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Abstract

When a Markov kernel P satisfies a minorization condition and nested modulated drift
conditions, Jarner and Roberts provided an asymptotic polynomial convergence rate in
weighted total variation norm of Pn(x, ·) to the P -invariant probability measure π. In
connection with this polynomial asymptotics, we propose explicit and simple estimates
on series of such weighted total variation norms, from which an estimate for the total
variation norm of Pn(x, ·) − π is deduced. The proofs are self-contained and based on
the residual kernel and the Nummelin-type representation of π. No coupling technique is
used.

AMS subject classification : 60J05

Keywords : Drift conditions; Invariant probability measure; Minorization condition;
Residual kernel

1 Introduction

Let (X,X ) be a measurable space, and letM+ (resp.M+
∗ ) denote the set of finite nonnegative

(resp. positive) measures on (X,X ). For any µ ∈ M+ and any µ-integrable function g : X→R,
µ(g) denotes the integral

∫
X gdµ. For any measurable function V : X→[1,+∞) and every

measurable function g : X→R, we set ∥g∥V := supx∈X |g(x)|/V (x) ∈ [0,+∞], and we define
the space

BV := {g : X→R,measurable such that ∥g∥V < ∞}.
If (µ1, µ2) ∈ (M+)2 is such that µi(V ) < ∞, i = 1, 2, then the V -weighted total variation
norm ∥µ1 − µ2∥′V is defined by

∥µ1 − µ2∥′V := sup
∥g∥V ≤1

∣∣µ1(g)− µ2(g)
∣∣. (1)

If V = 1X, then ∥ · ∥′1X = ∥ · ∥TV is the standard total variation norm. Finally recall that a
non-negative kernel K(x, dy) ∈ M+, x ∈ X, is said to be a Markov (respectively submarkov)
kernel if K(x,X) = 1 (respectively K(x,X) ≤ 1) for any x ∈ X. We denote by

∀x ∈ X, (Kg)(x) :=

∫
X
g(y)K(x, dy)
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the functional action of K, where g : X→R is any K(x, ·)−integrable function. For every
n ≥ 1 the n−th iterate kernel of K(x, dy) is denoted by Kn(x, dy), x ∈ X, and Kn stands for
its functional action. As usual K0 is the identity map I by convention. If µ ∈ M+ and K is
a submarkov kernel, then the product µK is the finite non-negative measure defined by

∀A ∈ X , (µK)(1A) :=

∫
X
K(x,A)µ(dx).

The measure µ is said to be K−invariant if µK = µ.

Throughout this paper, P is a Markov kernel on (X,X ) satisfying the following minoriza-
tion condition (S) (e.g. see [MT09])

∃S ∈ X , ∃ν ∈ M+
∗ , ∀x ∈ X, ∀A ∈ X , P (x,A) ≥ ν(1A) 1S(x) (S)

(i.e. S is a small-set of 1-order for P ), and we denote by R the associated submarkov residual
kernel:

∀x ∈ X, ∀A ∈ X , R(x,A) := P (x,A)− ν(A)1S(x). (2)

Moreover let us introduce the following well-known nested modulated drift conditions: There
exists a collection {Vi}mi=0 of measurable functions from X to [1,+∞) with m ≥ 1 such that

∀i ∈ {0, . . . ,m− 1}, Vi+1 ≤ Vi and ∃bi > 0, PVi ≤ Vi − Vi+1 + bi 1S . (D(V0 : Vm))

The Vi’s in D(V0 : Vm) are called Lyapunov functions and are such that Vm ≤ · · · ≤ V0. The
following statement was proved in [JR02, Th. 3.2], also see [FM03b, Th. 1]:

Theorem. Assume that P is ψ−irreducible and aperiodic for some ψ ∈ M+
∗ and that

P satisfies Conditions (S) and D(V0 : Vm) with m ≥ 1. Let π denote the P−invariant
probability measure. Then

∀x ∈ X, lim
n→+∞

(n+ 1)m−1
∥∥Pn(x, ·)− π

∥∥′
Vm

= 0. (3)

In [JR02, Th. 3.2] the condition Vi+1 ≤ Vi is not assumed and the modulated drift inequalities
write as PVi ≤ Vi − Vi+1 + bi 1Si for some petite set Si. The assumption Vi+1 ≤ Vi is by no
means restrictive since the Lyapunov functions Vi can be slightly modified in order to satisfy
this condition, e.g. see Subsection 4.3.

Under Assumptions (S) and D(V0 : Vm) with m ≥ 2, the purpose of this work is to
provide quantitative estimates in connection with Property (3). Specifically we prove that
there exists a positive function Um ∈ BV0 with a computable bound ĉm of ∥Um∥V0 such that

∀x ∈ X, Sm−2(x) :=
+∞∑
n=0

(n+ 1)m−2∥Pn(x, ·)− π∥′Vm
(4a)

≤ Um(x) (4b)

≤ ĉm V0(x), (4c)

and ∀x ∈ X, ∀k ≥ 0,
∥∥P k(x, ·)− π

∥∥
TV

≤ 2m

km−1
Um(x). (4d)

In addition to Assumptions (S)-D(V0 : Vm), the condition π(1S) > 1/2 is required. This
specific condition is discussed in Subsection 4.2. Estimates (4b)-(4c) are precisely stated
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in Section 2 (see Theorem 2.2) and proved in Section 5. Estimate (4d) is deduced from
(4b) in Corollary 2.3. The key idea to prove (4b)-(4c) is that, for any i = 1, . . . ,m, the
norm ∥

∑+∞
n=0(n+1)i−1RnVi∥V0 where R is the residual kernel in (2), can be simply bounded

using Assumptions D(V0 : Vm) (see Proposition 2.1). Then, the link between Pn and Rn

(see (6)) and the Nummelin-type representation of π (see (5)) enable us to obtain (4b) with
Um expressed in terms of the functions Φi :=

∑+∞
n=0(n+ 1)i |PnϕS | for i = 0, . . . ,m− 2 with

ϕS := 1S − π(1S)1X. Moreover the norms ∥Φi∥V0 for i = 0, . . . ,m − 2, can be explicitly
bounded via recursive inequalities involving the data S, ν, m, V0 and bi of Conditions (S)
and D(V0 : Vm). This is illustrated for m := 2 and m := 3 in Subsection 3.1.

For a general overview on convergence rates of Pn(x, ·) to π using drift conditions, we refer
to the books [MT09, DMPS18, and the references therein]. Recall that the nested modulated
drift conditions D(V0 : Vm), first used in [TT94], were proved to hold in [JR02] under the
single drift condition PV ≤ V −cV α+b1S with some Lyapunov function V and some constants
α ∈ [0, 1), b, c > 0 (also see [FM00]), and in [FM03b, Prop. 4] under the more general single
sub-geometric drift condition PV ≤ V −ϕ◦V +b1S with suitable function ϕ. Also see [Del17]
for an operator-type approach in sub-geometric case. Here, our basic assumption is directly
D(V0 : Vm), which must be implemented in practice anyway, regardless of the form of the
starting single drift condition, see [FM03b, Rem. 3].

To the best of our knowledge there are very few works providing computable rates of
convergence for series as defined in (4a). Using a coupling construction in the context of
subgeometric Markov chains, such an issue is addressed in [AFV15, Th. 1] for series of the form∑+∞

n=0 r(n)|(Png)(x)− (Png)(x′)| where (r(n))n≥0 is some sequence of positive real numbers
related to a subgeometric drift condition. Then, under Jarner-Roberts’s drift condition PV ≤
V −cV α+b1S , the case of series of the form

∑+∞
n=0(n+1)ξα |(Png)(x)−π(g)| for some ξα > 0 is

covered by [AFV15, Cor. 1]. The results of [AFV15] are compared in more detail with ours in
Subsection 4.3. For Markov kernels satisfying Conditions (S) and D(V0 : Vm), Theorem 2.2
in Section 2 seems to be the first result providing a computable convergence rate for the series
Sm−2(x) in (4a), even for S0(x) =

∑+∞
n=0 ∥Pn(x, ·)−π∥′V2

. In fact, if P satisfies Conditions (S)
and D(V0 : V1) (i.e. m = 1) and if P is ψ−irreducible, aperiodic and π(V0) < ∞, we know
from [MT09, Th. 14.0.1] that there exists a constant c such that

∀x ∈ X,
+∞∑
n=0

∥∥Pn(x, ·)− π
∥∥′
V1

≤ c V0(x).

But the constant c was previously unknown. Here, under Conditions D(V0 : V2) (i.e. m = 2)
and without assuming π(V0) < ∞, this inequality is derived from (4c), and the positive
constant ĉ2 in (4c) is easily computed from the data S, ν, V0, b0 and b1 of Conditions (S)
and D(V0 : V2) (see Corollary 3.1). As detailed in Subsection 4.1 our assumptions in case
m := 2 are in fact close to those in [MT09, Th. 14.0.1] due to the condition π(V0) < ∞.
Actually, for any m ≥ 2 the constant ĉm in (4c) can be computed from the data S, ν, m,
V0, and bi of Conditions (S) and D(V0 : Vm). The use of both the residual kernel R in (2)
and the Nummelin-type representation (5) of π is proved to be relevant for such a study, as
already pointed out in [HL24a] for dealing with Poisson’s equation under Assumptions (S)
and D(V0 : V1).

Following on from the pioneering works [NT83, TT94], explicit bounds for ∥Pn(x, ·)−π
∥∥
TV

have been proposed in [FM03b, DMS07] thanks to coupling methods under the sub-geometric
drift condition PV ≤ V − ϕ ◦ V + b1S (recall that this encompasses Jarner-Roberts’s drift
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condition). Also see [DFMS04] for various statements and examples on different rates of
convergence, and [But14, DFM16] for rates of convergence in Wasserstein distance. Note
that the polynomial asymptotics (3) ensures that ∥Pn(x, ·) − π∥TV ≤ c(x)/nm−1 for every
x ∈ X, but with unknown constant c(x) to our knowledge. In particular, although the sub-
geometric drift condition induces nested modulated drift inequalities, the explicit bounds
of ∥P k(x, ·) − π∥TV in [FM03b, Th. 2] and [DMS07, Th. 2.1] do not seem to provide any
information on the quantitative polynomial rate of convergence in (3). Here Issue (4d) is
directly linked to the polynomial asymptotics (3), and Estimate (20) in Corollary 2.3 of
Section 2 seems to be the first one providing c(x) = cV0(x) with a computable constant c
under Conditions D(V0 : Vm).

Therefore, we propose a self-contained method for obtaining quantitative results on the
asymptotic result [JR02, Th. 3.2]. Note that the coupling technique is not used. Although
the bounds obtained in Theorem 2.2 and Corollary 2.3 have a much simpler formulation than
in [AFV15] and [FM03b, DMS07], we do not claim that they are numerically better. Recall
that the condition π(1S) > 1/2 for the first-order small-set S is required here. This condition
is discussed in Subsection 4.2 in link with several other works involving in fact this condition
for studying the rates of convergence of iterates of Markov kernels.

2 The statements

Let us recall that if P satisfies Condition (S), then a necessary and sufficient condition
for P to admit an invariant probability measure π on (X,X ) such that π(1S) > 0, is that∑+∞

k=0 ν(R
k1X) <∞. Actually, under any of these two equivalent conditions,

π := µ(1X)
−1 µ with µ :=

+∞∑
n=0

νRn ∈ M+
∗ (5)

is an P−invariant probability measure, and we have µ(1S) = 1 and π(1S) = µ(1X)
−1 > 0.

The Nummelin-type representation (5) of π is well-known under various assumptions on P ,
e.g. see [Num84, Th. 5.2, Cor. 5.2]), [MT09, Chap. 10]), and see [HL23] for a simple proof
under the sole Condition (S). The assumptions in all the next statements ensure that the
condition

∑+∞
k=0 ν(R

k1X) < ∞ holds. Thus, throughout the paper, π is the P−invariant
probability measure such that π(1S) > 0 given in (5). Also recall that the key formula
linking the kernels Pn, Rn and the finite non-negative measures νRk−1 is from [HL20, Prop.
2.1] (see also [Num84, Eq. (4.12)])

∀n ≥ 1, Pn = Rn +
n∑

k=1

Pn−k1S ⊗ νRk−1 (6)

where, for any non-negative measurable function f and any η ∈ M+, we denote by f ⊗ η the
following non-negative kernel: ∀x ∈ X, ∀A ∈ X , (f ⊗ η)(x,A) := f(x) η(1A).

To prove that the series in (4a) converges, we first study the following functions defined
on X:

∀i ∈ {1, . . . ,m},
+∞∑
n=0

(n+ 1)i−1RnVi.
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To that effect, under Conditions (S) and D(V0 : Vm) we set

∀i ∈ {0, . . . ,m− 1}, di := max

(
0,
bi − ν(Vi))

ν(1X)

)
(7)

with constants bi given in D(V0 : Vm). Obviously, we have di = 0 when bi ≤ ν(Vi). In
particular, if S is an atom for P (i.e. ∀x ∈ S, P (x, ·) = ν), then di = 0 for 0 ≤ i ≤ m − 1.
Moreover define (Dℓ)

m−1
ℓ=0 as follows:

D0 := 1 + d0 and ∀ℓ ∈ {1, . . . ,m− 1}, Dℓ := (1 + dℓ)
ℓ−1∑
j=0

(
ℓ

j

)
Dj (8)

where
(
ℓ
j

)
is the standard binomial coefficient. The following Proposition 2.1 is proved in

Subsection 5.1.

Proposition 2.1 Assume that P satisfies Condition (S) and D(V0 : Vm) for some collection
{Vi}mi=0 of Lyapunov functions with m ≥ 1. Then we have for every i ∈ {1, . . . ,m}

+∞∑
n=0

(n+ 1)i−1RnVi ≤ Di−1 V0 (9a)

+∞∑
n=0

(n+ 1)i−1 ν
(
RnVi

)
≤ Di−1 ν(V0) <∞. (9b)

Note that, if P satisfies Conditions (S) and D(V0 : Vm), then we deduce from (9b) with i = 1
that

π(V1) <∞, so that π(Vi) <∞ for i = 1, . . . ,m. (10)

Now, to obtain the positive function Um ∈ BV0 in Inequality (4b) under Conditions (S)
and D(V0 : Vm) with m ≥ 2, we need to study the following functions Φi : X→[0,+∞] for
i ∈ {0, . . . ,m− 2}:

Φi :=
+∞∑
n=0

(n+ 1)i
∣∣PnϕS

∣∣ where ϕS := 1S − π(1S)1X. (11)

Recall that, for every m ≥ 2, there exists {aj,m}m−1
j=1 ∈ Rm−1 such that

∀k ≥ 1, Σm−2
k :=

k∑
n=1

nm−2 =

m−1∑
j=1

aj,m k
j , (12)

and that the real numbers {aj,m}m−1
j=1 can be computed by induction on m using binomial

expansion (e.g. see Subsection 3.1 in cases m := 2, 3). Next, using Dj ’s in (8), define the
following positive constants

∀ℓ ∈ {1, . . . ,m− 1}, Eℓ :=

ℓ∑
j=1

aj,ℓ+1Dj . (13)

The next theorem is proved in Subsection 5.2.
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Theorem 2.2 Assume that P satisfies Conditions (S) and D(V0 : Vm) for some collection
{Vi}mi=0 of Lyapunov functions with m ≥ 2. Then the following inequalities hold in [0,+∞]:

∀g ∈ BVm , ∀x ∈ X, Sm−2(g, x) :=
+∞∑
n=0

(n+ 1)m−2
∣∣(Png)(x)− π(g)

∣∣
≤ ∥g − π(g)1X∥Vm Wm(x) (14)

and ∀x ∈ X, Sm−2(x) :=

+∞∑
n=0

(n+ 1)m−2
∥∥Pn(x, ·)− π

∥∥′
Vm

≤ θmWm(x) (15)

where θm := 1 + π(Vm)∥1X∥Vm and the function Wm is

Wm = Dm−2 V0 + ν(V0)

[ m−2∑
j=0

(
m− 2

j

)
Dj Φm−2−j + π(1S)Em−1 1X

]
. (16)

If π(1S) > 1/2, then for every i ∈ {0, . . . ,m− 2} we have Φi ∈ BV0 and (with the convention∑0
j=1 = 0)

Φi ≤ 1

2π(1S)− 1

(
DiV0 + ν(V0)

i∑
j=1

(
i

j

)
DjΦi−j + π(1S)ν(V0)Ei+11X

)
. (17)

Thus, if P satisfies all the assumptions of Theorem 2.2, then Estimates (4b)-(4c) in Section 1
are valid with Um(x) = θmWm(x). Indeed, Inequality (4b) is nothing else than (15). To
derive Inequality (4c), first use (16) to get

∥Wm∥V0 ≤ Dm−2 + ν(V0)
m−2∑
j=0

(
m− 2

j

)
Dj ∥Φm−2−j∥V0 + π(1S) ν(V0)Em−1∥1X∥V0 .

Next, if π(1S) > 1/2 then the norms (∥Φi∥V0)
m−2
i=0 are recursively bounded from (17) by

∥Φi∥V0 ≤ 1

2π(1S)− 1

(
Di + ν(V0)

[ i∑
j=1

(
i

j

)
Dj ∥Φi−j∥V0 + π(1S)Ei+1∥1X∥V0

])
(18)

from which the constant ĉm in (4c) is deduced. In the atomic case, recall that the di’s (see
(7)) are zero, so that the constants Di defined in (8) and used in the previous estimates
simply depend on the integer m.

Finally note that ∥1X∥Vm ≤ 1 since Vm ≥ 1 and that π(Vm) ≤ bm−1 from PVm−1 ≤
Vm−1−Vm+ bm−1 1S and the P−invariance of π (recall that π(Vm−1) <∞ from (10)). Thus
the positive constant θm of Theorem 2.2 satisfies

θm ≤ 1 + bm−1. (19)

Corollary 2.3 Under all the assumptions of Theorem 2.2, we have

∀x ∈ X, ∀k ≥ 0,
∥∥P k(x, ·)− π

∥∥
TV

≤ 2m

km−1
Wm(x) (20)

with Wm given in Theorem 2.2.
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Proof. Note that Vm in D(V0 : Vm) can be replaced with the function 1X since Vm ≥ 1X, and
that we have θm := 1 + π(1X)∥1X∥1X = 2 in this case. Let x ∈ X. Recall that the sequence
(∥Pn(x, ·)− π∥TV )n is non-increasing. Let j ≥ 0. Then we deduce from (15) that

(j + 1)m−1
∥∥P 2j(x, ·)− π

∥∥
TV

≤
2j∑
n=j

(n+ 1)m−2
∥∥Pn(x, ·)− π

∥∥
TV

≤ 2Wm(x)

thus ∥∥P 2j(x, ·)− π
∥∥
TV

≤ 2m

(2j)m−1
Wm(x).

Next, using
∑2j+1

n=j+1, we obtain the same inequality for
∥∥P 2j+1(x, ·)−π

∥∥
TV

replacing (2j)m−1

with (2j + 1)m−1. This proves (20). □

The material in Theorem 2.2 and Corollary 2.3 is fully detailed for m := 2, 3 in Subsec-
tion 3.1. In particular, the explicit constants are provided. Theorem 2.2 applies whenever P
satisfies the minorization condition (S) and explicit modulated drift conditions are known:
for such examples, e.g. see [FM00, FM03b, DFM16] in the context of Metropolis algorithm,
[LH07, LH12] for queueing systems, [JT02] for Markov chains associated with the mean of
Dirichlet processes.

3 Specific cases

Throughout this section, P is assumed to satisfy the minorization condition (S) with ν ∈ M+
∗

and S ∈ X . Below the cases where P satisfies D(V0 : Vm) with m := 2 and m := 3 are
detailed. The case m =: 2 is compared with the classical statement [MT09, Th. 14.0.1] in
Subsection 4.1. Finally, an application of the casem := 3 to geometric ergodicity is presented.

3.1 Cases D(V0 : V2) and D(V0 : V3)

Recall that P satisfies Condition D(V0 : V2) (i.e. m := 2) if

∀i ∈ {0, 1}, Vi+1 ≤ Vi and PVi ≤ Vi − Vi+1 + bi 1S (D(V0 : V2))

for some positive constants b0, b1 and Lyapunov functions V0, V1, V2. Set (see (7))

∀i ∈ {0, 1}, di := max

(
0,
bi − ν(Vi)

ν(1X)

)
.

The main estimates of Theorem 2.2 and Corollary 2.3 are summarized as follows.

Corollary 3.1 Let P satisfy Condition (S) with π(1S) > 1/2 and D(V0 : V2). Then

∀g ∈ BV2 , ∀x ∈ X, S0(g, x) =

+∞∑
n=0

∣∣(Png)(x)− π(g)
∣∣ ≤ ∥g − π(g)1X∥V2 ĉ2 V0(x), (21a)

∀x ∈ X, S0(x) :=

+∞∑
n=0

∥∥Pn(x, ·)− π
∥∥′
V2

≤ (1 + b1) ĉ2 V0(x), (21b)

∀x ∈ X, ∀k ≥ 0,
∥∥P k(x, ·)− π

∥∥
TV

≤ 4

k
ĉ2 V0(x), (21c)
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where ĉ2 := c0 + c1∥1X∥V0 with

c0 := (1 + d0)

(
1 +

ν(V0) (1 + d0)

2π(1S)− 1

)
c1 := ν(V0)(1 + d0)(1 + d1)

(
ν(V0) (1 + d0)

2π(1S)− 1
+ 1

)
.

Proof. Note that Σ0
k = k, i.e. a1,2 = 1 in (12). Moreover we have D0 := 1 + d0, D1 :=

(1 + d0)(1 + d1) from (8) and E1 = D1 from (13). Then, the function W2 is from (16) with
m := 2

W2 = (1 + d0)V0 + ν(V0)
[
(1 + d0) Φ0 + π(1S) (1 + d0)(1 + d1) 1X

]
and we have the following estimate from (17) with i := 0:

Φ0 ≤ (1 + d0)V0 + π(1S)ν(V0)(1 + d0)(1 + d1)1X
2π(1S)− 1

.

It follows thatW2 ≤ c0V0+π(1S)c11X ≤ c0V0+c11X ≤ ĉ2V0 with the constants c0, c1, ĉ2 defined
in Corollary 3.1. Apply (14), (15), (19) and (20) with m := 2 to get (21a), (21b), (21c). □

Let P satisfy Condition D(V0 : V3) (i.e. m := 3) that is

∀i ∈ {0, 1, 2}, Vi+1 ≤ Vi and PVi ≤ Vi − Vi+1 + bi 1S (D(V0 : V3))

for some positive constants b0, b1, b2 and Lyapunov functions V0, V1, V2, V3. Set

∀i ∈ {0, 1, 2}, di := max

(
0,
bi − ν(Vi)

ν(1X)

)
.

The main estimates of Theorem 2.2 and Corollary 2.3 in case m := 3 are summarized in the
next corollary.

Corollary 3.2 Let P satisfy Condition (S) with π(1S) > 1/2 and Conditions D(V0 : V3).
Then

∀g ∈ BV3 , ∀x ∈ X,S1(g, x) =
+∞∑
n=0

(n+ 1)
∣∣(Png)(x)− π(g)

∣∣ ≤ ∥g − π(g)1X∥V3 ĉ3 V0(x), (22a)

∀x ∈ X,S1(x) :=
+∞∑
n=0

(n+ 1)
∥∥Pn(x, ·)− π

∥∥′
V3

≤ (1 + b2) ĉ3 V0(x), (22b)

∀x ∈ X, ∀k ≥ 0,
∥∥P k(x, ·)− π

∥∥
TV

≤ 8

k2
ĉ3 V0(x), (22c)

where ĉ3 := c0 + c1∥1X∥V0 with

c0 := D1

[
1 +

ν(V0)D0

2π(1S)− 1

]2
c1 := ν(V0)

[
E2 +

ν(V0)D1
2 +D0E2ν(V0)

2π(1S)− 1
+
ν(V0)

2D0D1
2

(2π(1S)− 1)2

]
,

∀i ∈ {0, 1}, Di :=

i∏
j=0

(1 + di), D2 := (1 + d2)(D0 + 2D1), E1 = D1, E2 :=
D1 +D2

2
. (23)

Proof. Here we have Σ1
k = k(k+1)/2, i.e. a1,3 = a2,3 = 1/2 from (12). Thus we get (23) from

(8) and (13). The claimed statements then follow as in Corollary 3.1, using (16) with m := 3

W3 := D1 V0 + ν(V0)
[
D0Φ1 +D1Φ0 + π(1S)E2 1X

]
8



and (17) with i := 0, 1

Φ0 ≤
D0V0 + π(1S)ν(V0)E11X

2π(1S)− 1
, Φ1 ≤

D1V0 + ν(V0)D1Φ0 + π(1S)ν(V0)E21X
2π(1S)− 1

.

□

3.2 Conditions D(V0 : Vm) under geometric drift condition

Assume that P satisfies Condition (S) for some S ∈ X and the following V−geometric drift
condition

∃δ ∈ (0, 1), ∃b ∈ (0,+∞) : PV ≤ δV + b 1S (24)

where V : X→[1,+∞) is a measurable function. Then, for every m ≥ 1, P satisfies Condi-
tion D(V0 : Vm) with

Vm := V and ∀i ∈ {0, . . . ,m− 1}, Vi =
V

(1− δ)m−i
and bi :=

b

(1− δ)m−i
. (25)

Corollary 3.3 Assume that P satisfies Conditions (S)–(24) with π(1S) > 1/2. Then P is
V−geometrically ergodic and for every τ ∈ (0, 1), we have

∀g ∈ BV , ∀n ≥ 0, ∥Png − π(g)1X∥V ≤ ĉ3(1 + π(V )∥1X∥V )
τ (1− δ)3

ρn ∥g∥V with ρ := τ1/n0

where ĉ3 is provided in Corollary 3.2 using D(V0 : Vm) and Vi given in (25) with m := 3,
and where n0 is the smallest positive integer number such that ĉ3(1+π(V )∥1X∥V )/(n0+1) ≤
τ(1− δ)3.

Proof. Using here Conditions D(V0 : V3) and V0, V1, V2, V3 given (25), it follows from (22a)
that

∀n ≥ 1, ∀g ∈ BV , ∀x ∈ X,
|(Png)(x)− π(g)|

V (x)
≤ d3
n+ 1

∥g∥V with d3 :=
ĉ3(1 + π(V )∥1X∥V )

(1− δ)3

using ∥g−π(g)1X∥V ≤ (1+π(V )∥1X∥V )∥g∥V . Let us still denote by ∥L∥V the operator-norm
of any bounded linear operator L on (BV , ∥·∥V ), i.e. ∥L∥V := sup{∥Lg∥V : g ∈ BV , ∥g∥V ≤ 1}.
Then, we obtain from the above inequality that ∥Pn − Π∥V ≤ d3/(n+ 1) with Π := π(·)1X.
Let τ ∈ (0, 1) and n0 ≡ n0(τ) be the smallest positive integer such that d3/(n0 + 1) ≤ τ .
Then, writing n = qn0 + r with r ∈ {0, . . . , n0 − 1}, we deduce that

∀n ≥ 1, ∥Pn −Π∥V ≤ ∥(P −Π)r∥V ×
(
∥(P −Π)n0∥V

)q ≤ d3
τ
ρn with ρ := τ1/n0

since ∥(P −Π)r∥V ≤ d3 and τ−r/n0 ≤ τ−1. □

4 Bibliographic comments

4.1 In Case D(V0 : V2), comparison with [MT09, Th. 14.0.1]

If P satisfies the assumptions of Corollary 3.1 (requiring D(V0 : V2)) then we have from (21b)

∀x ∈ X,
+∞∑
n=0

∥∥Pn(x, ·)− π
∥∥′
V2

≤ (1 + b1) ĉ2 V0(x).

9



This statement may be surprising on first reading compared with the classical result [MT09,
Th. 14.0.1]. Indeed, we know from [MT09, Th. 14.0.1] that, if P satisfies Condition (S) with
some S ∈ X and the single modulated drift condition PV ≤ V −W +b 1S for some Lyapunov
functions V and W such that π(V ) < ∞, then there exist a P−absorbing set A ∈ X (i.e.
A ∈ X is such that P (x,A) = 1 for every x ∈ A) and a constant c > 0 such that

∀x ∈ A,
+∞∑
n=0

∥∥Pn(x, ·)− π
∥∥′
W

≤ c V (x) (26)

provided that P is irreducible and aperiodic. Actually it can be proved that the additional
assumption π(V ) < ∞ in [MT09, Th. 14.0.1] generates a V−modulated drift condition on
some P−absorbing set A ∈ X such that π(1A) = 1, i.e. the drift inequality PL ≤ L−V +b′1S
holds on A for some Lyapunov function L ≥ V (see [HL24b, Sec. 5]). Hence the assumptions
of [MT09, Th. 14.0.1] involve in fact two nested modulated drift conditions.

To illustrate the previous discussion, consider the following so-called random walk (Xn)n≥0

on the half line X = [0,+∞)

X0 ∈ X and ∀n ≥ 1, Xn := max
(
0, Xn−1 + ϑn

)
(27)

where {ϑn}n≥1 is a sequence of i.i.d. R-valued random variables assumed to be independent
of X0 and to satisfy E[ϑ1] < 0 and E[max(0, ϑ1)] < ∞. Then it is well-known that the drift
condition PV ≤ V − W + b 1S holds with S = [0, s] for some s > 0 and with Lyapunov
functions V,W defined on X = [0,+∞) by V (x) = 1 + x and W = c11X for some constant
c1 > 0. Moreover, it follows from [JT03, Prop. 3.5] that the condition

∫
X x dπ(x) < ∞,

i.e. π(V ) < ∞, is equivalent to E[(max(0, ϑ1))
2] < ∞, so that the last moment condition

is required to apply the statement [MT09, Th. 14.0.1]. However note that the condition
E[(max(0, ϑ1))

2] < ∞ is precisely what ensures that Assumptions D(V0 : V2) hold with
V0(x) = (1 + x)2 and Vi(x) = ci(1 + x)2−i for i = 1, 2 with some ci > 0 (e.g. see [JR02]).
Accordingly the moment condition on ϑ1 is indeed the same for applying (21b) or [MT09,
Th. 14.0.1].

4.2 On the condition π(1S) > 1/2

Let P satisfy Conditions (S) and D(V0 : Vm). If π(1S) ≤ 1/2, then the explicit bound (17) for
the Φi’s in Theorem 2.2 cannot be applied. Accordingly, if π(1S) ≤ 1/2, then Corollary 2.3
does not apply. Observe that P obviously satisfies D(V0 : Vm) for any set S′ ∈ X containing
S since 1S ≤ 1S′ , and that π(1S′) > 1/2 for S′ large enough. However the same set S′

must be used in the minorization condition, and unfortunately the existence of a minorizing
positive measure ν ′ w.r.t. the set S′ is not guaranteed when S′ is too large. In other words,
the näıve idea of enlarging the set S to obtain π(1S) > 1/2 doesn’t work in general. Surpris-
ingly, whatever the method used, the condition π(1S) > 1/2 required in Theorem 2.2 and
Corollary 2.3 is often involved when dealing with explicit rates of convergence of the iterates
of Markov kernels. For instance, using some refinements on the modulated drift condition,
the authors in [FM03a, Prop. 13] present an explicit bound for [MT09, Th. 14.0.1], i.e. an
explicit constant c in (26) (consider λ = δx and = π in [FM03a, Prop. 13]). The assumption
π(1D) > 1/2 for some small-set D is actually also imposed in [FM03a, Prop. 13]. Indeed
the Lyapunov function W in the modulated drift condition PV ≤ V −W + b1S considered

10



in [FM03a, Prop. 13] satisfies W ≥ b/(1 − a) on Dc := X \D for some a ∈ (0, 1) and some
small-set D ∈ X containing the small-set S of the previous drift condition. Thus we have
π(1Dc) ≤ π(W )(1 − a)/b. Moreover, since the condition π(V ) < ∞ is imposed in [FM03a,
Prop. 13], we obtain that π(W ) ≤ bπ(1S). Thus we have π(1Dc) ≤ (1− a)π(1S), from which
we deduce that

π(1D) ≥ π(1S) ≥
π(1Dc)

1− a
=

1− π(1D)

1− a
.

Thus the condition π(1D) ≥ 1/(2 − a) > 1/2 is indeed required. Similarly the assumption
π(1D) > 1/2 for some small-set D occurs in the nested modulated drift conditions in [FM03b,
p. 78] introduced for the study of polynomial ergodicity (see [FM03b, Eq. (50)] and apply
the previous arguments). Finally, as in the previous papers, a technical condition on the
geometric drift inequality, again implying that π(1S) > 1/2, is also assumed in [Ros95,
Th. 12] to get a rate of convergence, see [Jer16] and [QH21, Prop. 17]. Accordingly the
discussion in [QH21, QH22] concerning the trade-off that must be made in [Ros95, Th. 12]
between, on the one hand, the condition π(1S) > 1/2 requiring a sufficiently large small-set
S and, on the other hand, the total mass ν(1X) requiring S not to be too large, applies to
the framework of Theorem 2.2 and Corollary 2.3.

Hence, in the papers cited above and in the present work, the condition π(1S) > 1/2 is
a strong assumption from a practical point of view. Mention that a way to overcome this
condition in our work could be to introduce a small-set of higher order. This work is in
progress.

4.3 Comparison with [AFV15] under Jarner-Roberts’s drift condition

Throughout this subsection the Markov kernel P is assumed to satisfy the minorization
condition (S). Recall that Jarner-Roberts’s drift condition introduced in [JR02] is: There
exists a Lyapunov function V such that

∃α ∈ [0, 1), ∃b, c > 0, PV ≤ V − c V α + b 1S . (28)

This is the most classical case leading to Markov kernels satisfying Conditions D(V0 : Vm),
also see [MT09, DMPS18, and the references therein]. Indeed P satisfies D(V0 : Vm) with
m ≡ m(α) := ⌊(1 − α)−1⌋ ≥ 1, where ⌊·⌋ denotes the integer part function on R, and with
the Lyapunov functions

Vm := 1X ≤ Vm−1 := am−1V
αm−1 ≤ · · · ≤ V1 := a1V

α1 ≤ V0 := a0V (29)

where α1 := 1 − 1/m ∈ [0, 1) and αi = (α1 − 1) i + 1 for i = 2, . . . ,m − 1 when m ≥ 2, and
where ai’s are explicit constants strictly larger than one, see [JR02, Proof of Th. 3.6]. For
the reader’s convenience, the construction of Vi’s is detailed in Appendix A. Hence, if m ≥ 2
and π(1S) > 1/2, then for any measurable and bounded g : X→R, i.e. g ∈ B1X , and for
any x ∈ X, Theorem 2.2 provides an explicit bound for

∑+∞
n=0(n + 1)m−2|(Png)(x) − π(g)|.

For instance the bounds (21a)-(21b)-(21c) in case m := 2, or the bounds (22a)-(22b)-(22c) in
case m := 3, apply. Under the drift condition (28) (and some additional minor assumptions),
it is proved in [AFV15, Cor. 1, homogeneous case with ξ = 1] that there exists a constant
C > 0 such that for any (x, x′) ∈ X2 and any g ∈ B1X

+∞∑
n=0

(n+ 1)m−1|(Png)(x)− (Png)(x′)| ≤ C ∥g∥1X
(
V (x) + V (x′)− 1

)
.
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Thus, if π(V ) <∞, then Sm−1(g, x) ≤ C ∥g∥1X(V (x)+π(V )−1). The reason why Sm−1(g, x)
can be estimated in [AFV15, Cor. 1], while Theorem 2.2 only provides an estimate for
Sm−2(g, x), is the same as in Subsection 4.1, that is: The condition π(V ) < ∞ is not
guaranteed under Assumption (28) (we only know that π(V α) < ∞). Again note that the
condition π(V ) < ∞ is not required for using Theorem 2.2. Actually, assuming both (28)
with α = 1−1/m and π(V ) <∞, is close to assuming Condition (28) with α = 1−1/(m+1).
For instance, extending the arguments of Subsection 4.1, it follows from [JT03, Prop. 3.5]
that the two last assumptions are identical for random walks on the half line. Note that
(28) with α = 1 − 1/(m + 1) implies D(V0 : Vm+1), so that for any g ∈ B1X the series∑+∞

n=0(n + 1)m−1|Png − π(g)| can be estimated too using Theorem 2.2, as well as the sums
studied in [AFV15] since

∀(x, x′) ∈ X,
+∞∑
n=0

(n+ 1)m−1|(Png)(x)− (Png)(x′)| ≤ Sm−1(g, x) + Sm−1(g, x
′)

from the triangular inequality. Series with the norms ∥Pn(x, ·)−π∥′Vm
(see (15)) and estimate

of type (20) are not studied in [AFV15]. Finally mention that the comparison between the
above constant C and that derived from Theorem 2.2 is not easy to address since the constant
C in [AFV15, Cor. 1] is not completely computed. However note that this constant C involves
the real number ε−1

ν = ν(1X)
−1 and the series c∗ :=

∑+∞
j=0(1 − ν(1X))

j
∏j

k=0(1 + δkM1) for

some (δk)k ∈ RN and some constantM1. The bounds in Theorem 2.2 also involve the constant
ν(1X)

−1 through di’s in (7), but it only requires to compute finitely many constants of the
form

∏j
k=0(1 + dℓ) (see (8)).

5 Proofs

5.1 Proof of Proposition 2.1

Under Assumption (S), recall that the residual kernel R defined in (2) is a submarkov kernel.
The following simple result is from [HL24a, Lemma 2.2] and allows us to transform a modu-
lated drift condition for P into a simpler drift condition for R which is in force for deriving
Proposition 2.1.

Lemma 5.1 Assume that P satisfies Condition (S) and PV ≤ V −W + b1S for some b > 0
and some couple (V,W ) of Lyapunov functions. Then we have

RVd ≤ Vd −W with Vd := V + d1X ≥ V, where d := max

(
0,
b− ν(V ))

ν(1X)

)
.

Let us prove Inequalities (9a), that is with Di−1 defined in (8)

∀i ∈ {1, . . . ,m},
+∞∑
n=0

(n+ 1)i−1RnVi ≤ Di−1V0.

We use an induction on m. Assume that D(V0 : V1) holds, that is PV0 ≤ V0 − V1 + b0 1S .
Then it follows from Lemma 5.1 applied to (V,W ) = (V0, V1) that RV0,d0 ≤ V0,d0 − V1 with
V0,d0 := V0 + d01X ≥ V0 where d0 = max{0, (b0 − ν(V0))/ν(1X)}. Equivalently we have
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V1 ≤ V0,d0 − RV0,d0 . Then for every n ≥ 0 we obtain that RnV1 ≤ RnV0,d0 − Rn+1V0,d0 .
Hence we have for every N ≥ 1

N∑
n=0

RnV1 ≤
N∑

n=0

[
RnV0,d0 −Rn+1V0,d0

]
≤ V0,d0 ≤ (1 + d0)V0.

This proves (9a) when m = 1. Now suppose that Inequalities (9a) are proved for some m ≥ 1
and that Conditions D(V0 : Vm+1) hold for some collection {Vi}m+1

i=0 of Lyapunov functions.
Then it follows from Lemma 5.1 for (V,W ) = (Vm, Vm+1) that RVm,dm ≤ Vm,dm −Vm+1 with
Vm,dm := Vm + dm1X ≥ Vm, where dm := max{0, (bm − ν(Vm)/ν(1X)}. Equivalently we have
Vm+1 ≤ Vm,dm −RVm,dm , so that we obtain for every N ≥ 1

N∑
n=0

(n+ 1)mRnVm+1 ≤
N∑

n=0

(n+ 1)mRnVm,dm −
N+1∑
n=0

nmRnVm,dm

≤
N∑

n=0

[
(n+ 1)m − nm

]
RnVm,dm =

m−1∑
j=0

(
m

j

) N∑
n=0

nj RnVm,dm

≤
(
1 + dm

)m−1∑
j=0

(
m

j

) N∑
n=0

nj RnVj+1

≤
(
1 + dm

)(m−1∑
j=0

(
m

j

)
Dj

)
V0 = DmV0

using the binomial expansion and Vm,dm ≤ (1 + dm)Vm ≤ (1 + dm)Vj+1 for j = 0, . . . ,m− 1,
the induction hypothesis, and using finally the definition of Dm. This gives Inequalities (9a)
at order m + 1. Finally (9b) follows from (9a). Indeed we have ν(V0) < ∞ since, for some
x ∈ S, we have from Assumption (S): ν(V0) ≤ (PV0)(x) ≤ V0(x)− V1(x) + b0 <∞.

5.2 Proof of Theorem 2.2

Let P satisfy Conditions (S) and D(V0 : Vm) for some collection {Vi}mi=0 of Lyapunov func-
tions with m ≥ 2. Recall that ϕS := 1S − π(1S)1X. For every i ∈ {0, . . . ,m− 2} set:

∀N ≥ 1, ∀x ∈ X, Φi,N (x) :=

N∑
n=0

(n+ 1)i
∣∣(PnϕS

)
(x)

∣∣. (30)

The following lemma plays a crucial role to prove Theorem 2.2.

Lemma 5.2 Assume that P satisfies Conditions (S) and D(V0 : Vℓ) for some collection
{Vi}ℓi=0 of Lyapunov functions with ℓ ≥ 2. Let (gn)n≥0 ∈ B N

Vℓ
and ψ ∈ BVℓ

be such that
|gn| ≤ ψ ≤ Vℓ and π(gn) = 0 for every n ≥ 0. Then we have for every N ≥ 1 (with the
standard convention

∑0
j=1 = 0)

N∑
n=0

(n+ 1)ℓ−2
∣∣Pngn

∣∣ ≤ Dℓ−2 V0 +

( +∞∑
k=1

ν(Rk−1ψ)

)
Φℓ−2,N

+ ν(V0)

[ ℓ−2∑
j=1

(
ℓ− 2

j

)
Dj Φℓ−2−j,N + π(1S)Eℓ−1 1X

]
. (31)
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Proof of Theorem 2.2. Note that Φi,N ≤ Φi for every N ≥ 1, with Φi given in (11). If
g ∈ BVm is such that ∥g∥Vm ≤ 1 and π(g) = 0, then Inequality (14) in [0,+∞] with Wm given
in (16) directly follows from Inequality (31) applied to ℓ := m, gn = g, ψ = Vm, and from

+∞∑
k=1

ν(Rk−1Vm) ≤
+∞∑
k=1

ν(Rk−1V1) ≤ D0 ν(V0) (32)

thanks to (9b) applied with i = 1. If π(g) ̸= 0, replace g with g − π(g)1X.

Next, to prove Inequality (15), recall that θm = 1 + π(Vm)∥1X∥Vm , and first note that

∀h ∈ BVm , ∥h− π(h)1X∥Vm ≤ θm∥h∥Vm .

Now let (hn)n≥0 ∈ B N
Vm

be such that ∥hn∥Vm ≤ 1 and set fn := hn−π(hn)1X. For any n ≥ 0,
we have ∥fn∥Vm ≤ θm, so that gn := fn/θm is such that |gn| ≤ Vm and π(gn) = π(fn) = 0.
Then, applying Inequality (31) to ℓ := m, ψ = Vm, we obtain that

∀x ∈ X, ∀N ≥ 1,
N∑

n=0

(n+ 1)m−2
∣∣(Pnhn)(x)− π(hn)

∣∣ ≤ θmWm(x)

using again (32). Taking the supremum bound over the functions h0, . . . , hN , we obtain that

∀x ∈ X, ∀N ≥ 1,
N∑

n=0

(n+ 1)m−2∥Pn(x, ·)− π
∥∥′
Vm

≤ θmWm(x)

from which we deduce (15).

Now assume that π(1S) > 1/2. Then we have:

+∞∑
k=1

ν
(
Rk−1|ϕS |

)
= 2π(1Sc) < 1. (33)

Indeed we have ϕS = (1 − π(1S))1S − π(1S)1Sc , so that |ϕS | = (1 − π(1S))1S + π(1S)1Sc .
Recall that µ(1S) = 1 and π = π(1S)µ (see (5)). Thus

+∞∑
k=1

ν
(
Rk−1|ϕS |

)
= (1− π(1S))µ(1S) + π(1S)µ(1Sc) = 1− π(1S) + π(1Sc) = 2π(1Sc).

This proves (33).

Observe that Assumptions D(V0 : Vm) obviously imply that, for every i = 0, . . . ,m − 2,
Assumptions D(V0 : Vi+2) hold too. Therefore, for any i = 0, . . . ,m − 2, it follows from
Inequality (31) with ℓ = i+ 2 applied to gn := ϕS , ψ := |ϕS |, and from (33) that(

1− 2π(1Sc)
)
Φi,N ≤ Di V0 + ν(V0)

[ i∑
j=1

(
i

j

)
Dj Φi−j,N + π(1S)Ei+1 1X

]
.

Recall that
∑0

j=1 = 0 by convention in (31). When N→+∞, the previous inequality for
i = 0 shows that the series Φ0 is convergent and satisfies (17) for i = 0. Next this inequality
for i ∈ {1, . . . ,m − 2} ensures that the series Φi is convergent from the convergence of the
(Φj)

i−1
j=0, and that Φi satisfies Inequality (17). The proof of Theorem 2.2 is complete, provided

that Lemma 5.2 is proved. □

14



Proof of Lemma 5.2. Let (gn)n≥0 ∈ B N
Vℓ

and ψ ∈ BVℓ
be such that |gn| ≤ ψ ≤ Vℓ and

π(gn) = 0 for every n ≥ 0. Note that µ(gn) :=
∑+∞

k=1 ν(R
k−1gn) = 0 since π(gn) = 0

(see (5)). Then we get from Formula (6) and
∑n

k=1 ν(R
k−1gn) = −

∑+∞
k=n+1 ν(R

k−1gn) with

the convention
∑0

k=1 = 0

∀n ≥ 0, Pngn = Rngn +
n∑

k=1

ν(Rk−1gn)P
n−k1S

= Rngn +

n∑
k=1

ν(Rk−1gn)P
n−kϕS − π(1S)

( +∞∑
k=n+1

ν(Rk−1gn)

)
1X. (34)

First, using the positivity of R and |gn| ≤ Vℓ ≤ Vℓ−1, it follows from (9a) with i = ℓ− 1 that

AN :=
N∑

n=0

(n+1)ℓ−2 |Rngn| ≤
+∞∑
n=0

(n+1)ℓ−2Rn|gn| ≤
+∞∑
n=0

(n+1)ℓ−2RnVℓ−1 ≤ Dℓ−2 V0. (35)

Second, using again the convention
∑0

k=1 = 0 and the inequality |gn| ≤ ψ, we have

BN :=
N∑

n=0

(n+ 1)ℓ−2

∣∣∣∣ n∑
k=1

ν(Rk−1gn)P
n−kϕS

∣∣∣∣ ≤
N∑

n=0

(n+ 1)ℓ−2
n∑

k=1

ν(Rk−1|gn|)
∣∣Pn−kϕS

∣∣
=

N∑
k=1

ν(Rk−1|gn|)
N∑

n=k

(n+ 1)ℓ−2
∣∣Pn−kϕS

∣∣
≤

N∑
k=1

ν(Rk−1ψ)
N∑

n=0

(n+ 1 + k)ℓ−2
∣∣PnϕS

∣∣
=

ℓ−2∑
j=0

(
ℓ− 2

j

)( N∑
k=1

kj ν(Rk−1ψ)

)
Φℓ−2−j,N

≤
ℓ−2∑
j=0

(
ℓ− 2

j

)( +∞∑
k=1

kj ν(Rk−1ψ)

)
Φℓ−2−j,N

where the Φi,N ’s are defined in (30). Then, separating the term for j = 0 in the last sum and
using ψ ≤ Vℓ ≤ Vj+1 for j = 1, . . . , ℓ− 2, it follows from (9b) that

BN ≤
( +∞∑

k=1

ν(Rk−1ψ)

)
Φℓ−2,N + ν(V0)

ℓ−2∑
j=1

(
ℓ− 2

j

)
Dj Φℓ−2−j,N . (36)
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Third, recall that, for any k ≥ 1, Σℓ−2
k :=

∑k
n=1 n

ℓ−2 =
∑ℓ−1

j=1 aj,ℓ k
j from (12). Then

CN := π(1S)

( N∑
n=0

(n+ 1)ℓ−2

∣∣∣∣ +∞∑
k=n+1

ν(Rk−1gn)

∣∣∣∣)1X
≤ π(1S)

( +∞∑
n=0

(n+ 1)ℓ−2
+∞∑

k=n+1

ν(Rk−1|gn|)
)
1X

≤ π(1S)

( +∞∑
n=0

(n+ 1)ℓ−2
+∞∑

k=n+1

ν(Rk−1Vℓ)

)
1X = π(1S)

( +∞∑
k=1

ν(Rk−1Vℓ)

k∑
n=1

nℓ−2

)
1X

≤ π(1S)

( ℓ−1∑
j=1

aj,ℓ

+∞∑
k=1

kj ν(Rk−1Vℓ)

)
1X

≤ π(1S)ν(V0)

( ℓ−1∑
j=1

aj,ℓDj

)
1X = π(1S) ν(V0)Eℓ−11X (37)

using (9b) (note that |gn| ≤ Vℓ ≤ Vj+1 for j = 1, . . . , ℓ− 1) and the definition of Eℓ−1 in (13).

Finally, from the triangular inequality applied to (34), we obtain that

N∑
n=0

(n+ 1)ℓ−2|Pngn| ≤ AN +BN + CN .

Therefore Inequality (31) follows from (35)-(37). The proof of Lemma 5.2 is complete. □
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[HL24b] L. Hervé and J. Ledoux. Markov kernels under minorization and modulated drift
conditions. hal-04753237, 2024.

[Jer16] D. Jerison. The Drift and Minorization Method for Reversible Markov Chains.
PhD thesis, Stanford University, 2016.

[JR02] S. F. Jarner and G. O. Roberts. Polynomial convergence rates of Markov chains.
Ann. Appl. Probab., 12(1):224 – 247, 2002.

[JT02] S. F. Jarner and R. L. Tweedie. Convergence rates and moments of Markov
chains associated with the mean of Dirichlet processes. Stochastic Process. Appl.,
101(2):257–271, 2002.

[JT03] S. F. Jarner and R. L. Tweedie. Necessary conditions for geometric and polynomial
ergodicity of random-walk-type. Bernoulli, 9(4):559 – 578, 2003.

[LH07] Y. Y. Liu and Z. T. Hou. Explicit convergence rates of the embedded M/G/1
queue. Acta Math. Sin. (Engl. Ser.), 23(7):1289–1296, 2007.

[LH12] X. Li and Z. Hou. Subgeometric rates of convergence of the GI/G/1 queueing
system. Acta Math. Sci. Ser. B (Engl. Ed.), 32(5):1983–1996, 2012.

[MT09] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Cambridge
University Press, 2th edition, 2009.

[NT83] E. Nummelin and P. Tuominen. The rate of convergence in Orey’s theorem for
Harris recurrent Markov chains with applications to renewal theory. Stochastic
Process. Appl., 15(3):295–311, 1983.

[Num84] E. Nummelin. General Irreducible Markov Chains and Nonnegative Operators.
Cambridge University Press, Cambridge, 1984.

[QH21] Q. Qin and J. P. Hobert. On the limitations of single-step drift and minorization
in Markov chain convergence analysis. Ann. Appl. Probab., 31(4):1633–1659, 2021.

17

https://hal.archives-ouvertes.fr/hal-04259531
https://hal.science/hal-04753237


[QH22] Q. Qin and J. P. Hobert. Wasserstein-based methods for convergence complexity
analysis of MCMC with applications. Ann. Appl. Probab., 32(1):124–166, 2022.

[Ros95] J. S. Rosenthal. Minorization conditions and convergence rates for Markov chain
Monte Carlo. J. Amer. Statist. Assoc., 90(430):558–566, 1995.

[TT94] P. Tuominen and R. L. Tweedie. Subgeometric rates of convergence of f -ergodic
Markov chains. Adv. in Appl. Probab., 26(3):775–798, 1994.

A Construction of the Lyapunov functions Vi in Subsection 4.3

Assume that P satisfies Condition (S) and that there exists a Lyapunov function V such that

∃α ∈ [0, 1), ∃b, c > 0, PV ≤ V − c V α + b 1S (38)

with S given in (S). The construction of the Lyapunov functions Vi in D(V0 : Vm) is based
on the following fact. If W is a Lyapunov function and if 0 < θ2 < θ1 < 1 are such that

∃b, c > 0, PW θ1 ≤W θ1 − cW θ2 + b 1S ,

then ∃b′, c′ > 0, PW θ2 ≤W θ2 − c′W θ3 + b′ 1S with θ3 := 2θ2 − θ1. (39)

Indeed we know from [JR02, Lem. 3.5] that

∀η ∈ (0, 1], ∃bη, cη > 0, PW ηθ1 ≤W ηθ1 − cη (W
θ1)θ2/θ1+η−1 + bη1S .

Then (39) is obtained with η := θ2/θ1 < 1. Next note that α1 = 1− 1/m ≤ α, so that

PV ≤ V − c V α1 + b 1S (40)

from (38). Of course we can replace c with c1 < 1. Recall that m := ⌊(1− α)−1⌋. Then:

� If α1 = 0, i.e. m = 1 or α ∈ [0, 1/2), then D(V0 : V1) holds with V0 := c−1
1 V ≥ V1 := 1X.

� If α1 = 1/2, i.e. m = 2 or α ∈ [1/2, 2/3), then we deduce from (40) and Property (39)
applied to W := V, θ1 = 1, θ2 = α1 that

∃b1, c2 > 0, PV α1 ≤ V α1 − c2 V
α2 + b11S (41)

with α2 := 2α1− 1 = 0. Again note that we can choose c2 < 1. Then the procedure stops,
and Conditions D(V0 : V2) hold with V0 := c−1

1 c−1
2 V ≥ V1 := c−1

2 V α1 ≥ V2 := 1X.

� If α1 > 1/2, then Property (39) can be used recursively to provide inequalities of the form
PV αi−1 ≤ V αi−1 − ci V

αi + bi−11S with ci < 1 and αi = 2αi−1 − αi−2 = (α1 − 1) i + 1.
Actually (39) can only be used until the value i = m since αm = 0 and αi < 0 for i > m.
Then Conditions D(V0 : Vm) hold with Vi given in (29), where ai = [

∏m
k=i+1 ck]

−1.
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