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This paper studies the Multi-Resolution Analyses of multiplic-
ity d (d € N*), that is, the families (V,),cz of closed subspaces
in L%(R) such that V, C V,.,\,V,., = DV,, where Df(x) =
f(2x), and such that there exists a Riesz basis for V of the form
{pi- —k)i=1,....d,k € Z}, with ¢1,...,¢4 € Vo. Using the
Fourier transform, we prove that ®(\) = [;(\),...,d ()] =
H(\/2)®(\/2), where H is in the set .#, of continuous 1-periodic
functions taking values in #(d, C). If d = 1, the definition cor-
responds to the standard Multi-Resolution Analyses, and one can
characterize the regular 1-periodic complex-valued functions H
(called, then, scaling filters) which yield a Multi-Resolution Anal-
ysis. In this paper, we generalize this study to d = 2 by giving
conditions on H € .#, so that there exists & = ‘[dy,....d4] in
L3R, C?) solution of () = H(A/2)$(7/2), and so that the inte-
ger translates of ¢y,...,¢, form a Riesz family. Then, the latter
span the space V, of a Multi-Resolution Analysis of multiplicity
d. We show that the conditions on H focus on the zeros of det H(-)
and on simple spectral hypotheses for the operator Py defined on
My by PuF(N) = HN/2)F(N/2YH(A/2)* + HIN/2 + 1/2)F(A\/2 +
1/2)H(A/2 + 1/2)*. Finally, we explore connections with the or-
der r dyadic interpolation schemes, where r € N*.  © 1994 Academic

Press, Inc.
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1. INTRODUCTION

A Multi-Resolution Analysis is an increasing family, ...
CV,1 CV, CVu...,n € Z, of closed subspaces of
L%(R) with the following properties: (a) U,czV,, is dense in
L3(R) and NuezV, = {0}; (b) V, = D"Vy, where Df(x) =
f(2x); (c) there is a function g € V; (called a scaling
function) such that {g(- — k),k € Z} forms a Riesz basis
for V. Moreover, there exists, in the orthogonal comple-
ment of Vy in Vy, a function  (called the wavelet) such
that {2//2y(2/ - —k), j,k € Z} constitutes an orthonormal
basis for L*(R). The concepts of Multi-Resolution Analy-
sis and wavelet basis have been introduced by Mallat [20]
and Meyer [22]. The scaling function g satisfies g(A) =
mo(\/2)g(\/2) and g(\) = 1) mo(\/2%), where mq is a
1-periodic complex-valued function, such that mg(0) = 1.
Here we use the following convention for the Fourier trans-
form:

ﬂm:AfmeWm

The converse problem is to characterize the 1-periodic
complex-valued functions H such that $(r) = [}
H(\/25) € L%(R), and such that the inverse Fourier trans-
form of ¢, ¢, generates by integer translates an orthonormal
family 5, 7], and more generally a Riesz family [15, 24].
Then H is called a scaling filter: under a mild additional
hypothesis, the space spanned by the (- — k) constitutes
the set Vg of a Multi-Resolution Analysis (with g = ¢ and
mg = H). Recall that, in order to characterize the scaling

filters, the above cited papers use the operator P defined by

r(G)Gea)| 1 (+3):

where f is a complex-valued continuous function defined

2 2

P =|u(3)
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on [0, 1]. The operator P has been introduced in the theory
of Wavelets in [6, 7).

A Multi-Resolution Analysis (V,),cz of multiplicity d =
2 is an increasing family of closed subspaces of 1*(R) sat-
isfying the above statements (a) (b}, and the following con-
dition: there are d functions gi,..., g4 (called scaling func-
tions) such that {g,(-—k),k € Z,i = 1,...,d} is aRiesz basis
for V. We can construct the corresponding wavelets, func-
tions 4y, ..., 4, such that the family {2//24(2/- k), j. k €
Z.i = 1,...,d} forms an orthonormal basis for L*(R) (see
[12]). The standard polynomial interpolation spaces pro-
vide examples of Multi-Resolution Analyses of multiplicity
d = 2 [12, 1]. These examples generalize the ones obtained
for d = | with splines [22]. The above notions are devel-
oped in Section 2.

The main purpose of this paper is to construct Multi-
Resolution Analyses of multiplicity d = 2 by extending
the method of scaling filters. First let g;,....gs be d scal-
ing functions of a Multi-Resolution Analysis of multiplic-
ity d = 2. We prove in Section 3 that g, ..., g4 satisfy the
scaling matrix equation

G(x) =Y MG@2x+k),
keZ

where G(x) = ‘{gi(x),...,gs(x)], and the M, are dxd
matrices. Using the Fourier transform, we obtain G(A\) =

M(O/2)G(\/2), and by induction

o= (3w (3) () (3)woen

where G(\) = 840N and MON) = (1/2) 4ez
eZi")‘kMk.

Conversely, let H be a 1-periodic regular function, taking
values in #(d,C). In this work, we give conditions on H

so that it satisfies the following properties:

81N, ..

(A) For all A € R, the matrix sequence {H(\/2)H(\/4) - -

H(\/2"),n = 1} converges.
(B) There exists a vector X € RY such that

[d10.....8a0)]
() (2 o

is in 12(R, C), and such that the integer translates of the
inverse Fourier transforms ¢y, ..., ¢4 of ¢;,...,d, form a
Riesz family.

If (A) and (B) hold, H is called a scaling d X d matrix
filter. In that case, under mild additional assumptions, if
Vo denotes the space spanned by the integer translates of
&1,..., ¢4, then the family {V, = D"V, n € Z} constitutes
a Multi-Resolution Analysis of multiplicity d (with g; = ¢;
and M = H).

d(\)
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Suppose that H is Holderian—the d?> complex-valued
functions given by the coefficients of H are uniformly Holde-
rian. Then, we prove in Section 5.1 that a sufficient con-
dition for H to verify (A) is that H(0) = diag(1, ya, ..., pg)
with |p;) < 1 fori=2,...,d.

The conditions for (B) are more difficult, and depend on
spectral properties of the operator Py defined by

A A A
Pub ) = H (2) d (2) " (2)
Ao Ao N A
+H(2 +2)F(2+2)H(2+2) '

Here F is a continuous function defined on [0, 1] and taking
values in #(d, C). Of course, if d = 1, we have Py = P. The
use of Py for (A) (B) has been developed in {14]. However,
a recent result of Hennion [13] allowed us to clarify the
spectral study of Py (Section 4), and consequently to sim-
plify the conditions given in [14] (Section 5). In particular,
if H is Holderian, then Py acts on the space of Holderian
matrix functions, and the spectral radius p of Py (on this
space) is an eigenvalue of finite index, v(p). On the same
way, if H is of finite length—H(\) = 3 1_ » €™ H, where
H are d X d matrices—then Py acts on a finite dimensional,
space. In that case, we denote by Py the matrix obtained
from the restriction of Py to this space, by pn the greatest
positive eigenvalue of Py, and by vy the index of py.

Suppose that H is Holderian and satisties H(0) =
diag(l, po, ..., ug) with || < 1 for i = 2,...,d, and
H(1/2)*é, = 0. Let us consider the functions ¢, ..., s
defined by () with x = €. The following properties are
proved in Section S:

A necessary condition for H to be a scaling matrix filter is that p = |
and »(p) = 1. Conversely, if p = | and v(p) = |, then ¢;1 ..... és € LHR).
When H is of finite length, the same statements hold with py, vy instead
of p,v(p), and in addition, ¢,.... ¢4 are compactly supported. The Riesz
family property in (B) is satisfied under additional hypotheses which are
similar to those obtained for d = | in [7, 15]. If det H() has a finite
number of zeros, these hypotheses are very simple.

The Multi-Resolution Analyses of multiplicity d = 2
provide a theoretical framework for order r dyadic inter-
polation schemes, where r € N*. The latter involves con-
structing, from any family of scalars {a;(k).k € Z,j =
0,...,r}, a function f defined on all the dyadic points of
R, and which admits an extension f of class €” on R, such
that fO(k) = a;(k), for all k € Z, and all j € {0,...,r}
(see [21]). Section 6 studies the connection between order
r dyadic interpolation schemes and Multi-Resolution Anal-
yses of multiplicity r + 1.

For d = 1, the operator P is also used to estimate the
regularity of the scaling function ¢ associated to a given
scaling filter H (see, for instance, {8, 15, 24]). In section 7,



MULTI-RESOLUTION ANALYSIS OF MULTIPLICITY D

we investigate this problem for d = 2 by calculating, for
any scaling d X d matrix filter of finite length, the Sobolev
integer coefficients of the scaling functions ¢y, . ... ¢4—that
is s € N* such that

/f: (1+ 1)

X [l«fn (>\)l2 +- 4 IdBJ(A)lz]dx < 400,
2. DEFINITION AND EXAMPLES

OF MULTI-RESOLUTION
ANALYSES OF MULTIPLICITY d

Letd € N*, We denote by (¢, ..., ¢4) the canonical basis
for C4, by (,) the usual Hermitian product on C, and by
[| - || the associated Hermitian norm. Let .#(d, C) be the
space of d X d complex matrices, and let /,; be the idendity
matrix. For any matrix A, we write A* for the adjoint
matrix of A. If A, B are two d X d Hermitian matrices such
that (AX, <) < (BX,x) for all x € C¢, we use the standard
notation A < B.

If (E,]||-|lg) is a Hilbert space, recall that a countable
family {f;, i € I} of vectors in E is a Riesz family if, for
all (¢))icr € [2(1),

—Z|c, <> afillE <€ el

iel i€l i€l

where C > 0 is a constant independant of the ¢;. If the
vectors f; span E, we say that {f;,i € I} is a Riesz basis
for E.

DEFINITION. A family (V,),cz of closed subspaces of
L%(R) is called a Multi-Resolution Analysis of multiplicity d
if it satisfies the following properties:

1. ﬂnEZ V,, = {O} and UnEZ V,, = lZ(R).

2.V, CVun.

3. V1 = DV, where Df(x) = f(2x).

4. There exist in Vg d functions g, ..., g4 (called scaling
functions) such that the family {g{-—k).k € Z,i = 1,....d}
forms a Riesz basis for Vy.

ExaMPLE 1. Let (V,),cz be a Multi-Resolution Analysis
of multiplicity 1, and let ¢ and ¢ be. respectively, the scal-
ing function and the wavelet. Define 7 = V,, and 7, =
D% o for all n € Z. We know that {¢(- — k), y(- — k), k € Z}
forms a Riesz basis for #y. Therefore the family (7,),cz
is a Multi-Resolution Analysis of multiplicity 2.

Of course we may choose another basis for 7. For in-
stance if (V,),ez is the Multi-Resolution Analysis of multi-
plicity 1 with respect to the quadratic splines [22], then 7
also admits the Riesz basis {g;(- —k).k € Z,i = 0, 1} where

gi(x) = pi() L1 (o) + (=1 pi (=) 119 (x), =01,

301
with
pox) = (1= 2x%) g (1) + 20 = 1) 12 (),

3 1 s
p1(x) =x (1 - E’C) Lio.1/2; () + 5(1 = 17 I ).

Note that gi" (k) = &, b0, for all i,j € {0.1} and k € Z,

where 6 denotes the usual Kronecker’s symbol. Thus every
function f in 7o can be expressed as the sum

S fmgolc -k + > f (k) gi(x —k).

keZ keZ

f) =

EXAMPLE 2. HERMITE INTERPOLATION. Given an integer
r = 1,E, denotes the space of functions of class ¢! on
R, whose restriction to every interval [k, k + 1],k € Z, co-
incides with a polynomial function of degree < 2r — 1.

If f € E,, then f(-/2) € E,. Otherwise, for all i €
{0,...,r — 1}, there exists an unique function g; in E, such

that gf”(k) = 6;,604 forall j€ {0,....r—1} and all k € Z.

Every function f in E, can be written as

r—1
f=33 g -k,

j=0 keZ

Using an idea of Auscher [3], let us prove that the integer
translates of gp, ..., g,— constitute a Riesz basis for Vy(r) =
E, N L*(R) : due to a classical argument on equivalence of
norms in a finite dimensional space, there is a contant ¢ > 0
such that, for all f € E, and all k € Z,

1= ) 5 _ 5 k+1 ,
LS (1w %) = [ 1wl

€ i=0
r—1

< (|f(i)(k)l2+

=0

FRICERE

Consequently the family {V,(r) = D"(Vy(r)),n € Z} forms
a Multi-Resolution Analysis of multiplicity r.

Construction of Wavelets. Let (V,),cz be a Multi-Reso-
lution Analysis of multiplicity 4. We denote by W,,n € Z,
the orthogonal complement of V,, in V,,,. The definition
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of Multi-Resolution Analysis yields L>(R) = @®,czW,. The
following result is proved in [12].

THEOREM 2.1. There exist d functions yry,..., Yy in Wy

such that

1. {gi(- —k),i = 1,...,d,k € Z} forms an orthonormal
basis for Wy.

2. {2722 - —k),i = 1,....d.j k € Z} forms an or-
thonormal basis for L2(R).

In general, the scaling functions g; and the wavelets
have the same regularity and the same localization (see
[18]). The converse problem, that is to construct d scaling
functions from d functions ¢, ..., 4, satisfying statement
2 of Theorem 2.1, is studied in [2, 19].

3. SCALING MATRIX FILTER

In this work, for F = [f,,..., fa] € L*(R,C?), we set
F = ’[fl,...,fd]. Let {V,,n € Z} be a Multi-Resolution
Analysis of multiplicity d, and let g,,...,gs be d scaling
functions. From V¢ C V), it follows that there exists a fam-
ily of complexes {m, ;(n).i,j = 1,...,d;n € Z} in (1)
such that

d
g0 =YY "m;(kgx+k, Vi=1,...d (1)

j=1 keZ

.....

Equation (1) becomes

G(x) =Y MGQ2x+4k), )
keZ

where G = ‘[g},...,g2]. Using the Fourier transform, this
can be rewritten as

oo-w(3)e(d). o

where

1 .
MO =5 ™M,
2 keZ

It follows that

o= (Bw(2) w(2)o(3). wes

Suppose that G is continuous at 0, and that, for all X € R,
the matrix sequence {M(\/2)-- ‘M /2" n = l}Aconverges
to a d X d matrix Mo (\). Then G(\) = M . (\)G(0). More

LOIC HERVE

generally, for all x € C¥, the C-valued function M .. (-)x is
solution of (3).

Conversely, let H be a continuous 1-periodic function,
defined on R and taking values in .#(d, C). Suppose that H
satisfies the following properties:

(P1) For all A € R, the matrix sequence (H(\/2)---
H(N/2"),=1 converges to a d X d matrix I1,.(\), and Tl
is continuous on R.

(P2) There exists a vector x € C? such that the d func-
tions ¢, .. .. b4, defined by

é1 (N

d(\) = =M< (Nx, NeR, 4)

ba(N)
belong to L%(R), and such that {¢;(- —k),i = 1,...,d,k €
Z} forms a Riesz family, wheEe é1,..., ¢4 are the inverse

Fourier transforms of q§1, oy,
Then, the space V, = linear span{¢,(- —k),i = 1,...,d,

satisfies axioms 2, 3, and 4 of the Multi-Resolution Analysis
definition (with g; = ¢; and G = H). As for axiom I,
note that it holds if the ¢; are continuous and sufficiently
localized (see Section 7.1).

DefFNITION.  If (P1) and (P2) hold, we say that H is a
scaling d X d matrix filter, and the functions ¢,,..., ¢4 de-
fined in (P2) are called the scaling functions (with respect
to H).

Remarks. For the following remarks, we suppose that
(P1) holds, and that ¢, ..., ¢4 given by (4) are in LX(R).
(a) we can define, in L'([0, 1]), the functions

a0 =3 $A+RG;MN+k), ij=1,...d
keZ

and

,,,,,

kez

Observe that O¢(\) is a non-negative Hermitian matrix, and
that @4 is 1-periodic. The following property is proved in
[12): {¢i(- — k)i = 1,...,d,k € Z} forms a Riesz family if
and only if there is a constant ¢ > 0 such that

1
;Id < Op(\) < cly, for almost all A € R. (6)
(b) We have

/)l (1,"_,' ()\) eizmh\d)\ = <¢i’¢j ( e €)> V¢ €Z.

L2(RYXLXR)’
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If a;; € L*([0, 1}), then

-

a;;(\) = Z <¢.‘, ;- e)>L2(R)><L2(R) e ae. (7

teZ

(c) It follows that {¢;(- — k),i = 1,...,d,k € Z} forms
an orthonormal family if and only if ®g(A\) = /; almost
everywhere.

d) If {p:i(- — k),i = 1,...,d.k € Z} is a Riesz fam-
ily, then the integer translates of ¢?,...,¢2, defined by
'[<z§?()\) ..... 432()\)] = [@s(N)]/2&()), form an orthonormal
family.

(e) From 43(%) = H(%)(ﬁ(%), it follows that

k

A kY. /A
s () = H(—+—)<I>(—+—)
2 H(5+3)(5%3
~ (N k\" A k)*
X®(§+2) H(2+2 '

Separating the even and odd indeces in the sum, we obtain

A A AN °
-n(3)ee(3)a ()
OV (2) *\2 2

A1 A ) ()\ I ) *
~+ = ~+-)JH{-+=-] . @
+H(2+2)®“’(2 TRACREY
Necessary Conditions for H to Be a Scaling Matrix Filter
Let H be a continuous scaling d X d matrix filter. For
the two following lemmas, we assume that & is defined by
(4) with x = €}, and that ®g given by (5) is continuous.
In the scalar case, H necessarily satisfies H(1/2) = 0 and

[H(-)|? + |H(- + 1/2)]*> > 0. Let us generalize these two
properties to d = 2.

LeMMA 3.1. The non-negative Hermitian matrix

HNH(\) +H(>\+%)H(>\+%)*

is definite for all A € R. (9)

Assume, in addition, that H(0) = diag(l, ya, ..., pg) with
|pil < 1. From ®(0) = M« (0)e; = €, it follows that
¢1(0) =1, and ¢;(0) = 0 for i = 2,...,d. Moreover:

LemMMA 3.2. We have H(1/2)*é, = 0,$,(k) = box for
all k € Z, and lastly H(1/2)*e; + 0 and u; + 1 for every
i=2,....d

Proof of Lemma 3.1.
such that

By (6), there is a constant ¢ > 0

| - - .
" €113 < (B WD < cllfll3, VAeER VieC
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Consequently, by (8), we obtain
A AN AN
—_ — H —
<®“’(2)H(2) ® (2) x>
A P A A 1Y
SCH I R
<“’ 272) 2T a) 2T L)

| )
= — ||x]l3,
C

hence |[H(\)*x|12 + [[HN + 1/2)*%[13 = (1/¢)]{£]13 for
alxeR 1A

Proof of Lemma 3.2.  Applying identity (8) with A = 0,
we have

(@p(0)e1,€)) = (H(0)O4 (0)H(0)" €),¢))
1 1 I\ . .
+<”(5)@@(5)”(5) ééi).
Since H{0)*¢, = ¢, we have ‘<®¢(I/Z)H(1/2)*é|.
H(1/2)*e)) = 0, thus H(1/2)*¢; = 0. For k € Z,k # 0,

let us set k = 2721 + 1), where p € N and I € Z. By
iteration of $(\) = H(%)&(%), we can deduce that ®(k) =
(HO)WH(1/2)d( + 1/2). Since H(1/2)" ¢, = 0, we obtain
é1(k) = 0.

Now let i € {2,....d}. If g; = 1, then H(1/2)*¢é; = 0.
Suppose that H(1/2)*¢; = 0. Thenﬂthe above argument ap-
plied to the index i implies that ¢;(k) = O for all integer
k # 0. But we also have ¢:(0) = 0. It follows that the
column of index i of ®4(0) is equal to zero, which is im-
possible because of (6). Hence H(1/2)*é; + 0 for every
ie{2,....d},and u; # 1. W

4. OPERATOR Py

4.1. Definitions

Let #(d, C) be the set of d X d complex Hermitian ma-
trices. We write #, (respectively #,) for the space of
1-periodic continuous functions defined on [0, 1] and tak-
ing values in #(d,C) (respectively in #(d,C)). Denoting
by | - |2 the matrix norm associated to || - ||,, we define, on
My and # 4, the norm

IFllo = sup |F(N),.
rel0.1)

We denote by I the function of #, defined by I(\) = I,
for all A € [0,1]. For F,G in #4, we say that F < G if
F(\) = GO\) for all X € [0, 1]. In particular, F € # is said
to be non-negative (respectively positive) if, for all A €
[0, 1], F(A) is a non-negative Hermitian matrix (respectively
a non-negative and definite Hermitian matrix). Then we
write F' = 0 (respectively F > 0).
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DEFINITION. Let H be a matrix function of .#,;. We de-
fine, for all F € .#4,,

A A AT
PuFN=H{Z)F(2 -
HE () H(z) (2)H(2)
A1 Al A1V
+H{z+-)F|z+}H{-+=} . (10
G=2)r(G=3)n(5+3) - 0o
Py is a well-defined bounded operator on .#, and # 4, and
it is positive on #4 (if F = 0 then PyF = 0). Note that,

if ®¢ is continuous, then identity (8) implies that Oy is
Py-invariant.

4.2. Spectral Study of Py

e Case H is a-Holderian. Let « be a real such that 0 <
a =< 1. Let M (respectively &) be the subspace of .#,
(respectively of #;) of functions satisfying the following
condition:

NG A e[O.l],)\*A}

< +9oC.

m(F) = sup{

The spaces #y and #; are equipped with the norm
NEN = mF)+ IFIl .

Observe that F belongs to .#; if the d* scalar functions
given by the coefficients of F are a-Holderian on R (they
belong to .#7). Tt is proved in [13, 17] that the operator P
defined in section 1 has, on #, remarkable spectral prop-
erties. We generalyse this study to d = 2.

Let H € 3. 1t is clear that Py is a well-defined bounded
operator on #5. If n is an eigenvalue of Py on &y, and if
Ker(Py —n)' = Ker(Py —n)*! for some i € N*, we denote
by

vin) = inf{i € N* : Ker (Py — n)' = Ker (Py — n)”l}

the index of 7.

THEOREM 4.1. The spectral radius p of Py on #7 is

given by

p=tim (IPIl)"". an

More precisely, p is an eigenvalue of Py on # 4 admitting a
[finite index, v(p), and there exists a non-negative function I’
in Xy (not identically equal to zero) such that Pyl' = pI'.
The spectral values n of modulus p are finite in number, and
they are eigenvalues of Py on #j such that v(n) < v(p)
and dim Ker(Py — n)"'"" < +0c. Moreover, we have the
decomposition

LOIC HERVE

K = (em:,,Ker (Py —77)"(")) e F,

where & is a subspace in ¥y, stable under Py, and such
that the spectral radius of Py |+ is < p.

Theorem 4.1 for d = 1 is proved in [13, 17]. Replacing
C.R, R, respectively with .#(d, C), #(d, C), and the subset
of #(d,C) of non-negative Hermitian matrices, the proof
for d = 2 is similar, and we only sketch it:

First, since Py is positive on # 4, the number p detined
by (11) is the spectral radius of Py on #,. Let p, be
the spectral radius of Py on #. From [||I|]| = 1 and
[1PEI|1~ < |[|P}I]]], it follows that p < p,. By induction
we easily show that, for all n = | and F € %7,

-1

A+ k
=S ) ()

k=0
+ * o\ *
XH(A k) -~~H()\+A) ’
’)N 2

and
MPuFIl < 27" |PRH« IFI+ R IFN . (12)

where R, is a positive constant that only depends on
n and H. Inequality (12) and the fact that lim,_,
277 |PyI] 0" = 27%p < p, imply that Py is a quasi-
compact operator on #Zy (see [13]). Most of statements in
Theorem 4.1 result from this property. In particular there
exists an eigenvalue ny of Py on # such that [ng]| = p..
Hence p = p,. Moreover the spectral values n > 27“p of
Py on A are finite in number, and they are in fact eigen-
values such that v(n) < +o0 and dim Ker(Py — )" <
+0oc. The existence of # is also guaranteed by the quasi-
compacity of Py. The other properties, which are proved
below in the polynomial case, result from the positivity
of PH.

e Case H is a trigonometric polynomial.
here that

We assume

q
HQ\) =) e iy, (13)
k=p

where p < ¢ are two integers, and the H; are matrices of
HM(d, C). All trigonometric polynomial F, with coefficients
in #(d, C), can be expressed as

F(\) = Z TN p g (2k) + g Z YTk pg 2k + 1)
keZ kezZ

=Fo (2\) + %™ F | (2)).

In particular, we have H(\) = Hy(2\) + ¢*™ H(2)\), and an
easy computation gives
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PuF(\) =2 [Ho(N)Fo(\ Ho(\)"
+HoWF (NH (N + HI (W FoWH ()
+eX™H (W F (N Ho(N) ]

which proves that the set of trigonometric polynomials is
stable under Py.

More precnsely let N = g — p. and define, in #,, the
subspace I N of matrix functions F written as

N
E elm)\kMk’
k=-N

F(\) = My e M(d.C).

We easily prove that 9‘5 is stable under Py. Define the

operator

Py = Pﬁl.f;'s (14)
(which can be considered as a L X L matrix with L = 2N +
1)d(d + 1)/2). For every eigenvalue n of Py, we denote by
vy(n) the index of n—the smallest integer / = 1 such that
Ker(Py — 1) = Ker(Py — n)'*!. Then

THEOREM 4.2. The spectral radius py of Py is equal to
p, and it (s the largest positive eigenvalue of Pn. For every
eigenvalue ny of modulus py, we have vy(ng) < vy(pwn).
Finally, there exists a matrix function T = 0 in T 3’ such
that PyT = er.

Proof The space 77 being equipped with the norm
|| - || <, we denote by | - | .. the associated operator norm.
Because / € 9% and P. Py are positive operators, we ob-
tain [Py|~x = |[PyI||x = ||Pull|, hence py = p.

Let no be an eigenvalue of Py such that |no| = pn, and
consider a non-increasing sequence (f,,), -1 of reals such that
lim,_ +~t; = 1. Define

r,= (le,, —PN)_II.

Since (B—Pn)~" = 31208« VPY for |8] > py. it follows

that
~ NGl TN < (012 = Pw) ' GO < [IGllx T V),
VA €0, 1], VG e f[f.
This yields
[ (nota ~ Pw) ™' G| = NG T

We have lim,_ . (01, — Px)"'|x = +0c, because nq is
an eigenvalue. Hence lim,_.~ ||[,||x = +0oc. Since the
sequence {||T,||x!T,.n = 1} is uniformly bounded in

and dimJ ) < +o00, we may pass to the limit and obtam
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a function T € F7 satisfying I' = 0 and |||} = 1.
From (pyt, — Py) T, 11XT,) = [T, 11301, it follows that
PNF = er.

The index vA(np) is also defined by the condition

'llianx (’n - l)( ‘ (n()tn - PN)7l "x‘ = +00,

Ve=0 vn) — 1.
Using the above inequality, we obtain that lim, ., . (z, —
D (pnty — Pn) s = +0c for I = 0,...,v(ne) — L. But
this means that vx(py) = v(ng). B

5. CHARACTERIZATION OF
SCALING MATRIX FILTERS

5.1. Infinite Matrix Product

The following lemma, which is proved in Appendix A
provides a simple and general condition for (P1).

LEMMA 5.1. Letr H be a function of My, and assume
that there is an invertible d X d matrix M such that
M'HOM = diag(l, pa, ..., pa) with |pi| < 1 or y = 1.
Then the sequence of matrix functions {H(-/2)--- H(-/2"),
n = 1} converges uniformly on all compact set of R to a
matrix function Tl that is continuous on R. Moreover, if

pi = 1, then T1L (WMé; = 0.

Remarks. Let us consider H € .#y satisfying the as-
9umptlons of Lemma 5.1. Let X € R, and define, by (4),
= [$y..... ¢4l Note that & is continuous on R. In addi-
tion:
(a) the growth of &, ...,
Indeed we can write

¢4 is at most polynomial on R.

)Gl

VYANER,Vn =

el =11 |# (5)
k

Define M = ||H||. = sup,¢, |l|H()\)|7 and ¢ = sup,¢|_y |
||<I>()\)||~, (c < +oc because A — d(\) is continuous). For
fixed N\, consider the smallest integer /(A) such that
[\/2'N| < 1/2. The above mequahty applied with n =
I(\) — 1 shows that ||®(\)|[2 < M1 < ¢ [\ |logM

(b) 1If H satisfies (13), then the distributions ¢, ..., ¢,
defined as the inverse Fourier transforms of ..., by, have
compact support in [p,g]. Indeed let T be the map defined
on LX(R, CY) by

q
2 H,F(2x +n).

n=p

TF(x) =

We obtain TF(\) = H(\/2)F(\/2), and T"F(\) = H(\/2)
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H(\/2MF(\/2"). Assume, for convenience, that x = ¢,
in (4), and consider a continuous function F in L3(R, C%),
whose support is in [p,g], and such that F is continuous
with F(0) = ¢,. First it is clear that TF, and more gen-
erally 7"F,n = 1, are compactly supported in [p, gl. Oth-
erwise we have lim,_. , » T"F(\) = ®(\). Consequently the
sequence (T"F),- converges, in the sense of distributions,
to the vector-valued function ® = ‘[¢,,..., ¢4], which has
compact support in [p, g].

5.2. Characterization of Holderian Scaling Matrix Filters

Let us first define periodic points, and extend to the vector
case the notions of orbit and trajectory developed in [7, 17].
We consider the maps Sy and S; defined from [0, 1] to [0,

1} by

SitA— 1()\+i). i=01
2
DEFINITIONS. Let m € N*. We say that a real X\ in [0,
1] is an m-periodic point if there exists a sequence of m
elements ay,...,0n, in {So,S1}, such that o,,---0 /A = A\,
and if m is the smallest integer for which this equality holds.
The family {o|,...,on} is then unique. Define

={or---oNk=1,...,m}.

Remarks. The following properties are proved in [17].

(1) Let m € N*. The p-periodic points, such that p < m,
are the reals k/(27 — 1), where p € {l,...,m} and k €
{0,1,...,27 — 1}.

R IAre[01], welet A = {A+1/2} = x+1/2~
[\ + 1/2). Then X and X cannot be simultaneously periodic
points.

(3) If \ is not periodic, the reals o, - - - 01\, where n € N*

and 54,...,0, € {50,581}, are mutually distinct, and are not
periodic.
DEFINITIONS.  Let H be a function in #, satisfying (9),

and consider A € [0,1],7 € C%,v # 0. Any subset of the
form {o,---a\,n = 1,0, € {So,5}}, where (0,)n=1 is
such that H(o,, - --o\)* - - H(o20N\)*H(o\)*v + 0 for all
n = 1, is called a trajectory of \, with respect to H and v.
The orbit of \, with respect to H and v, is the closure of
the set of all the trajectories of A with respect to H and v.

HyPOTHESIS (Z). Let H € #, satisfying (9). We shall
say that H verifies condition (Z) if, for all v € C%,v # 0,
and all X € [0, 1], the orbit of A, with respect to H and v,
contains 0.

Using the above remarks (2) and (3), we easily prove
that a sufficient condition for (Z) is that det H(-) has a finite
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number, Q, of zeros, and that every m-periodic point A, with
A # 0 and m < Q, verifies the following assumption:

dy € €, such that det H (y + %) + 0. (15)

Resolution of (P2). Leta be areal suchthat0 < a < 1.
We assume here that H € (;, and that there exists an
invertible d X d matrix M such that

M 'HO)M = diag(1, pa, ..., pa)
where]ui <1,Vie{2,....,d}, 16)
and
1 * —1 * ng
H(z) ()6 =0 (7

Note that the assumptions of Lemma 5.1 hold, and that (17)
is a necessary condition for H to be a scaling d X d matrix
filter (see Lemma 3.2, in which we assumed M = I;). Let
us recall that the operator Py is defined by (10), and that
its spectral radius p, given by (11), is an eigenvalue on A7
which admits a finite index, (p).

_ THEOREM 5.2. If p = 1 and v(p) = 1, then the functions
b1, ..., b4 defined by (4) with X = Mé,, belong to LX(R).
Moreover, if Oy, defined by (5), is continuous, and if H
verifies (9) and (Z), then {¢$;(- — k), k€ Z,i=1,...,d} isa
Riesz family if, and only if, det ®(0) * 0.

Proof. Without loss of generality, we may suppose M =

14 in (16) and (17). Let F € #,. 1t is straightforward to
check that

1 1
/ (PyFY(N\)d\ = 2/ HMNFQ)HN di,
0 0

and by induction that

/(P F)(A d7\—2"/H (2n= ) -

XHMNFMNHMN - -H(2"'\)"d\, Vn=

Because H and F are periodic, we may replace fol with

172
1 /2> and we conclude that

/_22 11 N, F (2)‘) M, ()" dx

1
=/0 PLE)O)AN, Vn=1, (18)
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where IT,(\) = H(A/2)---H(\/2"). Since p = 1 and v(p) =
1, it results from theorem 4.1 that M = sup,_,||[Pil|]x <
+0oc. Taking F = I in (18), we have

-1

/~ AL &L, EY A <M, Vi=1...d,

and by Fatou’s lemma,
[ A T 00 6) dn < b,
R

where T (A) = lim,, 4 » T1,(A). Lemma 5.1 and (16) imply
that I'lm*()\)*e’,- = (ﬁi()\)é'l for every i € {1,...,d}. Thus
d,....04 € [LZ(R)

Now let us prove the second statement. We know that Oy
is a non-negative matrix function that is Py-invariant, and
we have to check that ®4 > 0 (that is, ®¢()) is definite fqr
all \). Suppose that there exist A €]0, I[ and v € C?,v # 0,
such that ®(A\)v = 0. Then it results from (8) that det O4(-)
vanishes on the orbit of A with respect to H and v. From
(Z), we conclude that det @4(0) = 0. B

Remarks. (a) We investigate in Section 7 the regularity
of scaling functions.

(b) By Theorem 4.1, if p = 1 and v(p) = 1, then M =
sup,. | 1Pulll< < +oc. Conversely, suppose M < +020.
Then we have p < 1. From (16) and (17), it follows that,
for all F € My, (PLF(0)x;, X)) = (F(0)x],x), where x| =
(M~1)*¢,. Thus we have p = 1, and v(p) = 1. Consequently,
if (16) and (17) hold, the conditions [p = 1,1(p) = 1] and
sup,. | |PalIlls < +00 are equivalent.

(c) In particular, if H satisfies

HMNHMN +H()\+ %)H()\+ %) < Id,

1
VA€ [0,5]. (19)

then é1,....¢qs € L3(R).

(d) Suppose that H is a scaling matrix filter. By (6),
we have Og(\) = cly almost everywhere, with ¢ > 0.
From (8), it follows that (PLI)(\) < 1/¢®g(\) a.e. Thus
sup,. | |Pulll< < +oc. In particular, if (16) and (17) hold,
the conditions p = 1 and »(p) = 1 are necessary for H to
be a scaling matrix filter.

(e) Let,,...,d4 be defined by (4). Suppose that é,.. .,
&4 € L3(R), and that their inverse Fourier transforms ¢ . . .,
¢4 are such that

d
S| sca+1x)7'T", VxeR,  (20)
j=0
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where ¢ > 0 and ¢ > 0 are independent of x. Then the
Fourier series

bij(N) =) <¢f.d>,-(- - €)> XN dj=1,....d

ez

are absolutely convergent, and from Poisson’s formula, it
follows that

S (i —0) A =S g+ hE N+ k) ac.

ez keZ

Oo(A) = Og(7) almost everywhere. Thus ®; = 0, and by
(8), Py®y = Op. The Riesz family property in (P2) holds
if and only if (6) is satisfied with ®¢ instead of @g. In
particular, if the ¢; satify (20), then Theorem 5.2 holds with
0 instead of @4. Furthermore, we have @4(0) = y(0);
that is,

b0 =" (1.6,(—0) = & (k) k).
tez kez
Lj=1,....d (1)
To see (21), observe that the functions #,(x) = >_,c7 bulx+
¢) are periodic, continuous, and that b; ;(0) = ./;1] ik (x)dx.
Since (b, (k))iez is the sequence of Fourier coeflicients of
h,,, we conclude by Parseval’s identity.

5.3. Scaling Matrix Filters of Finite Length

We assume here that H is of the form H(\) = Y7{_ e~ 2"
H,, where p.g € Z,p < q, and H, € M#M(d,C). Let N =
q-p.

Let us denote by Q the number of zeros of det H{-). We
1ssume that every m-periodic point A, with X = Q0 and m <
Q, verifies (15), and that there exists a d X d invertible
matrix M satisfying (16) and (17). Recall that Py denotes
the restriction of Py to 7%, that py is the largest positive
eigenvalue of Py, and vy = vn(py) is the index of py (see
Theorem 4.2).

THEOREM 5.3. Let . ....dq be defined by (4) with 5 =
Me|. A necessary and sufficient condition for H to be a scal-
ing matrix filter is that py = l,vy = 1, H verifies (9) and
det ©4(0) # 0. Then, the functions ¢,, . ... ¢y are compactly
supported in [p, ql.

Proof. First, observe that, if ¢,,...,d, € L3(R), then
their inverse Fourier transforms ¢,...,¢, are compactly
supported in [p,q] (see Section 5.1). From the above re
mark, it follows that ® = ©¢ almost everywhere, and
that ®9(0) = ©4(0). By checking supports, we obtain
(i (- — €)) = 0if [¢] = N. Thus @y € I4. Now let
us prove Theorem 5.3:
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If H is a scaling matrix filter, then we have (9), and ®y =
cl, where ¢ > 0. Thus det ©4(0) = det ®y(0) + 0. By (8),
we obtain Py®g = @9. We conclude that sup,_, | |P¥I ||~ <
+00, and using (16) and (17), that py = 1,vy = | (see Re-
marks (d) and (b) above).

Conversely, if py = 1 and vy = 1, then, applying The-
orem 4.2 and the arguments used in the previous theorem
(yvith Py and 8 instead of Py and @g), we prove that

~

bi...., dq € L2(R), and that @y > 0. H
5.4. Examples

ExXAMPLE 3. Let b,c € C and ¢, f € R such that |e +
fl<1,e+2bf =0,]b| <1/2and e* + f2 < 1/2. Let

cos® T

bsin 27 )
¢8in 2w\ )

HN = ( ¢ + fcos2mA

H satisfies (16) and (17), with M = I;, and (19) (by using
the above assumptions on b, ¢, e, f). Therefore the functions
1. ba given by (4) with X = &) are in L%(R). For instance
iftb =1/2,¢c = 1/4,e = 1/2, and f = —1/4, we have
detH(N) = 1/4cos?n\. Thus H satisties (9) and (15). Oth-
erwise we can show, by an approximation, that 433(1) * 0.
Using Lemma 3.2, we conclude that det@¢(0) = 0. It results
from Theorem 5.3 that H is a scaling matrix filter.

Let (7 ,),cz be a Multi-Resolution Analysis of multi-
plicity 2 (we choose d = 2 for convenience). It is worth
noticing that 7, may also constitute the set V| of a Multi-
Resolution Analysis (V,,),e7 of multiplicity 1. For instance,
if we take in the previous example # = ¢ = /2 and
¢ = —f = 1/2, then the space 7, spanned by the inte-
ger translates of ¢, ¢, is the set V| of the scalar Multi-
Resolution Analysis with respect to the Haar basis. More
precisely, let ¢g = ljo4) and o = ljoas2; — ljis2.1)- The
wavelet yp generates the Haar basis and ¢ is the associ-
ated scaling function (the integer translates of these two
functions form an orthonormal basis for V). Then an easy
computation yields

(500) = r (5o)):

where R(\) is the rotation by w\. The matrix function &4 as-
sociated to ¢, ¢, verifies Op(A) = R(NR(N)* = 1. There-
fore the integer translates of ¢| and ¢» form an orthonormal
basis for V.

ExamMpLE 4. Hermite Interpolation, r = 2 (See Example
2 of Section 2). For i = 0, 1, we obtain

éi (1) = (=1 ri(=x) =10 (x) + 7 (x) 1oy (1)

where ro(x) = (x — 1)*(2x + 1) and r((x) = (x — 1)*x. The
Fourier transforms
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o) = — 12 [(2m)‘3 sin 27 + 2270 " (cos 27\ — 1)]
é1 () =4i [(zm)*3 (2 + cos 2A) — 3(27\) 4 sin 2m] ,

satisfy dp(\) = H(%)qg(%) with

QOSZ A

—gi sin 2w\ )
5 sin 27\ )

1 i

i gCOSZTr)\

H = (

Note that detH(\) = 1/8cos*z\. Thus H verifies (9) and
(15). Consequently, using Theorem 5.3, we again show that
the integer translates of ¢ and ¢, form a Riesz basis for
Vol(2).

ExampLE 5. Hermite Interpolation, r = 3. We have, for
i=0,1,2,

¢ (¥) = pi(x) Lo () + (= 1) pi(—0) 1|19 (x),
where

polx) = — 6x% + 15x% = 10x° + 1,

prix) = =3x8 +8x* —6x* +x,
15 3, 345 1,
2() = — -+ Sxt = St o
p2{(x) 2r 2x 2x + Zr
The Fourier transforms (130,43;,&2 satisfy H(\) = H(%)cﬁ(%)
with i

15, .
cos mA —Rlsmzﬂ)\ 0
Si . 3. .
HQ)) = %_I[Z sin 2w A % —_ %COSZW)\ —nglnzﬂ)\
o P 1t
aCOSZﬂ’)\ —6'—4 sin 27\ i T{)COSZ’H’)\

Since detH(\) = 5.2 %cos®w\, H verifies (9) and (15). Oth-
erwise, we obtain

10 &
@)(b(()):((]) a 0)

0 144

60 o

with a > 0, hence det®4(0) # 0. Therefore we find again
the fact that ¢, ¢, and ¢, generate by integer translates a
Riesz basis for Vy(3).

6. ORDER r DYADIC INTERPOLATION

Consider a family (G,),cn of discrete subgroups of R, n
= 1, such that G; C G,y and G = UG, is dense
in R". Let f be a real-valued function defined on Gg. The
interpolating subdivision scheme allows to extend f, by it-
erative rule, to G(, Gy, ..., Gy, ..., : we obtain, therefore, an
interpolating function defined on G . One of the important
questions is to characterize the schemes, called continuous,
such that every interpolating function has a continuous ex-
tension defined on R” (see [10]). The notion of interpolating
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subdivision schemes, which is prior to the development of
wavelet theory, arises in several fields of pure and applied
mathematics [4, 11, 9, 23].

Let r € N*. The order r interpolating schemes [21] are
a natural generalization of the previous ones: starting from
real-valued functions a,, defined on Gy and indexed by the
multi-indexes a, |a| < r, one wishes to construct a function
£ on G . which admits an extension f of class € defined
on R" such that every 3 f/8x* coincides with a, on G.

In this paper, we consider n = 1 and G, = 27°Z,s € N,
that is. dyadic interpolating schemes. Let us recall that, in
this case. a continuous interpolating scheme (i.e., r = 0)
yields a Multi-Resolution Analysis of multiplicity 1. We
start by giving definitions and simple properties relative
to order r interpolating schemes. Then we study the con-
nection with the Multi-Resolution Analyses of multiplicity
r+ 1.

6.1. Definitions

Let r € N*. We denote by ¢, ....¢, the canonical basis
for R"*! and by D the set of all dyadic reals. Provided
we use vector notations, the results of this section can be
proved as in the case r = 0. Let us start by defining the
dyadic vector interpolation scheme.

DerINITION.  Consider p,g € Z, with p < ¢, and a fam-
ily {C(s.k).s € N,k € Z} of matrices in .#(r + 1,R) such
that C(s. k) = 0 if k & [p.q]. The associated dyadic vector
interpolation scheme (2) is defined as follows: given any
sequence {/f(n), n € Z} of vectors in R™*!. we construct the
vector function F defined on D by the tterative process:

e F(n) = Aln). ifn € 7. )

o FQ2 'n+2"0+D) =3 - Cls.n—k)F(2
0.1.2,.

Fis called the vector interpolating function (by (&) and
from (A(n)),,&z) and we write F = 9(A). Let bo be the se-
quence defined by 6p(0) = 1 and ép(n) = 0 if n € Z,n +
0. Fori = 0,...,r, we easily prove that the r + 1 vec-
tor functions Z(éye;) have bounded support in D N [2p +
1,2¢ + 1], and that every vector interpolating function F =
Tfor ... f+] can be expressed as

“knels=

Fx) = x€D.

ZZf,(k).@ bo€i) (x — k),

i=1 keZ

In order to define the order r dyadic interpolation scheme,
we use the notation
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DEFINITIONS.  We say that (2) is of order r if there exist
r + 1 real-valued functions ¢y, ..., ¢,, at least of class €"
on R, such that, for every integeri = 0,...,r and all x € D,
the equality 2(bpe;)(x) = A_.dn(x) holds. The functions ¢;,
called fundamental interpolating functions with respect to
(2), are compactly supported in [2p + 1,2¢ + 1], and verify

(d),-)m (n) =60, b VYneZVe=0,....r. (22)
Let
do b0
b =1 and & =| :
& b,

It (&) is of order r, then, for all vector interpolating func-
tion F, there exists a real-valued function f of class €” on
R such that A f(x) = F(x) for all x € D, and

= Z Zﬂ”(k)d;,—(x —-k).Vx € R,

=0 ked

f )

the successive derivatives of f (up to r) being computed by
termwise differenciation. For convenience f is still called
interpolating function with respect to (£). Note that f only
depends on the values of its r first derivatives on Z.

Due to the dyadic character of (9), it is natural to require
that, if f is an interpolating function, the same holds for the
function x — f(x/2). We easily check that a necessary and
sufficient condition for this requirement is that

Cls,k) = A "C0.k)A). Vhk=p,. ... q. Vs € N, (23)
where A, = diag(1.2°!.. ... 27",
6.2. Connection with Scaling Matrix Filters

Let us consider a family {C(s.k).s € N.k = p,..., g} of

matrices in #(r + 1, R), satisfying (23), and let (2) be the
associated dyadic interpolation scheme. We define

I I & e :
He () = SA, + EZe“‘”(*“”"C(k) A,

k=p

THEOREM 6.1.  If (Z) is of order r, then the vector func-
tion d¢ satisfies the equation dp(\) = He(N2)Dc(0/2).
Conversely if He is a scaling matrix filter and if its r + 1
scaling functions 7, . . ., T, are at least of class 6", and such
that
(24)

(T.‘)m (n) =6p, -bp, VYnEZVE=0,...,r,
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then (2) is of order r, and its fundamental interpolating
functions are T, ...

Proof. Let us set, for all n € Z,Hy, = 80uAr, Hopst =
C(n)*A,, and H, = [h,(i, j)li j=1, 4. Suppose that (2) is of
order r. We show the equality

() ZH,,@c(r n),

neZ
which, by Fourier transform, is equivalent to the equation
of the theorem. It suffices to check that

AA¢() ZZhAz/ Ad,(x —k), Vi=

keZ j=

Indeed the (r + 1) equalities given by every first line of
the vector identities in (26) give (25). Let i € {0,...,r},
and denote by F;(x) and Gix),x € R, respectively, the left
and the right term of (26). Using the definition of a vector
mterpolatlng scheme, we easily prove that Fi = G; on Z.
Since F and G are both vector interpolating functions, F
and G; are equal on D, and by a continuity argument, equal
on R.

Conversely, suppose that Hc is a scaling matrix filter such
that its  + 1 scaling functions 7¢, ..., 7, are of class €” and
satisfy (24). Then we obtain

sTre

x €R, (25)

(26)

2~ Lo (‘) (2 S92~ (s+l)) = z’: Zz‘ﬂ

j=0 kezZ
() (2(n—k)+ 1
2 W —

5 ) 77 2k), VYseN.

Denoting by W(x) the (r + 1) X (r + 1) matrix, whose column
of index j, for j = 0,...,r, is given by A7 ;(x), the previous
identities are equivalent to the following vector equality:

AAT; (2700 +2764D)

-3 w (2—(";5)3—') AAT(27K), i=0,.. ..
keZ 2

Since 7y, ..., 7, verify equation (1) with respect to m; ;(k) =
h(i, j), it follows that W(x/2)*A, = > ez HiW(x — k)",
hence, by (24), W((21 + 1)/2)* A, = Hyyy = C(D)* A,. This
ensures that 7g,...,7, are the fundamental interpolating
functions associated to the scheme (&), which is, therefore,
of order r. B

Remark. Let 1 € M, , given by I(A) = I,,,, and let
Qc be the operator defined on #, ., by
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A A
Fov= (e (3)r (3)
QcF (\) c\3 >
P | Al
-+ = — - -1
*He (2 2)F (2 " 2))A’
Suppose that Hc is a scaling matrix filter such that its scal-
ing functions 7, ..., 7, are at least of class €”, ans suppose
that / is the unique Qc-invariant function in #4,,, (modulo
a complex factor). Then the 7; satisfy (24).

Indeed, we have Qcl = I, and using Poisson’s formula,
we easily check that the matrix function I" given by

Znel 70 (n)eZirrn)\ Znez Tg) (f’l) e?_irmk
ro) = : : :

ZIIEZ T, (n) eZiTm)\ ZnEZ Tr (n)eZmnx

A €10,1].

is invariant by Qc¢. More precisely, since I' is of finite
length, Q¢ acts on a finite dimensional space, and the ac-
tion of Q¢ in this space can be represented by a matrix Qy.
Consequently, in order to prove that I" = [/, it suffices to
check that dimKer(Qy — Id) = 1.

6.3. Examples

ExamMpPLE 6. The following family of order 1 interpo-
lating schemes is drawn from [21]. For all real u, we set
p' = (1 = p)/2, and we consider the family {C,(s,k),s €
N,k € Z} of 22 matrices defined by (23) with C,(0,k) = 0

for k = —1,0, and
1 1
co-n=(3 =)
a ! ul ﬂl
C,0,0 =( 2 §,)
(0,0 K M

We denote by (Z,,) the associated vector dyadic interpolat-
ing scheme. It is shown in [21] that, if |2 — x| < 1, then
(2,) is of order 1. More precisely, in this case, the fun-
damental interpolating functions ¢, and ¢, , are of class
%¥ for all real 8 < 2 (the derivatives of ¢g, and ¢y, are
(8 — 1)-Holderian). Examples of interpolating functlons are
given in appendix B. The Fourier transforms ¢0 . and dbl “
satisfy the scaling matrix equation with

H. ) = cos? A — £ sin 27\
“ gsin2mn ! (% + c0527r)\) '

2
If u = 3/2, we find again example 2 of section 2. The value
p = 2 corresponds to the quadratic splines (see Example 1
in Sect. 2). For these two cases the integer translates of the
fundamental interpolating functions form a Riesz family.
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This property generalizes as follows: If |2 — u| < 1, then
o, and ¢y, are the scaling functions of a Multi-Resolution
Analysis of multiplicity 2 (see [14]).

ExaMPLE 7. Let us return to Example 5 of Section 5.4:
the scaling functions ¢, ¢, ¢; also constitute the funda-
mental interpolating functions of the order 2 dyadic inter-
polation scheme (2) associated to the family {C(s,k),s €
N, k € Z} of 3 X 3 matrices defined by (23) with C(0,k) = 0
for k + —1,0, and

1 3 L
2 32 64

coon=|-2 -1 -4
3 I
0 -3 -3
1 5 s
2 T3 64
co-D=|%Y -%i %
3 1
o0 7 -

Remark. We may consider, more generally, the p-adic
interpolating schemes with p = 3. For example, in the tri-
adic case, the scheme is given by the two following iterative
formulae:

{ F(37 430} =5, C ron—kFG7K)
F(3'n+2:3"Y) =5, Ca(rn =K F(37k).

The Multi-Resolution Analysis of multiplicity 1, associated
to the cubic splines, yields this type of interpolation. W

7. CONCLUSION

We conclude this work by dealing with some additional
questions on Multi-Resolution Analysis of multiplicity d =
2. In particular we show that the wavelet bases (for d =
2) also provide unconditional bases for many other spaces
than 1>(R), and we present a simple computation of Sobolev
(integer) coefficients of the scaling functions associated to
scaling matrix filters of finite length.

7.1. Asymptotic Conditions for Multi-Resolution Analyses

Let H be a scaling d X d matrix filter, and ¢,,..., ¢, the

associated scaling functions. We set, as usual,

Vo =span{¢>1 (-—k),...,¢d('—k),k EZ},

and V, = D"V, for every n € Z. As it was mentioned
in remark (d) of section 3, we may suppose that {¢(- —
k),....¢q(- — k),k € Z} is an orthonormal basis for V.
The family (V,),cz satisfies the statements 2, 3, 4 of the
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Multi-Resolution Analysis definition. Condition 1 can be
rewritten in this way:

lim R,f =0 and lim R, f=f
H— — X -+

inl>(R),Vf e l>(R), (27)
where R, is the orthogonal projection on V. It is straight-
forward to check that the kernel of R, is: A,(x,y) = 2"
S S her 62" — K)i(2"y — k). By using classical argu-
ments on approximations of identity, it is proved in [22]
that (27) holds if the functions ¢; are continuous on R, and
verifies (20). In this case (V,),c7z forms a Multi-Resolution
Analysis of multiplicity 4. If the functions ¢; are supposed
more regular and localized, then (27) remains valid in others
spaces (Sobolev spaces for instance) (see [22]).

7.2. Wavelets Basis Properties

Let (V,)ncz be a Multi-Resolution Analysis of multiplic-
ity d. We denote by ,..., ¢, (simply & if d = 1) the as-
sociated wavelets (see Section 2). It is shown in [18] that,
in most of cases, the wavelets ; have the same regularity
and the same localization as the ¢;. From Theorem 2.1, it
follows that

! d
fy=lim > > 2 (f (¥ ~k)) g (Px - k)

jhk=—n i=1

inl*>(R),Vf € L2(R).

When d = 1, this convergence, and more generally, the un-
conditional basis property, extend to a lot of spaces [22]
(Sobolev spaces, Holderian functions spaces, ...). In order
to prove these statements, one considers the kernel K, of
the operator defined by the above sum, that is, K,(x,y) =
ke 0 2/9(2/x — k)W(2/y — k), and one uses the theory of
Zygmund—Calderon’s operators, which rests on the follow-
ing properties of K, :

K, (x| <Clx—y] ",
0K, (x,v) . ‘ 0K, (x,y)

-2
x Dy <sClx~-y| ", x=y

Recall that these inequalities hold from the moment that the
wavelet ¢ is sufficiently regular and localized. It is straight-
forward to check that these tools remain valid for d = 2 if
every ¢; satisfies the same conditions as . Consequently
the properties of unconditional wavelet basis generalize to
d=2

7.3. Algebraic Properties for Scaling Matrix Filters

Let H be a 1-periodic continuous complex-valued func-
tion. An algebraic assumption is a necessary condition
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for H to be a scaling filter such that the associated scal-
ing function ¢ satisfies a given property. For example the
Riesz family property in (P2) implies that H(1/2) = 0, and
[H())? + [H( + 1/2)|?> > 0 (see Section 3). If we want
{#(-—k), k € Z} to constitute an orthonormal family, then H
must verify the QMF condition: |H()|>+|H(-+1/2)|* = 1.
On the same way, if it is required that ¢(n) = &, for every
integer n (interpolating condition), then H must be chosen
such that H(:) + H(- + 1/2) = 1.

The converse problem is to check if the previous con-
ditions on H yield the desired requirements on ¢. This is
done in [5, 7] for the QMF case, in [15, 24] for the Riesz ba-
sis property, and in [25, 16] for the interpolating condition.
For instance, suppose that H is a regular QMF, and con-
sider the operator P defined in Section 1. We have Pl = 1.
It is proved in [7] that a necessary and sufficient condition
for {¢(- — k),k € Z} to constitute an orthonormal family
is that the constant functions are the only 1-periodic con-
tinuous P-invariant functions. Moreover this statement is
equivalent to a simple condition on the set Z of zeros of H
(if Z is finite in number, this condition is given by (15) with
d=1)

Let us consider the corresponding question for d = 2
If H is a scaling matrix filter of .#, such that the scaling
functions ¢y,...,¢, generate by integer translates an or-
thonormal family, then we have ©4(:) = /;. Using (8), this
implies the necessary condition

Houo () u(+3) =n o9

We have the following converse result: let H € #; satisfy-
ing (28), (16), and (17) with M = /. Consider the functions
qS[,.. , by defined by (4) with X = ¢|. That b1.... by are
in L2(R) results from (19). If, in addition, det H(-) has
a finite number, Q, of zeros, and if H satisfies (15), then
{d:i(- —Kk),i =1,...,d, k € Z} constitutes an orthonormal
family if and only if @4(0) = /.

To see that, it suffices to prove that, if F.G are Py-
invariant and such that F(0) = G(0), then F = G (see [14
Sect. 5.2]).

7.4. Sobolev Integer Coefficients for Scaling Functions

Let us first focus on the case d = 1 by considering a
scaling filter H and the scaling function ¢ defined by $(X) =
;=1 H(\/2%). The study of regularity of ¢ is based on the
condition H(1/2) = 0. This implies that H is of the form
HO\) = (1 + €2™)/2)v(\), where r € N* and «(1/2) + 0,
and that (A) = ™ MsinmA)/wNY Tl v(N\/2%). Therefore,
the problem amounts to studying the growth of this infinite
product (see [8, 24, 15]).

Now let H be a scaling d X d matrix filter of the form
(13), satisfying (16) and (17), and assume that the scaling
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functions ¢,..., ¢, are defined by (4) with x = ¢;. Of
course, since the matrix product in #(d, C) is not commu-
tative, the above statements don’t extend to d = 2. However
we show that a more precise spectral study of Py provides
conditions for ¢,...,¢;, € HP,p € N*, and where H?
denotes the usual Sobolev space defined by the condition
(1 + |\|P)f(\) € L2(R). Let us recall that Py is the restric-
tion of Py to the finite-dimensional space 7.

We proved in section 5 that the matrix function Og, de-
fined by (5), is almost everywhere equal to ©, € 75,
which is a positive Py-invariant function. We generalize
this remark by considering the matrix-valued function (:),,
formally defined, for p € N*, by

@, N = IN+TEN+KDON K
kez

If ¢1.....¢g € H”, then (:),,(A) 1s well defined for almost
all A € R. By Poisson’s formula, (:),, 1s almost everywhere
equal to a function of J, which we denote by ®,. More-
over, we obtain by using the matrix scaling equation

ARG

ke?
s (N kY. (N kYT N kY
X ¢ —+—) (~+~) (7+7).
(2 2 q)z 2 H 2 2

Separating the even and odd indeces, it follows that
Py®, = 2777@,. We have the following converse result.

PropPOSITION 7.1. Let p € N*. Su Iepose that there ex-
ists a non-negative function U of Ty satisfying PyT' =
27T and T(\) = CI\|*P1y for all \ in some neighbor-
hood of 0, C being a positive constant independant of \.
Then, ¢y, ....pg € HP.

ALk
2

0,0 5

Proof. From (18) applied with F =T, it follows that

9r-1

[ n,,(x)r( )n,,(x) dr

]
2*211[)/ r(}\)d)\ - 2_2an'
0

hence, for each i € {1...., d},
ol 2” 2p N . .
[ e l r(3))mwamm ) a
_on )\ 2"
= M’

Using Fatou’s lemma the assumption on T', and the fact
that lim, ..~ I1,(\)"e; = = $i(\)¢; (lemma 5.1), it follows
that fRI)\|2"|¢,-()\)|2d>\ <C'M &
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al; () = <e,,(HH(2k)) é:

Remark. Suppose d = 2. If ¢y, 2 € H”, p € N, then
there exists an integer € = p such that @,(\) = C|\|%1,
for all A in some neighborhood of 0,C being a positive
constant.

Indeed, using Lemma 3.2, we obtain

0,(0) =0,(0) = (g 2)

with 8 = Yi.0lk|?P|da(k)|2 > 0 (if B = 0O, then det
©4(0) = 0, but this is forbidden by the Riesz basis prop-
erty). For A € {[0,1], we define a(\) and &()), respec-
tively, as the smallest and the largest eigenvalue of the
non-negative Hermitian matrix ®,(\). We have a(A\)b(\) =
det®,(A), hence a(\) ~ ﬁ_ldet(%,,()\) at 0. Note that det
0,()) is a R -valued trigonometric polynomial equal to 0
at 0. Thus there exist C > 0 and ¢ € N* such that det
0,(\) =~ C\* at 0.

Suppose € < p. Then the above identity applied with ©,
instead of " implies that

2! 76 | ¥ N . - x =
/:znil “‘IJ <( Y @)p(?))nn()\) €,’,n”()\) ei>

X d\ =272 ON,
N being a positive constant. We conclude that
Ja 1 iN)2dN = O for i = 1,2. This is, of course, im-
possible. Thus ¢ =

APPENDIX A: PROOF OF LEMMA 5.1

Define G(\) = M 'H(\M. We have TT;_ H(\/2*) =
MI[IT;_,G(\/25)IM ! 1t is, therefore, sufficient to prove the
lemma with M =1, We let u; = 1.

Note that |H(0)|> = 1, and ||H(\)]|, — 1] =< C|\|*. Con-
sider a real number A > 0. We obtain for all A € [—A, A],

1 ()] e |12 (1, -

This implies the uniform convergence on [—A, A] of the
series D - [In|H(A/2¥)[2], and thus of the sequence
{TI;_,|H(\/2%)|2,n = 1} which is, therefore, uniformly
bounded on [—A, A] by a constant D > 0. Define, for
nzlandi,j=1,...,d,

afj(\) = <HH( )e,,e,>.

For ¢ > p, we write

o ({2 {fin () )

C—.

In ek

—

21 k—+~

| =

and
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From Cauchy-Schwarz’s inequality in C?, it follows that

laf; (0 -

ul Pal; 0] <
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FIG. 1.

N Y.
X (H (Eﬁi)ej_#jej)

q-—p—1 A -
el " (1 ()6

—1é).
Let H(\) = [h; j(M\)); j=1...4. Then
& AN . q-p-
IT H(y)ej—ﬂj ¢
k:[)+] 2
? LA -
=D Z ‘H(?)ej—pjej
k=p+1 2
q 2 d 2
A A
<03 || () -] +37 o (3)
k=p+1 i=1
i*]

We know that h; j(0) = u;é;;, and that h;; is a-Holderian.

Thus,
2 d 2 2
A )y CA-®
b () ]+ 20 [ ()] = S
i*j
VA e [—A4 A].

Consequently, for all real ¢ > 0, we may choose a suffi-
ciently large integer N so that

Vg>p=N,VNe[-AA4],
lai; ) = Tal; V| < e

If u; = 1, then Cauchy’s property in C involves that (a7 ;)=
converges uniformly on [—A, A]. Because the sequence
(] j)n=1 is uniformly bounded on [—A, A}, if |u;| < 1, then
(a; Jn=1 converges uniformly to O on [-A, A] (for every
i =1,...,d), which ends the proof of the lemma.

APPENDIX B: ILLUSTRATIONS OF ORDER
1 INTERPOLATING SCHEMES

InFig. | we give, for the values 4 = 1.5, 2, 1.1, and 2.9 of
Example 6 (see Section 6.3), the interpolating function and
its derivative on [0, 1], obtained from the initial conditions
onZ: f(0) = f'(0) = 0,f(1) = 2,f(1) =0, and f(n) =
f'(n) = 0if n # O,n # 1. These examples are derived
from [21].
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