COMPUTABLE BOUNDS OF ℓ^2 -SPECTRAL GAP FOR DISCRETE MARKOV CHAINS WITH BAND TRANSITION MATRICES

LOÏC HERVÉ,* INSA de Rennes, IRMAR CNRS-UMR 6625 JAMES LEDOUX,** INSA de Rennes, IRMAR CNRS-UMR 6625

Abstract

We analyse the $\ell^2(\pi)$ -convergence rate of irreducible and aperiodic Markov chains with N-band transition probability matrix P and with invariant distribution π . This analysis is heavily based on: first the study of the essential spectral radius $r_{ess}(P_{|\ell^2(\pi)})$ of $P_{|\ell^2(\pi)}$ derived from Hennion's quasi-compactness criteria; second the connection between the Spectral Gap property (SG₂) of P on $\ell^2(\pi)$ and the V-geometric ergodicity of P. Specifically, (SG₂) is shown to hold under the condition

$$\alpha_0 := \sum_{m=-N}^N \limsup_{i \to +\infty} \sqrt{P(i,i+m)\,P^*(i+m,i)} \ < \ 1.$$

Moreover $r_{ess}(P_{|\ell^2(\pi)}) \leq \alpha_0$. Effective bounds on the convergence rate can be provided from a truncation procedure.

Keywords: V-geometric ergodicity, Essential spectral radius

2010 Mathematics Subject Classification: Primary 60J10,47B07 Secondary 60F99,60J80

1. Introduction

Let $P := (P(i,j))_{(i,j)\in\mathbb{N}^2}$ be a Markov kernel on the countable state space \mathbb{N} . Throughout the paper we assume that P is irreducible and aperiodic, that P has a unique invariant probability measure denoted by $\pi := (\pi(i))_{i\in\mathbb{N}}$, and finally that

$$\exists i_0 \in \mathbb{N}, \ \exists N \in \mathbb{N}^*, \ \forall i > i_0 : |i-j| > N \implies P(i,j) = 0.$$
 (AS1)

We denote by $(\ell^2(\pi), \|\cdot\|_2)$ the Hilbert space of sequences $(f(i))_{i\in\mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ such that $\|f\|_2 := [\sum_{i\geq 0} |f(i)|^2 \pi(i)]^{1/2} < \infty$. Then P defines a linear contraction on $\ell^2(\pi)$, and its adjoint operator P^* on $\ell^2(\pi)$ is defined by $P^*(i,j) := \pi(j) P(j,i)/\pi(i)$. If $\pi(f) := \sum_{i\geq 0} f(i) \pi(i)$, then the kernel P is said to have the spectral gap property on $\ell^2(\pi)$ if there exists $\rho \in (0,1)$ and $C \in (0,+\infty)$ such that

$$\forall n \ge 1, \forall f \in \ell^2(\pi), \quad \|P^n f - \Pi f\|_2 \le C \rho^n \|f\|_2 \quad \text{with} \quad \Pi f := \pi(f) 1_{\mathbb{N}}.$$
 (SG₂)

A standard issue is to compute the value (or to find an upper bound) of

$$\rho_2 := \inf\{\rho \in (0,1) : (\mathbf{SG}_2) \text{ holds true}\}. \tag{1}$$

Email address: {Loic.Herve,James.Ledoux}@insa-rennes.fr

 $^{^{\}ast}$ Postal address: INSA de Rennes, 20 avenue des Buttes de Coesmes, CS 70 839, 35708 Rennes cedex 7. France

In this work the quasi-compactness criteria of [3] is used to study (\mathbf{SG}_2) and to estimate ϱ_2 . In Section 2 it is proved that (\mathbf{SG}_2) holds when

$$\alpha_0 := \sum_{m=-N}^{N} \limsup_{i \to +\infty} \sqrt{P(i, i+m) P^*(i+m, i)} < 1.$$
 (AS2)

Moreover $r_{ess}(P_{|\ell^2(\pi)}) \leq \alpha_0$. We refer to [3] for the definition of the essential spectral radius $r_{ess}(T)$ and for quasi-compactness of a bounded linear operator T on a Banach space. Under the assumptions

$$\forall m = -N, \dots, N, \quad P(i, i+m) \xrightarrow[i \to +\infty]{} a_m \in [0, 1]$$
 (AS3)

$$\frac{\pi(i+1)}{\pi(i)} \xrightarrow[i \to +\infty]{} \tau \in [0,1)$$
 (AS4)

$$\sum_{k=-N}^{N} k \, a_k < 0, \tag{NERI}$$

Property (**AS2**) holds (hence (**SG**₂)) and α_0 can be explicitly computed in function of τ and the a_m 's. Moreover, using the inequality $r_{ess}(P_{|\ell^2(\pi)}) \leq \alpha_0$, Property (**SG**₂) is proved to be connected to the V-geometric ergodicity of P for $V := (\pi(n)^{-1/2})_{n \in \mathbb{N}}$. In particular, denoting the minimal V-geometrical ergodic rate by ϱ_V , it is proved that, either ϱ_2 and ϱ_V are both less than α_0 , or $\varrho_2 = \varrho_V$. As a result, an accurate bound of ϱ_2 can be obtained for random walks (RW) with i.d. bounded increments using the results of [5]. Actually, any estimation of ϱ_V , for instance that derived in Section 3 from the truncation procedure of [4], provides an estimation of ϱ_2 . We point out that all the previous results hold without any reversibility properties.

The spectral gap property for Markov processes has been widely investigated in the discrete and continuous-time cases (e.g. see [10, 2]). There exist different definitions of the spectral gap property according that we are concerned with discrete or continuoustime case (e.g. see [14, 8]). The focus of our paper is on the discrete time case. In the reversible case, the equivalence between the geometrical ergodicity and (SG_2) is proved in [9] and Inequality $\varrho_2 \leq \varrho_V$ is obtained in [1, Th.6.1.]. This equivalence fails in the non-reversible case (see [7]). The link between ϱ_2 and ϱ_V stated in our Proposition 1 is obtained with no reversibility condition. Formulae for ϱ_2 are provided in [11, 13] in terms of isoperimetric constants which are related to P in reversible case and to P and P^* in non-reversible case. However, to the best of our knowledge, no explicit value (or upper bounds) of ϱ_2 can be derived from these formulae for discrete Markov chains with band transition matrices. Our explicit bound $r_{ess}(P_{|\ell^2(\pi)}) \leq \alpha_0$ in Theorem 1 is the preliminary key results in this work. Recall that $r_{ess}(P_{|\ell^2(\pi)})$ is a natural lower bound of ρ_2 (apply [5, Prop. 2.1] with the Banach space $\ell^2(\pi)$). The essential spectral radius of Markov operators on a L²-type space is investigated for Markov chains with general state space in [12], but no explicit bound for $r_{ess}(P_{\ell^2(\pi)})$ can be derived a priori from these theoretical results for Markov chains with band transition matrices, except in the reversible case [12, Th. 5.5.].

2. Property (SG_2) and V-geometrical ergodicity

Theorem 1. If Condition (AS2) holds, then P satisfies (SG₂). Moreover we have $r_{ess}(P_{|\ell^2(\pi)}) \leq \alpha_0$.

Proof. Let us introduce $\ell^1(\pi) := \{(f(i))_{i \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} : ||f||_1 := \sum_{i \geq 0} |f(i)| \pi(i) < \infty\}.$

Lemma 2.1. For any $\alpha > \alpha_0$, there exists a positive constant $L \equiv L(\alpha)$ such that

$$\forall f \in \ell^2(\pi), \quad \|Pf\|_2 \le \alpha \|f\|_2 + L\|f\|_1.$$

Since the identity map is compact from $\ell^2(\pi)$ into $\ell^1(\pi)$ (from the Cantor diagonal procedure), it follows from Lemma 2.1 and from [3] that P is quasi-compact on $\ell^2(\pi)$ with $r_{ess}(P_{|\ell^2(\pi)}) \leq \alpha$. Since α can be chosen arbitrarily close to α_0 , this gives $r_{ess}(P_{|\ell^2(\pi)}) \leq \alpha_0$. Then (\mathbf{SG}_2) is deduced from aperiodicity and irreducibility assumptions. The proof of Theorem 1 is complete.

Proof of Lemma 2.1. Under Assumption (AS1), define

$$\forall i \ge i_0, \ \forall m = -N, \dots, N, \quad \beta_m(i) := \sqrt{P(i, i+m) P^*(i+m, i)}.$$
 (2)

Let $\alpha > \alpha_0$, with α_0 given in (AS2). Fix $\ell \equiv \ell(\alpha) \geq i_0$ such that $\sum_{m=-N}^{N} \sup_{i \geq \ell} \beta_m(i) \leq \alpha$. For $f \in \ell^2(\pi)$ we have from Minkowski's inequality and the band structure of P for $i > \ell$

$$||Pf||_{2} \leq \left[\sum_{i<\ell} |(Pf)(i)|^{2} \pi(i)\right]^{1/2} + \left[\sum_{i\geq\ell} \left|\sum_{m=-N}^{N} P(i,i+m) f(i+m)\right|^{2} \pi(i)\right]^{1/2}$$

$$\leq L \sum_{i<\ell} |(Pf)(i)| \pi(i) + \left[\sum_{i\geq\ell} \left|\sum_{m=-N}^{N} P(i,i+m) f(i+m)\right|^{2} \pi(i)\right]^{1/2}$$
(3)

where $L \equiv L_{\ell} > 0$ comes from equivalence of norms on \mathbb{C}^{ℓ} . Moreover we have $\sum_{i<\ell} |(Pf)(i)| \pi(i) \leq \|Pf\|_1 \leq \|f\|_1$. To control the second term in (3), define $F_m = (F_m(i))_{i\in\mathbb{N}} \in \ell^2(\pi)$ by $F_m(i) := P(i,i+m) f(i+m) (1-1_{\{0,\dots,\ell-1\}}(i))$ for $-N \leq m \leq N$. Then

$$\left[\sum_{i\geq\ell} \left|\sum_{m=-N}^{N} P(i,i+m) f(i+m)\right|^{2} \pi(i)\right]^{1/2} = \left\|\sum_{m=-N}^{N} F_{m}\right\|_{2} \leq \sum_{m=-N}^{N} \|F_{m}\|_{2}.$$

and
$$||F_m||_2^2 = \sum_{i \ge \ell} P(i, i+m)^2 |f(i+m)|^2 \pi(i)$$

$$= \sum_{i \ge \ell} P(i, i+m) \frac{\pi(i) P(i, i+m)}{\pi(i+m)} |f(i+m)|^2 \pi(i+m)$$
 $\le \sup_{i \ge \ell} \beta_m(i)^2 ||f||_2^2$ (from the definition of P^* and from (2)).

The statement in Lemma 2.1 can be deduced from the previous inequality and from (3).

The core of our approach to estimate ϱ_2 is the relationship between Property (\mathbf{SG}_2) and the V-geometric ergodicity. Indeed, specify Theorem 1 in terms of the V-geometric ergodicity with $V:=(\pi(n)^{-1/2})_{n\in\mathbb{N}}$. Let $(\mathcal{B}_V,\|\cdot\|_V)$ denote the space of sequences $(g(n))_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$ such that $\|g\|_V:=\sup_{n\in\mathbb{N}}V(n)^{-1}|g(n)|<\infty$. Recall that P is said to be V-geometrically ergodic if P satisfies the spectral gap property on \mathcal{B}_V , namely: there exist $C\in(0,+\infty)$ and $\rho\in(0,1)$ such that

$$\forall n \ge 1, \forall f \in \mathcal{B}_V, \quad \|P^n f - \Pi f\|_V \le C \rho^n \|f\|_V. \tag{SG}_V$$

When this property holds, we define

$$\varrho_V := \inf\{\rho \in (0,1) : (\mathbf{SG}_V) \text{ holds true}\}. \tag{4}$$

Remark 2.1. Under Assumptions (AS3) and (AS4), we have

$$\alpha_0 := \sum_{m=-N}^{N} \limsup_{i \to +\infty} \sqrt{P(i, i+m)} P^*(i+m, i) = \begin{cases} \sum_{m=-N}^{N} a_m \tau^{-m/2} & \text{if } \tau \in (0, 1) \\ a_0 & \text{if } \tau = 0. \end{cases}$$
(5)

Indeed, if (AS4) holds with $\tau \in (0,1)$, then the claimed formula follows from the definition of P^* . If $\tau = 0$ in (AS4), then $a_m = 0$ for every m = 1, ..., N from $\sum_{m=-N}^{N} P(i+m,i) \pi(i+m)/\pi(i) = 1$. Thus $a_{-m} = 0$ when m < 0. Hence $\alpha_0 = a_0$.

Proposition 1. If P and π satisfy Assumptions (AS3), (AS4) and (NERI), then P satisfies (AS2) (with $\alpha_0 < 1$ given in (5)). Moreover P satisfies both (SG₂) and (SG_V) with $V := (\pi(n)^{-1/2})_{n \in \mathbb{N}}$, we have $\max(r_{ess}(P_{|\mathcal{B}_V}), r_{ess}(P_{|\ell^2(\pi)})) \leq \alpha_0$, and the next assertions hold:

- 1. if $\varrho_V \leq \alpha_0$, then $\varrho_2 \leq \alpha_0$;
- 2. if $\varrho_V > \alpha_0$, then $\varrho_2 = \varrho_V$.

Proof. If $\tau=0$ in (AS4), then $\alpha_0=a_0<1$ from (5) and (NERI). Now assume that (AS4) holds with $\tau\in(0,1)$. Then $\alpha_0=\sum_{m=-N}^N a_m\,\tau^{-m/2}=\psi(\sqrt{\tau})$, where: $\forall t>0,\ \psi(t):=\sum_{k=-N}^N a_k\,t^{-k}$. Moreover it easily follows from the invariance of π that $\psi(\tau)=1$. Inequality $\alpha_0=\psi(\sqrt{\tau})<1$ is deduced from the following assertions: $\forall t\in(\tau,1),\ \psi(t)<1$ and $\forall t\in(0,\tau)\cup(1,+\infty),\ \psi(t)>1$. To prove these properties, note that $\psi(\tau)=\psi(1)=1$ and that ψ is convex on $(0,+\infty)$. Moreover we have $\lim_{t\to+\infty}\psi(t)=+\infty$ since $a_k>0$ for some k<0 (use $\psi(\tau)=\psi(1)=1$ and $\tau\in(0,1)$). Similarly, $\lim_{t\to0^+}\psi(t)=+\infty$ since $a_k>0$ for some k>0. This gives the desired properties on ψ since $\psi'(1)>0$ from (NERI).

 (\mathbf{SG}_2) and $r_{ess}(P_{|\ell^2(\pi)}) \leq \alpha_0$ follow from Theorem 1. Next (\mathbf{SG}_V) is deduced from the well-known link between geometric ergodicity and the following drift inequality:

$$\forall \alpha \in (\alpha_0, 1), \ \exists L \equiv L_\alpha > 0, \quad PV \le \alpha V + L \, 1_{\mathbb{N}}. \tag{6}$$

This inequality holds from $\lim_{i} (PV)(i)/V(i) = \alpha_0$.

Then (\mathbf{SG}_V) is derived from (6) using aperiodicity and irreducibility. It also follows from (6) that $r_{ess}(P_{|\mathcal{B}_V}) \leq \alpha$ (see [5, Prop. 3.1]). Thus $r_{ess}(P_{|\mathcal{B}_V}) \leq \alpha_0$.

Now we prove the statements 1. and 2. using the spectral properties of [5, Prop. 2.1] of both $P_{\mid \ell^2(\pi)}$ and $P_{\mid \mathcal{B}_V}$ (due to quasi-compactness, see [3]). We will also use the following obvious inclusion: $\ell^2(\pi) \subset \mathcal{B}_V$. In particular every eigenvalue of $P_{\mid \ell^2(\pi)}$ is also an eigenvalue for $P_{\mid \mathcal{B}_V}$. First assume that $\varrho_V \leq \alpha_0$. Then there is no eigenvalue for $P_{\mid \mathcal{B}_V}$ in the annulus $\Gamma := \{\lambda \in \mathbb{C} : \alpha_0 < |\lambda| < 1\}$ since $r_{ess}(P_{\mid \mathcal{B}_V}) \leq \alpha_0$. From $\ell^2(\pi) \subset \mathcal{B}_V$ it follows that there is also no eigenvalue for $P_{\mid \ell^2(\pi)}$ in this annulus. Hence $\varrho_2 \leq \alpha_0$ since $r_{ess}(P_{\mid \ell^2(\pi)}) \leq \alpha_0$. Second assume that $\varrho_V > \alpha_0$. Then $P_{\mid \mathcal{B}_V}$ admits an eigenvalue $\lambda \in \mathbb{C}$ such that $|\lambda| = \varrho_V$. Let $f \in \mathcal{B}_V$, $f \neq 0$, such that $Pf = \lambda f$. We know from [5, Prop. 2.2] that there exists some $\beta \equiv \beta_\lambda \in (0,1)$ such that $|f(n)| = O(V(n)^\beta) = O(\pi(n)^{-\beta/2})$, so that $|f(n)|^2\pi(n) = O(\pi(n)^{(1-\beta)})$, thus $f \in \ell^2(\pi)$ from (AS4). We have proved that $\varrho_2 \geq \varrho_V$. Finally the converse inequality is true since every eigenvalue of $P_{\mid \ell^2(\pi)}$ is an eigenvalue for $P_{\mid \mathcal{B}_V}$. Thus $\varrho_2 = \varrho_V$.

From Proposition 1, any estimation of ϱ_V provides an estimation of ϱ_2 . This is illustrated in Example 2.1 and Corollary 3.1. Markov chains in Example 2.1 have been studied in details in [5, Section 3]. Also mention that further technical details are reported in [6].

Example 2.1. (RWs with i.d. bounded increments.) Let P be defined as follows. There exist some positive integers $c, g, d \in \mathbb{N}^*$ such that

$$\forall i \in \{0, \dots, g-1\}, \quad \sum_{j=0}^{c} P(i, j) = 1;$$

$$\forall i \geq g, \forall j \in \mathbb{N}, \quad P(i, j) = \begin{cases} a_{j-i} & \text{if } i-g \leq j \leq i+d \\ 0 & \text{otherwise.} \end{cases}$$

$$(a_{-g}, \dots, a_d) \in [0, 1]^{g+d+1} : a_{-g} > 0, \ a_d > 0, \ \sum_{k=-g}^{d} a_k = 1.$$

Assume that P is aperiodic and irreducible, and satisfies (NERI). Then P has a unique invariant distribution π . It can be derived from standard results of linear difference equation that $\pi(n) \sim c \tau^n$ when $n \to +\infty$, with $\tau \in (0,1)$ defined by $\psi(\tau) = 1$, where $\psi(t) := \sum_{k=-N}^N a_k t^{-k}$. Thus, if $\gamma := \tau^{-1/2}$, then $\mathcal{B}_V = \{(g(n))_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}, \sup_{n \in \mathbb{N}} \gamma^{-n} |g(n)| < \infty\}$. Then we know from [5, Prop. 3.2] that $r_{ess}(P_{|\mathcal{B}_V}) = \alpha_0$ with α_0 given in (5), and that ϱ_V can be computed from an algebraic polynomial elimination. From this computation, Proposition 1 provides an accurate estimation of ϱ_2 . Property (SG_2) was proved in [13, Th. 2] under an extra weak reversibility assumption (with no explicit bound on ϱ_2). However, except in case g = d = 1 where reversibility is automatic, an RW with i.d. bounded increments is not reversible or even weak reversible in general. No reversibility condition is required here.

3. Bound for ϱ_2 via truncation

Let P be any Markov kernel on \mathbb{N} , and let us consider the k-th truncated (and augmented on the last column) matrix P_k associated with P as in [4]. If $\sigma(P_k)$ denotes the set of eigenvalues of P_k , define $\rho_k := \max\{|\lambda|, \lambda \in \sigma(P_k), |\lambda| < 1\}$. The weak perturbation method in [4] provides the following general result where Condition (AS1) is not required and V is any unbounded increasing sequence.

Proposition 2. Let P be an irreducible and aperiodic Markov kernel on \mathbb{N} satisfying the following drift inequality for some unbounded increasing sequence $(V(n))_{n\in\mathbb{N}}$:

$$\exists \delta \in [0, 1[, \exists L > 0, \quad PV \le \delta V + L \, 1_{\mathbb{N}}. \tag{8}$$

Let ϱ_V be defined in (4). Then, either $\varrho_V \leq \delta$ and $\limsup_k \rho_k \leq \delta$, or $\varrho_V > \delta$ and $\varrho_V = \lim_k \rho_k$.

Proof. Condition (8) ensures that the assumptions of [4, Lem. 6.1] are satisfied, so that $r_{ess}(P_{|\mathcal{B}_V}) \leq \delta$. Then, using standard duality arguments, the spectral rankstability property [4, Lem. 7.2] applies to $P_{|\mathcal{B}_V}$ and P_k . If $\varrho_V \leq \delta$, then, for each r such that $\delta < r < 1$, $\lambda = 1$ is the unique eigenvalue of $P_{|\mathcal{B}_V}$ in $C_r := \{\lambda \in \mathbb{C} : r < |\lambda| \le 1\}$ (see [3]). From [4, Lem. 7.2] this property holds for P_k when k is large enough, so that $\limsup_k \rho_k \leq r$. Thus $\limsup_k \rho_k \leq \delta$ since r is arbitrarily close to δ . Now assume that $\varrho_V > \delta$, and let r be such that $\delta < r < \varrho_V$. Then $P_{|\mathcal{B}_V}$ has a finite number of eigenvalues in C_r , say $\lambda_0, \lambda_1, \ldots, \lambda_N$, with $\lambda_0 = 1$, $|\lambda_1| = \varrho_V$ and $|\lambda_k| \leq \varrho_V$ for $k = 2, \ldots, N$ (see [3]). For $a \in \mathbb{C}$ and $\varepsilon > 0$ we define $D(a, \varepsilon) := \{z \in \mathbb{C} : |z - a| < \varepsilon\}$. Now consider any $\varepsilon > 0$ such that the disks $D(\lambda_k, \varepsilon)$ for $k = 0, \ldots, N$ are disjoint and are contained in C_r pour $k \ge 1$. From [4, Lem. 7.2], for k large enough, 1 is the only eigenvalue of P_k in $D(1,\varepsilon)$, the others eigenvalues of P_k in C_r are contained in $\bigcup_{k=1}^N D(\lambda_k,\varepsilon)$, and finally each $D(\lambda_k, \varepsilon)$ contains at least one eigenvalue of P_k . Thus each eigenvalue $\lambda \neq 1$ of P_k in C_r has modulus less than $\varrho_V + \varepsilon$, so that $\rho_k \leq \varrho_V + \varepsilon$. Moreover the disk $D(\lambda_1, \varepsilon)$ contains at least an eigenvalue λ of P_k , so that $\rho_k \geq |\lambda| \geq \varrho_V - \varepsilon$. Thus, for k large enough, we have $\varrho_V - \varepsilon \leq \rho_k \leq \varrho_V + \varepsilon$.

Under the assumptions of Proposition 1 we deduce the following result from Proposition 2.

Corollary 3.1. If P satisfies the assumptions of Proposition 1, then the following properties hold true with α_0 given in (5):

- 1. $\varrho_2 \leq \alpha_0 \iff \varrho_V \leq \alpha_0$, and in this case we have $\limsup_k \rho_k \leq \alpha_0$;
- 2. $\varrho_2 > \alpha_0 \iff \varrho_V > \alpha_0$, and in this case we have $\varrho_2 = \varrho_V = \lim_k \rho_k$.

As usual the reversible case is simpler. In particular we can take C=1 and $\rho=\varrho_2$ in (\mathbf{SG}_2) . Details and numerical illustrations for Metropolis-Hastings kernels are reported in [6].

Acknowledgement

The authors thank the anonymous referee for helpful comments that have improved the paper.

References

- [1] BAXENDALE, P. H. (2005). Renewal theory and computable convergence rates for geometrically ergodic Markov chains. *Ann. Appl. Probab.* **15**, 700–738.
- [2] Chen, M.-F. (2004). From Markov chains to non-equilibrium particle systems second ed. World Scientific Publishing Co. Inc., River Edge, NJ.

- [3] Hennion, H. (1993). Sur un théorème spectral et son application aux noyaux lipchitziens. *Proc. Amer. Math. Soc.* **118**, 627–634.
- [4] Hervé, L. and Ledoux, J. (2014). Approximating Markov chains and V-geometric ergodicity via weak perturbation theory. Stochastic Process. Appl. 124, 613–638.
- [5] Hervé, L. and Ledoux, J. (2014). Spectral analysis of Markov kernels and aplication to the convergence rate of discrete random walks. *Adv. in Appl. Probab.* **46**, 1036–1058.
- [6] HERVÉ, L. AND LEDOUX, J. (2015). Additional material on bounds of ℓ^2 -spectral gap for discrete Markov chains with band transition matrices. hal-01117465.
- [7] Kontoyiannis, I. and Meyn, S. P. (2012). Geometric ergodicity and the spectral gap of non-reversible Markov chains. *Probab. Theory Related Fields* **154**, 327–339.
- [8] MAO, Y. H. AND SONG, Y. H. (2013). Spectral gap and convergence rate for discrete-time Markov chains. Acta Math. Sin. (Engl. Ser.) 29, 1949–1962.
- [9] ROBERTS, G. O. AND ROSENTHAL, J. S. (1997). Geometric ergodicity and hybrid Markov chains. *Elect. Comm. in Probab.* 2, 13–25.
- [10] ROSENBLATT, M. (1971). Markov processes. Structure and asymptotic behavior. Springer-Verlag, New-York.
- [11] STADJE, W. AND WÜBKER, A. (2011). Three kinds of geometric convergence for Markov chains and the spectral gap property. *Electron. J. Probab.* **16**, no. 34, 1001–1019.
- [12] Wu, L. (2004). Essential spectral radius for Markov semigroups. I. Discrete time case. *Probab. Theory Related Fields* **128**, 255–321.
- [13] WÜBKER, A. (2012). Spectral theory for weakly reversible Markov chains. *J. Appl. Probab.* **49**, 245–265.
- [14] YUEN, W. K. (2000). Applications of geometric bounds to the convergence rate of Markov chains on \mathbb{R}^n . Stochastic Process. Appl. 87, 1–23.