν(f) for every n ≥ 1. It follows that the
set X × {1} is an atom for the split chain. Let σ{1} := inf{n ≥ 1, Yn = 1} be the return
time to the atom X× {1} of the split chain or the return time of (Yn)n≥0 to state 1. It is a
regeneration times of the split chain. Such a material leads to using the so-called regeneration
method to analyze the split chain and to deduce, when possible, the properties of the original
Markov chain.

Probabilistic counterparts in terms of the split chain of various quantities in the
present document.

Let us introduce the probability measure ν̂ = ν(1X)
−1ν on X. The probability P when X0

has probability distribution η, is denoted by Pη and Eη is the expectation under Pη.
∀A ∈ X and ∀x ∈ X :

� (Rn1A)(x) = Rn(x,A) = Px{Xn ∈ A, σ{1} > n};
(Rn1X)(x) = Rn(x,X) = Px{σ{1} > n};∑+∞

n=0(R
n1X)(x) = Ex[σ{1}];

� h∞
R (x) := limn(R

n1X)(x) = Px{σ{1} = +∞};

� (Rn−1ψ)(x) = Px{σ{1} = n}/ν(1X),
∑n

k=1(R
k−1ψ)(x) = Px{σ{1} ≤ n}/ν(1X);∑+∞

n=1(R
n−1ψ)(x) = Px{σ{1} <∞}/ν(1X);

� µR(1A) = ν(1X)
∑+∞

n=0 Pν̂{Xn ∈ A, σ{1} > n}, µR(1X) = ν(1X)Eν̂ [σ{1}]
µR(ψ) = Pν̂{σ{1} <∞}.

� Formula (17). For any n ≥ 1, let Ln := min{k = 0, . . . , n − 1 : Yn−k = 1}, be the
time elapsed since the last visit of (Yn)n≥0 to 1 before time n. Then {σ{1} ≤ n} =

⊔n−1
k=0{Ln = k} and Formula (17) has the following probabilistic meaning

Px{Xn ∈ A} = Px{Xn ∈ A, σ{1} > n}+
∑n−1

k=0 Px{Xn ∈ A,Ln = k} .
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Properties of the functions g∞
A and gA.

Below Properties c)-d) of Subsection 2.2 are proved. Let P be a Markov kernel on (X,X ),
and let (Xn)n≥0 be the canonical Markov chain on (XN,X⊗N) associated with P , e.g. see
[DMPS18, Sec. 3.1]. Denote by θ : XN→XN the shift operator defined by:

∀x = (xn)n∈N ∈ XN, θ(x) := (xn+1)n∈N.

Recall that Markov’s property states that, for any r.v. Y on (XN,X⊗N) taking its values in
[0,+∞], we have (e.g. see [DMPS18, Th. 3.3.3])

∀n ≥ 1, ∀x ∈ X, EXn [Y ] = Ex
[
Y ◦ θn |σ(X0, . . . , Xn)

]
Px−a.s..

For any A ∈ X , let NA :=
∑+∞

n=1 1{Xn∈A}. Recall that: ∀x ∈ X, g∞
A (x) := Px{NA = +∞}.

For every x ∈ X we have

(Pg∞
A )(x) = Ex[g∞

A (X1)] = Ex
[
EX1

[
1{NA=+∞}

]]
(from the definition of g∞

A )

= Ex
[
Ex
[
{1{NA=+∞} ◦ θ |σ(X0, X1)

]]
(from Markov’s property)

= Ex
[
1{NA=+∞} ◦ θ

]
= Px{NA = +∞} = g∞

A (x)

where we have used the classical property E
[
E[Z | F ]

]
= E[Z] of conditional expectation and

the fact that the events {NA ◦ θ = +∞} and {NA = +∞} are obviously equal. Thus g∞
A is

P−harmonic.

Recall that TA := inf{n ≥ 0 : Xn ∈ A} and that gA is defined by: ∀x ∈ X, gA(x) =
Px{TA < ∞}. Let SA := inf{n ≥ 1 : Xn ∈ A} = 1 + TA ◦ θ. Note that {SA < ∞} =
{TA ◦ θ <∞}. For every x ∈ X we have

(PgA)(x) = Ex[gA(X1)] = Ex
[
EX1 [1{TA<∞}]

]
(from the definition of gA)

= Ex
[
Ex[1{TA<∞} ◦ θ |σ(X0, X1)]

]
(from Markov’s property)

= Ex[1{TA<∞} ◦ θ]
= Ex[1{SA<∞}]

≤ Ex[1{TA<∞}] = gA(x) (since {SA <∞} ⊂ {TA <∞}).

Thus gA is superharmonic. Since the kernel P is non-negative, the sequence of non-negative
functions (PngA)n≥0 is non-increasing so it converges point-wise. Next, for every x ∈ X, it
follows from (PngA)(x) = Ex[gA(Xn)] and from the same arguments as above that

(PngA)(x) = Ex
[
EXn [1{TA<∞}]

]
= Ex

[
Ex
[
1{TA<∞} ◦ θn |σ(X0, . . . , Xn)

]
= Ex

[
1{TA<∞} ◦ θn

]
and that (PngA)(x) = Px(En) with En := ∪k≥n{Xk ∈ A}. We have {Xk ∈ A i.o.} =
∩n≥0En =

{
NA = +∞

}
, where i.o. stands in short for “infinitely often”. Since (En)n≥0 is

non-increasing for the inclusion, we obtain that

lim
n

↘ (PngA)(x) = lim
n

↘ Px(En) = Px{Xk ∈ A i.o.} = Px{NA = +∞} = g∞
A (x).

B Proof of Theorem 4.12

From the definition of d in (43), there exists an integer ℓ0 ≥ 1 such that the power series
ρ(z) :=

∑+∞
n=1 ν(R

n−1ψ) zn writes as

∀z ∈ D, ρ(z) :=

+∞∑
k=ℓ0

ν(Rkd−1ψ) zkd. (236)

139



The proof of Theorem 4.12 is based on the two following lemmas.

Lemma B.1 Let P satisfy Condition (Mν,ψ) with µR(1X) <∞. Then

lim
n→+∞

P dnψ = ζψ :=
1

md

+∞∑
k=0

Rkdψ with md :=
+∞∑
k=ℓ0

k ν(Rkd−1ψ) <∞. (237)

Proof. Using the definition of the integer d, the arguments here are close to those used in the
proof of the direct implication in Lemma 4.9. Note that

∑+∞
k=0R

dkψ is a bounded function
on X from Proposition 3.4, and that md <∞ from Remark 4.10. Now define

∀z ∈ D, Pd(z) :=
+∞∑
n=0

znP dnψ, Rd(z) :=
+∞∑
n=0

znRdnψ, ρd(z) :=
+∞∑
k=ℓ0

ν(Rkd−1ψ) zk.

with D = {z ∈ C : |z| < 1}. Note that the power series ρ in (236) satisfies ρ(z) = ρd(z
d).

Thus ρd(z) is not a power series in zq for any integer q ≥ 2: Indeed, otherwise we would have
ρd(z) :=

∑+∞
ℓ=ℓ′0

ν(Rqℓd−1ψ) zqℓ for some integers ℓ′0 ≥ 1 and q ≥ 2, thus

ρ(z) =
+∞∑
ℓ=ℓ′0

ν(Rqℓd−1ψ) zqℓd,

which contradicts the definition (43) of d. Moreover observe that |ρd(z)| < 1 for every z ∈ D
since µR(ψ) =

∑+∞
k=ℓ0

ν(Rkd−1ψ) = 1 from Theorem 3.6. Now using (17) applied to ψ and

the definition of d (see (236)) it follows that P dnψ = Rdnψ for every n ∈ {0, . . . , ℓ0 − 1} and
that

∀n ≥ ℓ0, P dnψ = Rdnψ +
n∑

k=ℓ0

ν(Rdk−1ψ)P d(n−k)ψ.

Considering the associated power series and interchanging sums for the last term, we easily
obtain that

∀z ∈ D, Pd(z) = Rd(z)Ud(z) with Ud(z) :=
1

1− ρd(z)
. (238)

Next, we deduce from the Erdös-Feller-Pollard renewal theorem [EFP49] that the coefficients
ud,k of the power series Ud(z) =

∑+∞
k=0 ud,kz

k in (238) satisfy: limk ud,k = 1/md. Then,
identifying the coefficients in Equation (238) (Cauchy product), we obtain that P dnψ =∑n

k=0 ud,n−kR
dkψ for every n ≥ 0. Since

∑+∞
k=0R

dkψ < ∞ from Proposition 3.4, Prop-
erty (237) follows from Lebesgue theorem w.r.t. discrete measure. □

Lemma B.2 Let P satisfy Condition (Mν,ψ) with µR(1X) < ∞ and h∞
R = 0. Then there

exists a sequence (εn)n ∈ BN such that limn εn = 0 (point-wise convergence) and

∀h ∈ B, ∥h∥1X ≤ 1, ∃ξh ∈ B, |P dnh− ξh| ≤ εn.

Proof. Here, using the definition of the integer d, the arguments are close to those used
in the proof of Lemma 4.11. For r = 0, . . . , d − 1 set ζr,ψ := P rζψ with ζψ given in (237).
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Note that ζr,ψ ∈ B, and that limn P
dn+rψ = ζr,ψ (point-wise convergence) from Lebesgue’s

theorem w.r.t. P r(x, dy) for each x ∈ X. Now for every h ∈ B define ξh ∈ B by

ξh :=

d−1∑
r=0

( +∞∑
j=1

ν(Rdj−r−1h)

)
ζr,ψ. (239)

Then using again (17) and observing that every integer k = 1, . . . , dn writes as k = dj− r for
r = 0, . . . , d− 1 and j = 1, . . . , n, we obtain that for every n ≥ 1

P dnh− ξh = Rdnh+
d−1∑
r=0

n∑
j=1

ν(Rdj−r−1h)
(
P d(n−j)+rψ− ζr,ψ

)
−
d−1∑
r=0

( +∞∑
j=n+1

ν(Rdj−r−1h)

)
ζr,ψ.

Thus, if ∥h∥1X ≤ 1 (i.e. |h| ≤ 1X), then we have |P dnh− ξh| ≤ εn with εn ∈ B defined by

εn := Rdn1X +
d−1∑
r=0

n∑
j=1

ν(Rdj−r−11X)
∣∣P d(n−j)+rψ − ζr,ψ

∣∣+ d−1∑
r=0

∥ζr,ψ∥1X
+∞∑

j=n+1

ν(Rdj−r−11X).

We have limn εn = 0 (point-wise convergence). Indeed, the last term converges to zero when
n→+∞ since

∑+∞
k=0 ν(R

k1X) = µR(1X) <∞; The second sum above converges to zero when
n→+∞ from Lebesgue’s theorem w.r.t. discrete measure recalling that limn P

dn+rψ = ζr,ψ;
Finally limnR

dn1X = 0 from h∞
R = 0.

□

Proof of Theorem 4.12. Let g ∈ B be such that |g| ≤ 1X. Note that for r = 0, . . . , d − 1 we
have |P rg| ≤ P r|g| ≤ P r1X = 1X. Thus for r = 0, . . . , d − 1 we can consider ξr,g := ξP rg,

where ξP rg is the function of Lemma B.2 associated to h = P rg. Let γg =
1
d

∑d−1
r=0 ξr,g. Then∣∣∣∣γg − 1

d

d−1∑
r=0

Pnd+rg

∣∣∣∣ ≤ 1

d

d−1∑
r=0

∣∣ξr,g − Pnd(P rg)
∣∣ ≤ εn (240)

from Lemma B.2. Thus we have γg = limn
1
d

∑d−1
r=0 P

nd+rg (point-wise convergence). From
Lebesgue’s theorem w.r.t. P (x, dy) for each x ∈ X, we then obtain that

Pγg = lim
n→+∞

1

d

d∑
r=1

Pnd+rg = γg (241)

the last equality being obviously deduced from limn→+∞ Pnd+dg = limn→+∞ Pndg. Thus
γg is a P−harmonic function, so that γg = cg1X for some constant cg from Theorem 4.1.
Moreover, using the second equality of (241) and applying Lebesgue’s theorem w.r.t. the
P−invariant probability measure πR, we obtain that πR(g) = πR(γg), so γg = πR(g)1X.
Finally, applying the function inequality (240) to any fixed x ∈ X and taking the supremum
on all the functions g ∈ B such that |g| ≤ 1X, we obtain the desired total variation convergence
of Theorem 4.12 since limn εn(x) = 0 from Lemma B.2. □

C Proof of Lemmas 7.4, 7.8 and 7.9

Proof of Lemma 7.4. We deduce from the definitions of P̂k and π̂k that

∀y ∈ Bk
c,

∑
x∈N

P̂k(x, y) π̂k({x}) = 0 = π̂k({y}).
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Using successively the above equality, the definitions of π̂k and P̂k, the Pk−invariance of πk,
and again the definition of π̂k, we obtain

∀y ∈ Bk,
∑
x∈N

P̂k(x, y) π̂k({x}) =
∑
x∈Bk

P̂k(x, y) π̂k({x})

=
∑
x∈Bk

Pk(x, y)πk({x}) = πk({y}) = π̂k({y}).

Thus π̂k is a P̂k−invariant probability measure. To prove the uniqueness, consider any
P̂k−invariant probability measure η̂ = (η̂({x}))x∈N. Then

∀y ∈ Bk
c, η̂({y}) =

∑
x∈N

P̂k(x, y) η̂({x}) = 0

from the definition of P̂k. Thus

∀y ∈ Bk, η̂({y}) =
∑
x∈N

P̂k(x, y) η̂({x}) =
∑
x∈Bk

P̂k(x, y) η̂({x}) =
∑
x∈Bk

Pk(x, y) η̂({x})

from the definition of P̂k. Thus η := (η̂({x}))x∈Bk
is a Pk−invariant probability measure on

Bk. This proves that η̂ = π̂k. □

Proof of Lemma 7.8. Recall that bk := 1Xk
c and Fk is the finite-dimensional space with basis

Ck :=
{
1Xi,k

, i ∈ Ik
}
∪ {bk}. The Nk × Nk−matrix Bk is defined as the matrix of Pk with

respect to Ck with Nk := dimFk = Card (Ik) + 1. Note that

Pkbk = P̂kbk = Q̂kbk + bk(x0)ψk = 0. (242)

Since g ∈ Fk writes in the basis Ck as g =
∑

i∈Ik g(xi,k) + g(xk)bk where xi,k ∈ Xi,k and
xk ∈ X \ Xk, we can write for every j ∈ Ik

Pk1Xj,k

= P̂k1Xj,k
=
∑
i∈Ik

(P̂k1Xj,k
)(xi,k) 1Xi,k

+ (P̂k1Xj,k
)(xk) bk (since Pk1Xj,k

∈ Fk)

=
∑
i∈Ik

[
(Q̂k1Xj,k

)(xi,k) + 1Xj,k
(x0)ψk(xi,k)

]
1Xi,k

+
[
(Q̂k1Xj,k

)(xk) + 1Xj,k
(x0)ψk(xk)

]
bk

=
∑
i∈Ik

[
(Q̂k1Xj,k

)(xi,k) + 1Xj,k
(x0)ψk(xi,k)

]
1Xi,k

+ 1Xj,k
(x0) bk.

The previous equalities show that Bk is a non-negative matrix. Moreover Equality Pk1X = 1X
reads as matrix equality Bk · 1k = 1k where 1k is the coordinate vector of 1X in the basis Ck.
Thus Bk is a stochastic matrix. □

Proof of Lemma 7.9. Recall that bk is defined by bk = 1X−
∑

i∈Ik 1Xi,k
. From ψk := 1X−Q̂k1X

it follows that ψk = bk +
∑

i∈Ik 1Xi,k
− Q̂k1X. Define

mi,k(f) :=

∫
Xk

f(y) inf
t∈Xi,k

p(t, y) dµ(y)
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and observe that Q̂kf =
∑

i∈Ik mi,k(f) 1Xi,k
. Then we deduce from (101) and (102) that

P̂kf := (Q̂kf) + f(x0)ψk =
∑
i∈Ik

mi,k(f) 1Xi,k
+ f(x0)

(
bk +

∑
i∈Ik

1Xi,k
− Q̂k1X

)
=

∑
i∈Ik

[
mi,k(f) + f(x0)− f(x0)mi,k(1X)

]
1Xi,k

+ f(x0)bk,

so that (104) and
∑

i∈Ik πi,k = 1 give

π̂k(f) :=
∑
i∈Ik

πi,k [mi,k(f) + f(x0)− f(x0)mi,k(1X)
]

=
∑
i∈Ik

πi,kmi,k(f) + f(x0)

(
1−

∑
i∈Ik

πi,kmi,k(1X)

)
. (243)

This proves Formula (105a). Now we prove that π̂k defines a P̂k-invariant probability measure
on (X,X ). Note that

∀i ∈ Ik, mi,k(1X) ≤
∫
X
p(xi,k, y) dµ(y) = (P1X)(xi,k) = 1,

thus ∫
X
pk(y) dµ(y) =

∑
i∈Ik

πi,kmi,k(1X) ≤ 1.

It follows from this remark and from (243) that π̂k is a probability measure on X. Finally
Bk ·Fk is the coordinate vector of P̂ 2

k f in Ck since P̂kf ∈ Fk and Fk is the coordinate vector

of P̂kf in Ck. Consequently we deduce from (104) and (103) that

π̂k(P̂kf) := πk Bk Fk = πk Fk = π̂k(f).

Thus π̂k is P̂k-invariant.

□

D Proof of Theorem 9.1 and Proposition 9.3

Here we assume that P satisfy Condition (Mν,ψ) with h∞
R = 0 and µR(1X) < ∞, and that

P ∈ L(B) where (B, ∥ · ∥) is a Banach space satisfying Assumptions (B). The properties of
Lemma 9.2 are repeatedly used below, that is: R ∈ L(B), the radius of convergence of the
power series ρ(z) :=

∑+∞
n=1 ν(R

n−1ψ) zn is larger than 1/rB where rB denotes the spectral
radius of R on B, and finally the series g̃z :=

∑+∞
k=0 z

−(k+1)Rkg absolutely converges in B for
every z ∈ C such that |z| > rB and for every g ∈ B.

Lemma D.1 If rB < 1, then the following assertions hold for every z ∈ C such that |z| > rB.
The operator zI − P is invertible on B if, and only if, we have ρ(z−1) ̸= 1. Moreover, if
ρ(z−1) = 1, then z is an eigenvalue of P on B, and Ez := {g ∈ B : Pg = zg} = C · ψ̃z with
ψ̃z :=

∑+∞
k=0 z

−(k+1)Rkψ being non zero in B and satisfying ν(ψ̃z) = 1.
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Proof. Let z ∈ C be such that |z| > rB. Assume that zI − P is not one-to-one on B, that
is: ∃g ∈ B, g ̸= 0, Pg = zg. Note that limn |z|−n∥Rng∥ = 0 using the definition of rB and
|z| > rB (use (160) with γ ∈ (rB, |z|)). Since R ∈ L(B), Equality (46) of Lemma 4.16 can be
proved similarly, that is we have:

∀n ≥ 0, ν(g)
n∑
k=0

z−(k+1)Rkψ = g − z−(n+1)Rn+1g.

Then the following equality holds in B

g = ν(g)
+∞∑
k=0

z−(k+1)Rkψ

and ν(g) ̸= 0 since g is assumed to be non-zero. Note that g 7→ ν(g) is a continuous linear
map from B to C due to (159). Thus, integrating the previous equality w.r.t. ν, we obtain
that ν(g) = ν(g)ρ(z−1), thus ρ(z−1) = 1. We have proved by contrapositive that |z| > rB
and ρ(z−1) ̸= 1 imply that zI − P is one-to-one. Now prove that |z| > rB and ρ(z−1) ̸= 1
imply that zI − P is surjective on B. Let z ∈ C be such that |z| > rB, let g ∈ B and define

∀n ≥ 1, g̃n,z :=
n∑
k=0

z−(k+1)Rkg.

Using P = R+ ψ ⊗ ν we obtain that

zg̃n,z − P g̃n,z = z g̃n,z −Rg̃n,z − ν(g̃n,z)ψ = g − z−(n+1)Rn+1g − ν(g̃n,z)ψ. (244)

Next the following convergences hold, in B for the first two, in C for the last one

lim
n→+∞

g̃n,z = g̃z :=
+∞∑
k=0

z−(k+1)Rkg, lim
n
P g̃n,z = P g̃z, lim

n→+∞
ν(g̃n,z) = ν(g̃z) (245)

from Lemma 9.2 (use P ∈ L(B) for the second one). Then, passing to the limit when n→+∞
in (244) provides the following equality in B:

(zI − P )g̃z = g − ν(g̃z)ψ. (246)

In particular, with g = ψ, we obtain that

(zI − P )ψ̃z =
(
1− ρ(z−1)

)
ψ with ψ̃z :=

+∞∑
k=0

z−(k+1)Rkψ.

since ν(ψ̃z) = ρ(z−1). Consequently, if ρ(z−1) ̸= 1, then

(zI − P )

(
g̃z +

ν(g̃z)

1− ρ(z−1)
ψ̃z

)
= g,

from which we deduce that zI − P is surjective since g̃z and ψ̃z belong to B.

We have proved that, if z ∈ C is such that |z| > rB, then ρ(z
−1) ̸= 1 implies that zI − P

is invertible on B. Conversely let z ∈ C be such that |z| > rB and ρ(z−1) = 1. Let us prove
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that zI −P is not invertible on B. Recall that the series ψ̃z :=
∑+∞

k=0 z
−(k+1)Rkψ absolutely

converges in B and that ν(ψ̃z) = ρ(z−1) = 1 from Lemma 9.2. Moreover we have ψ̃z ̸= 0 in
B. This is obvious from ν(ψ̃z) ̸= 0 if B is a space composed of functions. This is also true if
B is a space composed of classes of functions modulo πR : Indeed ψ̃z = 0 in B would imply
that ψ̃z = 0 πR−a.s., which is impossible since ν(ψ̃z) ̸= 0 and ν is absolutely continuous
w.r.t. πR from the inequality ν ≤ πR(ψ)

−1πR derived from the minorization condition (Mν,ψ)
and the P−invariance of πR with πR(ψ) > 0. Next the equalities in (47) can be applied to
prove Equality Pψ̃z = zψ̃z in B. Thus zI − P is not one-to-one on B, thus is not invertible
on B. Finally, the fact that Ez = C · ψ̃z follows from the first part of the proof. □

Now let B0 := {g ∈ B : πR(g) = 0}. Note that B0 is a closed subspace of B since the
linear form g 7→ πR(g) is continuous from B to C from Condition (156). Thus (B0, ∥ · ∥) is
a Banach space. Moreover B0 is P−stable (i.e. P (B0) ⊂ B0) from the P−invariance of πR.
Let P0 denote the restriction of P to B0.

Lemma D.2 If rB < 1, then I − P0 is invertible on (B0, ∥ · ∥).

Proof. From (246) applied to z = 1, we obtain that

∀g ∈ B, (I − P )g̃1 = g − µR(1X)πR(g)ψ with g̃1 :=
+∞∑
k=0

Rkg ∈ B

since ν(g̃1) = µR(g) = µR(1X)πR(g) from (26). Hence, if πR(g) = 0, then g̃1 is solution to
Poisson equation (I − P )g̃1 = g. Moreover we know from Lemma D.1 that E1 := {g ∈ B :
Pg = g} has dimension one, i.e. E1 = C · 1X. Hence two solutions to Poisson’s equation in B
differ from an additive constant. Consequently ĝ1 := g̃1−πR(g̃1)1X is the unique πR−centered
solution in B to Poisson’s equation (I − P )ĝ = g. This proves the claimed statement. □

Proof of Theorem 9.1. Let z ∈ C be such that |z| > rB, z ̸= 1, and ρ(z−1) ̸= 1. Then zI −P
is invertible on B from Lemma D.1. Thus zI−P0 is also one-to-one on B0. Now, let g ∈ B0.
From Lemma D.1 there exists h ∈ B such that (zI−P )h = g, thus (z−1)πR(h) = πR(g) = 0
from the P−invariance of πR. Hence πR(h) = 0 (i.e. h ∈ B0) since z ̸= 1, and consequently
zI − P0 is surjective on B0. We have proved that, for any z ∈ C such that |z| > rB, z ̸= 1,
and ρ(z−1) ̸= 1, the operator zI − P0 is invertible on B0. Moreover we know that I − P0 is
invertible on B0 from Lemma D.2.

Now recall that ρ(z−1) ̸= 1 for every z ∈ C such that |z| = 1, z ̸= 1, from the aperiodicity
condition (39) (i.e. z = 1 is the only complex number of modulus one solution to ρ(z−1) = 1).
Moreover, if z ∈ C is such that |z| > 1, then ρ(z−1) ̸= 1 since

|ρ(z−1)| ≤
+∞∑
n=1

ν(Rn−1ψ) |z|−n <
+∞∑
n=1

ν(Rn−1ψ) = µR(ψ) = 1.

Let ϱ0 denote the spectral radius of P0 on B0, and recall that the prerequisites in spectral
theory are given by (S1)-(S3) in Subsection 6.2. From the above we then obtain that ϱ0 < 1
and that the following alternative holds:

(a’) If Equation ρ(z−1) = 1 has no solution z ∈ C such that rB < |z| < 1, then zI − P0 is
invertible on B0 for every z ∈ C such that |z| > rB. Thus ϱ0 ≤ rB.

(b’) Otherwise, we have ϱ0 = max
{
|z| : z ∈ C, ρ(z−1) = 1, rB < |z| < 1

}
.
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Moreover recall that ϱ0 = limn(∥Pn0 ∥0)1/n from Gelfand’s formula, where ∥ · ∥0 denotes the
operator norm on B0. Let ρ ∈ (ϱ0, 1). Then there exists a positive constant cρ such that:
∥Pn0 ∥0 ≤ cρρ

n. Thus

∀n ≥ 1, ∀g ∈ B, ∥Png − πR(g)1X∥ = ∥Pn(g − πR(g)1X)∥ (from Pn1X = 1X)

= ∥Pn0 (g − πR(g)1X)∥ (since g − πR(g)1X ∈ B0)

≤ cρρ
n∥g − πR(g)1X∥ (from ∥Pn0 ∥0 ≤ cρρ

n)

≤ cρ
(
1 + c∥1X∥

)
ρn∥g∥ (from (156)).

Using the definition (158) of ϱB, we then obtain that ϱB ≤ ϱ0 since ρ is any real number
in (ϱ0, 1). Hence Case (a) of Theorem 9.1 which corresponds to Case (a′) is proved. To
prove Case (b) of Theorem 9.1 which corresponds to the above case (b′), consider z ∈ C such
that rB < |z| < 1, ρ(z−1) = 1 and |z| = ϱ0. Then z is an eigenvalue of P from Lemma D.1,
i.e. ∃g ∈ B, g ̸= 0, Pg = zg. Moreover, from the P−invariance of πR, we have πR(g) = zπR(g),
thus πR(g) = 0 since z ̸= 1. Hence we have: ∀n ≥ 1, ∥Png − πR(g)1X∥ = ∥Png∥ = ϱn0 ∥g∥. It
then follows from the definition of ϱB that ϱB ≥ ϱ0. Thus ϱB = ϱ0 in Case (b). Theorem 9.1
is proved. □

Proof of Proposition 9.3. In case (b) we know that, for r ∈ (rB, 1) sufficiently close to rB,
the set Sr := {z ∈ C, ρ(z−1) = 1, r ≤ |z| < 1} is non-empty. Moreover Sr is finite from
the analyticity of the power series ρ(·). The last assertion of Proposition 9.3 is proved in
Lemma D.1. □

E Proof of Lemma 9.11

Using P = R + T it follows from Lemma 9.10 that P = P ∗ = R1 + U1 with R1 = R∗ and
U1 = T ∗ defined by: ∀g ∈ L2(πR), U1g = πR(ψg)ζ. Now for n ≥ 2 set Un := Pn −Rn

1 . Note
that Property (170) is equivalent to

∀n ≥ 1, ∀g ∈ L2(πR), Ung =
n∑
k=1

πR(g ·Rk−1ψ)Pn−kζ. (247)

Property (247) is obvious for n = 1 from the definition of U1 and R1. Next we have

∀n ≥ 2, Pn − Un = Rn
1 = Rn−1

1 R1 = (Pn−1 − Un−1)(P − U1),

so that
∀n ≥ 2, Un = Pn−1U1 + Un−1R1 = Pn−1U1 + Un−1R

∗. (248)

Now, if for some n ≥ 2 we have

∀g ∈ L2(πR), Un−1g =
n−1∑
k=1

πR(g ·Rk−1ψ)Pn−1−kζ,
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then we deduce from (248) that

∀g ∈ L2(πR), Ung = πR(ψg)P
n−1ζ +

n−1∑
k=1

πR(R
∗g ·Rk−1ψ)Pn−1−kζ

= πR(ψg)P
n−1ζ +

n−1∑
k=1

πR(g ·Rkψ)Pn−1−kζ

=
n∑
k=1

πR(g ·Rk−1ψ)Pn−kζ.

Property (247) is proved by induction.
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