Multi-Resolution Analysis of Multiplicity *d*: Applications to Dyadic Interpolation

Loïc Hervé

I.R.M.A.R., Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France

Communicated by M. V. Wickerhauser

Received March 9, 1993; revised February 4, 1994

This paper studies the Multi-Resolution Analyses of multiplicity d ($d \in \mathbb{N}^*$), that is, the families $(V_n)_{n \in \mathbb{Z}}$ of closed subspaces in $\mathbb{L}^2(\mathbb{R})$ such that $V_n \subset V_{n+1}, V_{n+1} = DV_n$, where Df(x) =f(2x), and such that there exists a Riesz basis for V_0 of the form $\{\phi_i(\cdot - k), i = 1, ..., d, k \in \mathbb{Z}\}$, with $\phi_1, ..., \phi_d \in V_0$. Using the Fourier transform, we prove that $\hat{\Phi}(\lambda) = {}^{t}[\hat{\phi}_{1}(\lambda), \dots, \hat{\phi}_{d}(\lambda)] =$ $H(\lambda/2)\hat{\Phi}(\lambda/2)$, where H is in the set \mathcal{M}_d of continuous 1-periodic functions taking values in $\mathcal{M}(d,\mathbb{C})$. If d=1, the definition corresponds to the standard Multi-Resolution Analyses, and one can characterize the regular 1-periodic complex-valued functions H (called, then, scaling filters) which yield a Multi-Resolution Analysis. In this paper, we generalize this study to $d \ge 2$ by giving conditions on $H \in \mathcal{M}_d$ so that there exists $\hat{\Phi} = [\hat{\phi}_1, \dots, \hat{\phi}_d]$ in $\mathbb{L}^2(\mathbb{R},\mathbb{C}^d)$ solution of $\hat{\Phi}(\lambda) = H(\lambda/2)\hat{\Phi}(\lambda/2)$, and so that the integer translates of ϕ_1, \dots, ϕ_d form a Riesz family. Then, the latter span the space V_0 of a Multi-Resolution Analysis of multiplicity d. We show that the conditions on H focus on the zeros of det $H(\cdot)$ and on simple spectral hypotheses for the operator P_H defined on \mathcal{M}_d by $P_H F(\lambda) = H(\lambda/2) F(\lambda/2) H(\lambda/2)^* + H(\lambda/2 + 1/2) F(\lambda/2 + 1/2) F(\lambda/2) H(\lambda/2)^* + H(\lambda/2 + 1/2) F(\lambda/2)^* + H(\lambda/2)^* + H(\lambda/2)^*$ $1/2)H(\lambda/2 + 1/2)^*$. Finally, we explore connections with the order r dyadic interpolation schemes, where $r \in \mathbb{N}^*$. © 1994 Academic Press, Inc

Contents.

- 1. Introduction.
- Definition and examples of Multi-Resolution Analyses of multiplicity d ≥ 2.
- 3. Scaling matrix filter.
- 4. Operator P_H. 4.1. Definition. 4.2. Spectral study of P_H.
- Characterization of scaling matrix filters.
 Infinite matrix product.
 Characterization of Holderian scaling matrix filters.
 Scaling matrix filters of finite length.
 Examples.
- Order r dyadic interpolation. 6.1. Definition. 6.2. Connection with scaling matrix filters. 6.3. Examples.
- Conclusion. 7.1. Asymptotic conditions for Multi-Resolution Analyses. 7.2. Wavelet basis properties. 7.3. Algebraic properties for scaling matrix filters. 7.4. Sobolev integer coefficients for scaling functions. Appendixes. A. Proof of Lemma 5.1. B. Illustrations of order 1 interpolating schemes.

1. INTRODUCTION

A Multi-Resolution Analysis is an increasing family, ... $\subset V_{n-1} \subset V_n \subset V_{n+1} \dots, n \in \mathbb{Z}$, of closed subspaces of $\mathbb{L}^2(\mathbb{R})$ with the following properties: (a) $\bigcup_{n\in\mathbb{Z}}V_n$ is dense in $\mathbb{L}^2(\mathbb{R})$ and $\bigcap_{n\in\mathbb{Z}}V_n=\{0\}$; (b) $V_n=D^nV_0$, where Df(x)=f(2x); (c) there is a function $g \in V_0$ (called a scaling function) such that $\{g(\cdot - k), k \in \mathbb{Z}\}\$ forms a Riesz basis for V_0 . Moreover, there exists, in the orthogonal complement of V_0 in V_1 , a function ψ (called the wavelet) such that $\{2^{j/2}\psi(2^j \cdot -k), j, k \in \mathbb{Z}\}$ constitutes an orthonormal basis for $\mathbb{L}^2(\mathbb{R})$. The concepts of Multi-Resolution Analysis and wavelet basis have been introduced by Mallat [20] and Meyer [22]. The scaling function g satisfies $\hat{g}(\lambda) =$ $m_0(\lambda/2)\hat{g}(\lambda/2)$ and $\hat{g}(\lambda) = \prod_{k=1}^{+\infty} m_0(\lambda/2^k)$, where m_0 is a 1-periodic complex-valued function, such that $m_0(0) = 1$. Here we use the following convention for the Fourier transform:

$$\hat{f}(\lambda) = \int_{\mathbf{D}} f(x) e^{-2i\pi\lambda x} dx.$$

The converse problem is to characterize the 1-periodic complex-valued functions H such that $\hat{\phi}(\lambda) = \prod_{k=1}^{+\infty} H(\lambda/2^k) \in \mathbb{L}^2(\mathbb{R})$, and such that the inverse Fourier transform of $\hat{\phi}$, ϕ , generates by integer translates an orthonormal family [5, 7], and more generally a Riesz family [15, 24]. Then H is called a scaling filter: under a mild additional hypothesis, the space spanned by the $\phi(\cdot - k)$ constitutes the set V_0 of a Multi-Resolution Analysis (with $g = \phi$ and $m_0 = H$). Recall that, in order to characterize the scaling filters, the above cited papers use the operator P defined by

$$Pf(\lambda) = \left| H\left(\frac{\lambda}{2}\right) \right|^2 f\left(\frac{\lambda}{2}\right) + \left| H\left(\frac{\lambda}{2} + \frac{1}{2}\right) \right|^2 f\left(\frac{\lambda}{2} + \frac{1}{2}\right),$$

where f is a complex-valued continuous function defined

on [0, 1]. The operator P has been introduced in the theory of Wavelets in [6, 7].

A Multi-Resolution Analysis $(V_n)_{n\in\mathbb{Z}}$ of multiplicity $d \ge 2$ is an increasing family of closed subspaces of $\mathbb{L}^2(\mathbb{R})$ satisfying the above statements (a) (b), and the following condition: there are d functions g_1,\ldots,g_d (called scaling functions) such that $\{g_i(\cdot-k),k\in\mathbb{Z},i=1,\ldots,d\}$ is a Riesz basis for V_0 . We can construct the corresponding wavelets, functions ψ_1,\ldots,ψ_d , such that the family $\{2^{j/2}\psi_i(2^j\cdot-k),j,k\in\mathbb{Z},i=1,\ldots,d\}$ forms an orthonormal basis for $\mathbb{L}^2(\mathbb{R})$ (see [12]). The standard polynomial interpolation spaces provide examples of Multi-Resolution Analyses of multiplicity $d \ge 2$ [12, 1]. These examples generalize the ones obtained for d=1 with splines [22]. The above notions are developed in Section 2.

The main purpose of this paper is to construct Multi-Resolution Analyses of multiplicity $d \ge 2$ by extending the method of scaling filters. First let g_1, \ldots, g_d be d scaling functions of a Multi-Resolution Analysis of multiplicity $d \ge 2$. We prove in Section 3 that g_1, \ldots, g_d satisfy the scaling matrix equation

$$G(x) = \sum_{k \in \mathbb{Z}} M_k G(2x + k),$$

where $G(x) = {}^{\prime}[g_1(x), \dots, g_d(x)]$, and the M_k are $d \times d$ matrices. Using the Fourier transform, we obtain $\hat{G}(\lambda) = M(\lambda/2)\hat{G}(\lambda/2)$, and by induction

$$\hat{G}(\lambda) = M\left(\frac{\lambda}{2}\right)M\left(\frac{\lambda}{4}\right)\cdots M\left(\frac{\lambda}{2^n}\right)\hat{G}\left(\frac{\lambda}{2^n}\right), \forall n \in \mathbb{N}^*,$$

where $\hat{G}(\lambda) = {}^{t}[\hat{g}_{1}(\lambda), \dots, \hat{g}_{d}(\lambda)]$ and $M(\lambda) = (1/2) \sum_{k \in \mathbb{Z}} e^{2i\pi\lambda k} M_{k}$.

Conversely, let H be a 1-periodic regular function, taking values in $\mathcal{M}(d, \mathbb{C})$. In this work, we give conditions on H so that it satisfies the following properties:

- (A) For all $\lambda \in \mathbb{R}$, the matrix sequence $\{H(\lambda/2)H(\lambda/4)\cdots H(\lambda/2^n), n \ge 1\}$ converges.
 - (B) There exists a vector $\vec{x} \in \mathbb{R}^d$ such that

$$\hat{\Phi}(\lambda) = {}^{t} \left[\hat{\phi}_{1}(\lambda), \dots, \hat{\phi}_{d}(\lambda) \right]$$

$$= \lim_{n \to +\infty} H\left(\frac{\lambda}{2}\right) H\left(\frac{\lambda}{4}\right) \dots H\left(\frac{\lambda}{2^{n}}\right) \vec{x} \quad (*)$$

is in $\mathbb{L}^2(\mathbb{R}, \mathbb{C}^d)$, and such that the integer translates of the inverse Fourier transforms ϕ_1, \ldots, ϕ_d of $\hat{\phi}_1, \ldots, \hat{\phi}_d$ form a Riesz family.

If (A) and (B) hold, H is called a scaling $d \times d$ matrix filter. In that case, under mild additional assumptions, if V_0 denotes the space spanned by the integer translates of ϕ_1, \ldots, ϕ_d , then the family $\{V_n = D^n V_0, n \in \mathbb{Z}\}$ constitutes a Multi-Resolution Analysis of multiplicity d (with $g_i = \phi_i$ and M = H).

Suppose that H is Holderian—the d^2 complex-valued functions given by the coefficients of H are uniformly Holderian. Then, we prove in Section 5.1 that a sufficient condition for H to verify (A) is that $H(0) = \text{diag}(1, \mu_2, \dots, \mu_d)$ with $|\mu_i| < 1$ for $i = 2, \dots, d$.

The conditions for (B) are more difficult, and depend on spectral properties of the operator P_H defined by

$$\begin{split} P_H F\left(\lambda\right) &= H\left(\frac{\lambda}{2}\right) F\left(\frac{\lambda}{2}\right) H\left(\frac{\lambda}{2}\right)^* \\ &+ H\left(\frac{\lambda}{2} + \frac{1}{2}\right) F\left(\frac{\lambda}{2} + \frac{1}{2}\right) H\left(\frac{\lambda}{2} + \frac{1}{2}\right)^* \,. \end{split}$$

Here F is a continuous function defined on [0, 1] and taking values in $\mathcal{M}(d, \mathbb{C})$. Of course, if d=1, we have $P_H=P$. The use of P_H for (A) (B) has been developed in [14]. However, a recent result of Hennion [13] allowed us to clarify the spectral study of P_H (Section 4), and consequently to simplify the conditions given in [14] (Section 5). In particular, if H is Holderian, then P_H acts on the space of Holderian matrix functions, and the spectral radius ρ of P_H (on this space) is an eigenvalue of finite index, $v(\rho)$. On the same way, if H is of finite length— $H(\lambda) = \sum_{k=p}^{q} e^{2i\pi k\lambda} H_k$ where H_k are $d \times d$ matrices—then P_H acts on a finite dimensional space. In that case, we denote by P_N the matrix obtained from the restriction of P_H to this space, by ρ_N the greatest positive eigenvalue of P_N , and by ν_N the index of ρ_N .

Suppose that H is Holderian and satisfies $H(0) = \operatorname{diag}(1, \mu_2, \dots, \mu_d)$ with $|\mu_i| < 1$ for $i = 2, \dots, d$, and $H(1/2)^* \vec{e_1} = \vec{0}$. Let us consider the functions $\hat{\phi}_1, \dots, \hat{\phi}_d$ defined by (*) with $\vec{x} = \vec{e_1}$. The following properties are proved in Section 5:

A necessary condition for H to be a scaling matrix filter is that $\rho=1$ and $\nu(\rho)=1$. Conversely, if $\rho=1$ and $\nu(\rho)=1$, then $\hat{\phi}_1,\ldots,\hat{\phi}_d\in\mathbb{L}^2(\mathbb{R})$. When H is of finite length, the same statements hold with ρ_N,ν_N instead of $\rho,\nu(\rho)$, and in addition, ϕ_1,\ldots,ϕ_d are compactly supported. The Riesz family property in (B) is satisfied under additional hypotheses which are similar to those obtained for d=1 in [7, 15]. If det $H(\cdot)$ has a finite number of zeros, these hypotheses are very simple.

The Multi-Resolution Analyses of multiplicity $d \ge 2$ provide a theoretical framework for order r dyadic interpolation schemes, where $r \in \mathbb{N}^*$. The latter involves constructing, from any family of scalars $\{a_j(k), k \in \mathbb{Z}, j = 0, \ldots, r\}$, a function f defined on all the dyadic points of \mathbb{R} , and which admits an extension \tilde{f} of class \mathscr{C}^r on \mathbb{R} , such that $\tilde{f}^{(j)}(k) = a_j(k)$, for all $k \in \mathbb{Z}$, and all $j \in \{0, \ldots, r\}$ (see [21]). Section 6 studies the connection between order r dyadic interpolation schemes and Multi-Resolution Analyses of multiplicity r + 1.

For d=1, the operator P is also used to estimate the regularity of the scaling function ϕ associated to a given scaling filter H (see, for instance, [8, 15, 24]). In section 7,

we investigate this problem for $d \ge 2$ by calculating, for any scaling $d \times d$ matrix filter of finite length, the Sobolev integer coefficients of the scaling functions ϕ_1, \ldots, ϕ_d —that is $s \in \mathbb{N}^*$ such that

$$\int_{-\infty}^{+\infty} \left(1 + |\lambda|^{2s}\right) \times \left[\left|\hat{\phi}_{1}(\lambda)\right|^{2} + \dots + \left|\hat{\phi}_{d}(\lambda)\right|^{2}\right] d\lambda < +\infty.$$

2. DEFINITION AND EXAMPLES OF MULTI-RESOLUTION ANALYSES OF MULTIPLICITY d

Let $d \in \mathbb{N}^*$. We denote by $(\vec{e_1}, \dots, \vec{e_d})$ the canonical basis for \mathbb{C}^d , by \langle , \rangle the usual Hermitian product on \mathbb{C}^d , and by $||\cdot||_2$ the associated Hermitian norm. Let $\mathcal{M}(d,\mathbb{C})$ be the space of $d \times d$ complex matrices, and let I_d be the idendity matrix. For any matrix A, we write A^* for the adjoint matrix of A. If A, B are two $d \times d$ Hermitian matrices such that $\langle A\vec{x}, \vec{x} \rangle \leq \langle B\vec{x}, \vec{x} \rangle$ for all $\vec{x} \in \mathbb{C}^d$, we use the standard notation $A \leq B$.

If $(E, ||\cdot||_E)$ is a Hilbert space, recall that a countable family $\{f_i, i \in I\}$ of vectors in E is a Riesz family if, for all $(c_i)_{i \in I} \in l^2(I)$,

$$\frac{1}{C} \sum_{i \in I} |c_i|^2 \le \|\sum_{i \in I} c_i f_i\|_E^2 \le C \sum_{i \in I} |c_i|^2,$$

where C > 0 is a constant independent of the c_i . If the vectors f_i span E, we say that $\{f_i, i \in I\}$ is a Riesz basis for E

DEFINITION. A family $(V_n)_{n\in\mathbb{Z}}$ of closed subspaces of $\mathbb{L}^2(\mathbb{R})$ is called a *Multi-Resolution Analysis of multiplicity d* if it satisfies the following properties:

- 1. $\bigcap_{n\in\mathbb{Z}}V_n=\{\vec{0}\}$ and $\overline{\bigcup_{n\in\mathbb{Z}}V_n}=\mathbb{L}^2(\mathbb{R})$.
- 2. $V_n \subset V_{n+1}$.
- 3. $V_{n+1} = DV_n$ where Df(x) = f(2x).
- 4. There exist in V_0 d functions g_1, \ldots, g_d (called scaling functions) such that the family $\{g_i(\cdot -k), k \in \mathbb{Z}, i = 1, \ldots, d\}$ forms a Riesz basis for V_0 .

EXAMPLE 1. Let $(V_n)_{n\in\mathbb{Z}}$ be a Multi-Resolution Analysis of multiplicity 1, and let ϕ and ψ be, respectively, the scaling function and the wavelet. Define $\mathcal{V}_0 = V_1$, and $\mathcal{V}_n = D^n\mathcal{V}_0$ for all $n\in\mathbb{Z}$. We know that $\{\phi(\cdot-k),\psi(\cdot-k),k\in\mathbb{Z}\}$ forms a Riesz basis for \mathcal{V}_0 . Therefore the family $(\mathcal{V}_n)_{n\in\mathbb{Z}}$ is a Multi-Resolution Analysis of multiplicity 2.

Of course we may choose another basis for \mathcal{V}_0 . For instance if $(V_n)_{n\in\mathbb{Z}}$ is the Multi-Resolution Analysis of multiplicity 1 with respect to the quadratic splines [22], then \mathcal{V}_0 also admits the Riesz basis $\{g_i(\cdot - k), k \in \mathbb{Z}, i = 0, 1\}$ where

$$g_i(x) = p_i(x) 1_{[0,1]}(x) + (-1)^i p_i(-x) 1_{[-1,0]}(x), \quad i = 0, 1,$$

with

$$p_0(x) = (1 - 2x^2) \, \mathbf{1}_{[0,1/2]}(x) + 2(x - 1)^2 \, \mathbf{1}_{[1/2,1]}(x),$$

$$p_1(x) = x \left(1 - \frac{3}{2}x\right) \mathbf{1}_{[0,1/2]}(x) + \frac{1}{2}(x - 1)^2 \, \mathbf{1}_{[1/2,1]}(x).$$

Note that $g_i^{(j)}(k) = \delta_{i,j}\delta_{0,k}$, for all $i, j \in \{0, 1\}$ and $k \in \mathbb{Z}$, where δ denotes the usual Kronecker's symbol. Thus every function f in \mathcal{V}_0 can be expressed as the sum

$$f(x) = \sum_{k \in \mathbb{Z}} f(k) g_0(x-k) + \sum_{k \in \mathbb{Z}} f'(k) g_1(x-k).$$

EXAMPLE 2. HERMITE INTERPOLATION. Given an integer $r \ge 1$, E_r denotes the space of functions of class \mathcal{C}^{r-1} on \mathbb{R} , whose restriction to every interval [k, k+1], $k \in \mathbb{Z}$, coincides with a polynomial function of degree $\le 2r-1$.

If $f \in E_r$, then $f(\cdot/2) \in E_r$. Otherwise, for all $i \in \{0, \ldots, r-1\}$, there exists an unique function g_i in E_r such that $g_i^{(j)}(k) = \delta_{i,j}\delta_{0,k}$ for all $j \in \{0, \ldots, r-1\}$ and all $k \in \mathbb{Z}$. Every function f in E_r can be written as

$$f(x) = \sum_{j=0}^{r-1} \sum_{k \in \mathbb{Z}} f^{(j)}(k) g_j(x-k).$$

Using an idea of Auscher [3], let us prove that the integer translates of g_0, \ldots, g_{r-1} constitute a Riesz basis for $V_0(r) = E_r \cap \mathbb{L}^2(\mathbb{R})$: due to a classical argument on equivalence of norms in a finite dimensional space, there is a contant c > 0 such that, for all $f \in E_r$ and all $k \in \mathbb{Z}$,

$$\frac{1}{c} \sum_{i=0}^{r-1} \left(\left| f^{(i)}(k) \right|^2 + \left| f^{(i)}(k+1) \right|^2 \right) \le \int_k^{k+1} \left| f(x) \right|^2 dx
\le c \sum_{i=0}^{r-1} \left(\left| f^{(i)}(k) \right|^2 + \left| f^{(i)}(k+1) \right|^2 \right).$$

Thus

$$\frac{2}{c} \sum_{i=0}^{r-1} \sum_{k \in \mathbb{Z}} |f^{(i)}(k)|^2 \le \int_{\mathbb{R}} |f(x)|^2 dx$$

$$\le 2c \sum_{i=0}^{r-1} \sum_{k \in \mathbb{Z}} |f^{(i)}(k)|^2.$$

Consequently the family $\{V_n(r) = D^n(V_0(r)), n \in \mathbb{Z}\}$ forms a Multi-Resolution Analysis of multiplicity r.

Construction of Wavelets. Let $(V_n)_{n\in\mathbb{Z}}$ be a Multi-Resolution Analysis of multiplicity d. We denote by $W_n, n\in\mathbb{Z}$, the orthogonal complement of V_n in V_{n+1} . The definition

of Multi-Resolution Analysis yields $\mathbb{L}^2(\mathbb{R}) = \bigoplus_{n \in \mathbb{Z}} W_n$. The following result is proved in [12].

Theorem 2.1. There exist d functions ψ_1, \ldots, ψ_d in W_0 such that

- 1. $\{\psi_i(\cdot k), i = 1, ..., d, k \in \mathbb{Z}\}\$ forms an orthonormal basis for W_0 .
- 2. $\{2^{j/2}\psi_i(2^j \cdot -k), i = 1, ..., d, j, k \in \mathbb{Z}\}$ forms an orthonormal basis for $\mathbb{L}^2(\mathbb{R})$.

In general, the scaling functions g_i and the wavelets ψ_i have the same regularity and the same localization (see [18]). The converse problem, that is to construct d scaling functions from d functions ψ_1, \ldots, ψ_d satisfying statement 2 of Theorem 2.1, is studied in [2, 19].

3. SCALING MATRIX FILTER

In this work, for $F = {}^{\prime}[f_1, \ldots, f_d] \in L^2(\mathbb{R}, \mathbb{C}^d)$, we set $\hat{F} = {}^{\prime}[\hat{f}_1, \ldots, \hat{f}_d]$. Let $\{V_n, n \in \mathbb{Z}\}$ be a Multi-Resolution Analysis of multiplicity d, and let g_1, \ldots, g_d be d scaling functions. From $V_0 \subset V_1$, it follows that there exists a family of complexes $\{m_{i,j}(n), i, j = 1, \ldots, d; n \in \mathbb{Z}\}$ in $(l^2(\mathbb{Z}))^{d^2}$ such that

$$g_i(x) = \sum_{j=1}^d \sum_{k \in \mathbb{Z}} m_{i,j}(k) g_j(2x+k), \quad \forall i = 1, ..., d.$$
 (1)

For $k \in \mathbb{Z}$, define the $d \times d$ matrix: $M_k = (m_{i,j}(k))_{i,j=1,\dots,d}$. Equation (1) becomes

$$G(x) = \sum_{k \in \mathbb{Z}} M_k G(2x + k), \qquad (2)$$

where $G = {}^{\prime}[g_1, \dots, g_2]$. Using the Fourier transform, this can be rewritten as

$$\hat{G}(\lambda) = M\left(\frac{\lambda}{2}\right)\hat{G}\left(\frac{\lambda}{2}\right),\tag{3}$$

where

$$M(\lambda) = \frac{1}{2} \sum_{k \in \mathbb{Z}} e^{2i\pi\lambda k} M_k.$$

It follows that

$$\hat{G}(\lambda) = M\left(\frac{\lambda}{2}\right)M\left(\frac{\lambda}{4}\right)\cdots M\left(\frac{\lambda}{2^n}\right)\hat{G}\left(\frac{\lambda}{2^n}\right), \quad \forall n \geq 1.$$

Suppose that \hat{G} is continuous at 0, and that, for all $\lambda \in \mathbb{R}$, the matrix sequence $\{M(\lambda/2)\cdots M(\lambda/2^n), n \geq 1\}$ converges to a $d \times d$ matrix $M_{\infty}(\lambda)$. Then $\hat{G}(\lambda) = M_{\infty}(\lambda)\hat{G}(0)$. More

generally, for all $\vec{x} \in \mathbb{C}^d$, the \mathbb{C}^d -valued function $M_{\infty}(\cdot)\vec{x}$ is solution of (3).

Conversely, let H be a continuous 1-periodic function, defined on \mathbb{R} and taking values in $\mathcal{M}(d, \mathbb{C})$. Suppose that H satisfies the following properties:

- (P1) For all $\lambda \in \mathbb{R}$, the matrix sequence $(H(\lambda/2)\cdots H(\lambda/2^n))_{n\geq 1}$ converges to a $d\times d$ matrix $\Pi_{\infty}(\lambda)$, and Π_{∞} is continuous on \mathbb{R} .
- (P2) There exists a vector $\vec{x} \in \mathbb{C}^d$ such that the d functions $\hat{\phi}_1, \dots, \hat{\phi}_d$, defined by

$$\hat{\Phi}(\lambda) = \begin{pmatrix} \hat{\phi}_1(\lambda) \\ \vdots \\ \hat{\phi}_d(\lambda) \end{pmatrix} = \Pi_{\infty}(\lambda)\vec{x}, \quad \lambda \in \mathbb{R}, \tag{4}$$

belong to $\mathbb{L}^2(\mathbb{R})$, and such that $\{\phi_i(\cdot - k), i = 1, ..., d, k \in \mathbb{Z}\}$ forms a Riesz family, where $\phi_1, ..., \phi_d$ are the inverse Fourier transforms of $\hat{\phi}_1, ..., \hat{\phi}_d$.

Then, the space $V_0 = \overline{\text{linear span}}\{\phi_i(\cdot - k), i = 1, ..., d, k \in \mathbb{Z}\}$ clearly verifies $V_0 \subset DV_0$, and $\{V_n = D^nV_0, n \in \mathbb{Z}\}$ satisfies axioms 2, 3, and 4 of the Multi-Resolution Analysis definition (with $g_i = \phi_i$ and G = H). As for axiom 1, note that it holds if the ϕ_i are continuous and sufficiently localized (see Section 7.1).

DEFINITION. If (P1) and (P2) hold, we say that H is a scaling $d \times d$ matrix filter, and the functions ϕ_1, \ldots, ϕ_d defined in (P2) are called the scaling functions (with respect to H).

Remarks. For the following remarks, we suppose that (P1) holds, and that $\hat{\phi}_1, \dots, \hat{\phi}_d$ given by (4) are in $\mathbb{L}^2(\mathbb{R})$.

(a) we can define, in $L^1([0,1])$, the functions

$$a_{i,j}(\lambda) = \sum_{k\in\mathbb{Z}} \hat{\phi}_i(\lambda+k) \overline{\hat{\phi}_j(\lambda+k)}, \quad i,j=1,\ldots,d,$$

and

$$\Theta_{\Phi}(\lambda) = (a_{i,j}(\lambda))_{i,j=1,\dots,d} = \sum_{k\in\mathbb{Z}} \hat{\Phi}(\lambda+k) \hat{\Phi}(\lambda+k)^*. \quad (5)$$

Observe that $\Theta_{\Phi}(\lambda)$ is a non-negative Hermitian matrix, and that Θ_{Φ} is 1-periodic. The following property is proved in [12]: $\{\phi_i(\cdot - k), i = 1, \dots, d, k \in \mathbb{Z}\}$ forms a Riesz family if and only if there is a constant c > 0 such that

$$\frac{1}{c}I_d \le \Theta_{\Phi}(\lambda) \le cI_d, \quad \text{for almost all } \lambda \in \mathbb{R}.$$
 (6)

(b) We have

$$\int_0^1 a_{i,j}(\lambda) e^{-2i\pi\ell\lambda} d\lambda = \left\langle \phi_i, \phi_j(\cdot - \ell) \right\rangle_{L^2(R) \times L^2(R)}, \quad \forall \ell \in \mathbb{Z}.$$

If $a_{i,j} \in \mathbb{L}^2([0,1])$, then

$$a_{i,j}(\lambda) = \sum_{\ell \in \mathbb{Z}} \left\langle \phi_i, \phi_j(\cdot - \ell) \right\rangle_{L^2(R) \times L^2(R)} e^{2i\pi\ell\lambda} \quad \text{a.e.} \quad (7) \quad \left\langle \Theta_{\Phi} \left(\frac{\lambda}{2} \right) H \left(\frac{\lambda}{2} \right)^* \vec{x}, H \left(\frac{\lambda}{2} \right)^* \vec{x} \right\rangle$$

- (c) It follows that $\{\phi_i(\cdot k), i = 1, \dots, d, k \in \mathbb{Z}\}$ forms an orthonormal family if and only if $\Theta_{\Phi}(\lambda) = I_d$ almost everywhere.
- (d) If $\{\phi_i(\cdot k), i = 1, \dots, d, k \in \mathbb{Z}\}$ is a Riesz family, then the integer translates of $\phi_1^0, \dots, \phi_d^0$, defined by $[\hat{\phi}_1^0(\lambda), \dots, \hat{\phi}_d^0(\lambda)] = [\Theta_{\Phi}(\lambda)]^{-1/2} \hat{\Phi}(\lambda)$, form an orthonormal family.
 - (e) From $\hat{\phi}(\frac{\lambda}{2}) = H(\frac{\lambda}{2})\hat{\phi}(\frac{\lambda}{2})$, it follows that

$$\begin{split} \Theta_{\Phi}\left(\lambda\right) &= \sum_{k \in \mathbb{Z}} H\left(\frac{\lambda}{2} + \frac{k}{2}\right) \hat{\Phi}\left(\frac{\lambda}{2} + \frac{k}{2}\right) \\ &\times \hat{\Phi}\left(\frac{\lambda}{2} + \frac{k}{2}\right)^* H\left(\frac{\lambda}{2} + \frac{k}{2}\right)^*. \end{split}$$

Separating the even and odd indeces in the sum, we obtain

$$\Theta_{\Phi}(\lambda) = H\left(\frac{\lambda}{2}\right) \Theta_{\Phi}\left(\frac{\lambda}{2}\right) H\left(\frac{\lambda}{2}\right)^{*} \\
+ H\left(\frac{\lambda}{2} + \frac{1}{2}\right) \Theta_{\Phi}\left(\frac{\lambda}{2} + \frac{1}{2}\right) H\left(\frac{\lambda}{2} + \frac{1}{2}\right)^{*}. \quad (8)$$

Necessary Conditions for H to Be a Scaling Matrix Filter Let H be a continuous scaling $d \times d$ matrix filter. For the two following lemmas, we assume that $\hat{\Phi}$ is defined by (4) with $\vec{x} = \vec{e_1}$, and that Θ_{Φ} given by (5) is continuous. In the scalar case, H necessarily satisfies H(1/2) = 0 and $|H(\cdot)|^2 + |H(\cdot + 1/2)|^2 > 0$. Let us generalize these two properties to $d \ge 2$.

LEMMA 3.1. The non-negative Hermitian matrix

$$H(\lambda)H(\lambda)^* + H(\lambda + \frac{1}{2})H(\lambda + \frac{1}{2})^*$$
is definite for all $\lambda \in \mathbb{R}$. (9)

Assume, in addition, that $H(0) = \operatorname{diag}(1, \mu_2, \dots, \mu_d)$ with $|\mu_i| \le 1$. From $\hat{\Phi}(0) = \Pi_{\infty}(0)\vec{e}_1 = \vec{e}_1$, it follows that $\hat{\phi}_1(0) = 1$, and $\hat{\phi}_i(0) = 0$ for $i = 2, \dots, d$. Moreover:

LEMMA 3.2. We have $H(1/2)^*\vec{e_1} = \vec{0}, \hat{\phi}_1(k) = \delta_{0,k}$ for all $k \in \mathbb{Z}$, and lastly $H(1/2)^*\vec{e_i} \neq \vec{0}$ and $\mu_i \neq 1$ for every i = 2, ..., d.

Proof of Lemma 3.1. By (6), there is a constant c > 0 such that

$$\frac{1}{c} \|\vec{x}\|_{2}^{2} \leq \langle \Theta_{\Phi}(\lambda)\vec{x}, \vec{x} \rangle \leq c \|\vec{x}\|_{2}^{2}, \quad \forall \lambda \in \mathbb{R}, \forall \vec{x} \in \mathbb{C}^{d}.$$

Consequently, by (8), we obtain

$$\begin{split} \left\langle \Theta_{\Phi} \left(\frac{\lambda}{2} \right) H \left(\frac{\lambda}{2} \right)^{*} \vec{x}, H \left(\frac{\lambda}{2} \right)^{*} \vec{x} \right\rangle \\ + \left\langle \Theta_{\Phi} \left(\frac{\lambda}{2} + \frac{1}{2} \right) H \left(\frac{\lambda}{2} + \frac{1}{2} \right)^{*} \vec{x}, H \left(\frac{\lambda}{2} + \frac{1}{2} \right)^{*} \vec{x} \right\rangle \\ & \geqslant \frac{1}{c} \left\| \vec{x} \right\|_{2}^{2}, \end{split}$$

hence $||H(\lambda)^*\vec{x}||_2^2 + ||H(\lambda + 1/2)^*\vec{x}||_2^2 \ge (1/c^2)||\vec{x}||_2^2$ for all $\lambda \in \mathbb{R}$.

Proof of Lemma 3.2. Applying identity (8) with $\lambda = 0$, we have

$$\begin{split} \langle \Theta_{\Phi} \left(0 \right) \vec{e_1}, \vec{e_1} \rangle &= \left\langle H \left(0 \right) \Theta_{\Phi} \left(0 \right) H \left(0 \right)^* \vec{e_1}, \vec{e_1} \right\rangle \\ &+ \left\langle H \left(\frac{1}{2} \right) \Theta_{\Phi} \left(\frac{1}{2} \right) H \left(\frac{1}{2} \right)^* \vec{e_1}, \vec{e_1} \right\rangle. \end{split}$$

Since $H(0)^*\vec{e}_1 = \vec{e}_1$, we have $\langle \Theta_{\Phi}(1/2)H(1/2)^*\vec{e}_1, H(1/2)^*\vec{e}_1 \rangle = 0$, thus $H(1/2)^*\vec{e}_1 = \vec{0}$. For $k \in \mathbb{Z}, k \neq 0$, let us set $k = 2^p(2l+1)$, where $p \in \mathbb{N}$ and $l \in \mathbb{Z}$. By iteration of $\hat{\phi}(\lambda) = H(\frac{\lambda}{2})\hat{\phi}(\frac{\lambda}{2})$, we can deduce that $\hat{\Phi}(k) = (H(0))^p H(1/2)\hat{\Phi}(l+1/2)$. Since $H(1/2)^*\vec{e}_1 = \vec{0}$, we obtain $\hat{\phi}_1(k) = 0$.

Now let $i \in \{2, ..., d\}$. If $\mu_i = 1$, then $H(1/2)^* \vec{e_i} = \vec{0}$. Suppose that $H(1/2)^* \vec{e_i} = \vec{0}$. Then the above argument applied to the index i implies that $\hat{\phi}_i(k) = 0$ for all integer $k \neq 0$. But we also have $\hat{\phi}_i(0) = 0$. It follows that the column of index i of $\Theta_{\Phi}(0)$ is equal to zero, which is impossible because of (6). Hence $H(1/2)^* \vec{e_i} \neq \vec{0}$ for every $i \in \{2, ..., d\}$, and $\mu_i \neq 1$.

4. OPERATOR PH

4.1. Definitions

Let $\mathcal{H}(d,\mathbb{C})$ be the set of $d \times d$ complex Hermitian matrices. We write \mathcal{M}_d (respectively \mathcal{H}_d) for the space of 1-periodic continuous functions defined on [0, 1] and taking values in $\mathcal{M}(d,\mathbb{C})$ (respectively in $\mathcal{H}(d,\mathbb{C})$). Denoting by $|\cdot|_2$ the matrix norm associated to $|\cdot|_2$, we define, on \mathcal{M}_d and \mathcal{H}_d , the norm

$$||F||_{\infty} = \sup_{\lambda \in [0,1]} |F(\lambda)|_2.$$

We denote by I the function of \mathcal{M}_d defined by $I(\lambda) = I_d$ for all $\lambda \in [0, 1]$. For F, G in \mathcal{H}_d , we say that $F \leq G$ if $F(\lambda) \leq G(\lambda)$ for all $\lambda \in [0, 1]$. In particular, $F \in \mathcal{H}_d$ is said to be non-negative (respectively positive) if, for all $\lambda \in [0, 1]$, $F(\lambda)$ is a non-negative Hermitian matrix (respectively a non-negative and definite Hermitian matrix). Then we write $F \geq 0$ (respectively F > 0).

304 Loïc hervé

DEFINITION. Let H be a matrix function of \mathcal{M}_d . We define, for all $F \in \mathcal{M}_d$,

$$P_H F(\lambda) = H\left(\frac{\lambda}{2}\right) F\left(\frac{\lambda}{2}\right) H\left(\frac{\lambda}{2}\right)^* + H\left(\frac{\lambda}{2} + \frac{1}{2}\right) F\left(\frac{\lambda}{2} + \frac{1}{2}\right) H\left(\frac{\lambda}{2} + \frac{1}{2}\right)^*. \tag{10}$$

 P_H is a well-defined bounded operator on \mathcal{M}_d and \mathcal{H}_d , and it is positive on \mathcal{H}_d (if $F \ge 0$ then $P_H F \ge 0$). Note that, if Θ_{Φ} is continuous, then identity (8) implies that Θ_{Φ} is P_H -invariant.

4.2. Spectral Study of PH

• Case H is α -Holderian. Let α be a real such that $0 < \alpha \le 1$. Let \mathcal{M}_d^{α} (respectively \mathcal{H}_d^{α}) be the subspace of \mathcal{M}_d (respectively of \mathcal{H}_d) of functions satisfying the following condition:

$$m(F) = \sup \left\{ \frac{|F(\lambda') - F(\lambda)|_2}{|\lambda' - \lambda|^{\alpha}}, \lambda, \lambda' \in [0, 1], \lambda \neq \lambda' \right\}$$

The spaces \mathcal{M}_d^{α} and \mathcal{H}_d^{α} are equipped with the norm

$$|||F||| = m(F) + ||F||_{\infty}$$
.

Observe that F belongs to \mathcal{M}_d^{α} if the d^2 scalar functions given by the coefficients of F are α -Holderian on \mathbb{R} (they belong to \mathcal{M}_1^{α}). It is proved in [13, 17] that the operator P defined in section 1 has, on \mathcal{H}_1^{α} , remarkable spectral properties. We generallyse this study to $d \ge 2$.

Let $H \in \mathcal{M}_d^{\alpha}$. It is clear that P_H is a well-defined bounded operator on \mathcal{K}_d^{α} . If η is an eigenvalue of P_H on \mathcal{K}_d^{α} , and if $\operatorname{Ker}(P_H - \eta)^i = \operatorname{Ker}(P_H - \eta)^{i+1}$ for some $i \in \mathbb{N}^*$, we denote by

$$\nu(\eta) = \inf \left\{ i \in \mathbb{N}^* : \operatorname{Ker} \left(P_H - \eta \right)^i = \operatorname{Ker} \left(P_H - \eta \right)^{i+1} \right\}$$

the index of η .

THEOREM 4.1. The spectral radius ρ of P_H on \mathcal{H}_d^{α} is given by

$$\rho = \lim_{n \to +\infty} \left(\| P_H^n I \|_{\infty} \right)^{1/n}. \tag{11}$$

More precisely, ρ is an eigenvalue of P_H on \mathcal{H}_d^{α} admitting a finite index, $\nu(\rho)$, and there exists a non-negative function Γ in \mathcal{H}_d^{α} (not identically equal to zero) such that $P_H\Gamma=\rho\Gamma$. The spectral values η of modulus ρ are finite in number, and they are eigenvalues of P_H on \mathcal{H}_d^{α} such that $\nu(\eta) \leq \nu(\rho)$ and dim $\text{Ker}(P_H-\eta)^{\nu(\eta)}<+\infty$. Moreover, we have the decomposition

$$\mathcal{H}_{d}^{\alpha} = \left(\bigoplus_{|\eta| = \rho} \operatorname{Ker} \left(P_{H} - \eta \right)^{\nu(\eta)} \right) \oplus \mathscr{F},$$

where \mathscr{F} is a subspace in \mathscr{H}_d^{α} , stable under P_H , and such that the spectral radius of $P_{H|\mathscr{F}}$ is $< \rho$.

Theorem 4.1 for d=1 is proved in [13, 17]. Replacing \mathbb{C} , \mathbb{R} , \mathbb{R}_+ respectively with $\mathcal{M}(d,\mathbb{C})$, $\mathcal{H}(d,\mathbb{C})$, and the subset of $\mathcal{H}(d,\mathbb{C})$ of non-negative Hermitian matrices, the proof for $d \ge 2$ is similar, and we only sketch it:

First, since P_H is positive on \mathcal{H}_d , the number ρ defined by (11) is the spectral radius of P_H on \mathcal{H}_d . Let ρ_α be the spectral radius of P_H on \mathcal{H}_d^α . From ||I||| = 1 and $||P_H^nI|||_\infty \le ||P_H^nI|||$, it follows that $\rho \le \rho_\alpha$. By induction we easily show that, for all $n \ge 1$ and $F \in \mathcal{H}_d^\alpha$,

$$P_H^n F(\lambda) = \sum_{k=0}^{2^n - 1} H\left(\frac{\lambda + k}{2}\right) \cdots H\left(\frac{\lambda + k}{2^n}\right) F\left(\frac{\lambda + k}{2^n}\right) \times H\left(\frac{\lambda + k}{2^n}\right)^* \cdots H\left(\frac{\lambda + k}{2}\right)^*,$$

and

$$|||P_H^n F||| \le 2^{-n\alpha} ||P_H^n I||_{\infty} |||F||| + R_n ||F||_{\infty},$$
 (12)

where R_n is a positive constant that only depends on n and H. Inequality (12) and the fact that $\lim_{n\to+\infty} |2^{-n\alpha}||P_H^nI||_{\infty}|^{1/n}=2^{-\alpha}\rho<\rho_{\alpha}$ imply that P_H is a quasicompact operator on \mathcal{H}_d^{α} (see [13]). Most of statements in Theorem 4.1 result from this property. In particular there exists an eigenvalue η_0 of P_H on \mathcal{H}_d^{α} such that $|\eta_0|=\rho_{\alpha}$. Hence $\rho=\rho_{\alpha}$. Moreover the spectral values $\eta>2^{-\alpha}\rho$ of P_H on \mathcal{H}_d^{α} are finite in number, and they are in fact eigenvalues such that $\nu(\eta)<+\infty$ and dim $\mathrm{Ker}(P_H-\eta)^{\nu(\eta)}<+\infty$. The existence of \mathscr{F} is also guaranteed by the quasicompacity of P_H . The other properties, which are proved below in the polynomial case, result from the positivity of P_H .

• Case H is a trigonometric polynomial. We assume here that

$$H(\lambda) = \sum_{k=p}^{q} e^{-2i\pi k\lambda} H_k, \tag{13}$$

where p < q are two integers, and the H_k are matrices of $\mathcal{M}(d, \mathbb{C})$. All trigonometric polynomial F, with coefficients in $\mathcal{M}(d, \mathbb{C})$, can be expressed as

$$F(\lambda) = \sum_{k \in \mathbb{Z}} e^{4i\pi k\lambda} M(2k) + e^{2i\pi\lambda} \sum_{k \in \mathbb{Z}} e^{4i\pi k\lambda} M(2k+1)$$
$$= F_0(2\lambda) + e^{2i\pi\lambda} F_1(2\lambda).$$

In particular, we have $H(\lambda) = H_0(2\lambda) + e^{2i\pi\lambda}H_1(2\lambda)$, and an easy computation gives

$$P_{H}F(\lambda) = 2 \left[H_{0}(\lambda) F_{0}(\lambda) H_{0}(\lambda)^{*} + H_{0}(\lambda) F_{1}(\lambda) H_{1}(\lambda)^{*} + H_{1}(\lambda) F_{0}(\lambda) H_{1}(\lambda)^{*} + e^{2i\pi\lambda} H_{1}(\lambda) F_{1}(\lambda) H_{0}(\lambda)^{*} \right],$$

which proves that the set of trigonometric polynomials is stable under P_H .

More precisely, let N = q - p, and define, in \mathcal{H}_d , the subspace \mathcal{T}_d^N of matrix functions F written as

$$F(\lambda) = \sum_{k=-N}^{N} e^{2i\pi\lambda k} M_k, \qquad M_k \in \mathcal{M}(d, \mathbb{C}).$$

We easily prove that \mathcal{T}_d^N is stable under P_H . Define the operator

$$P_N = P_H |_{\mathcal{F}_J^N}, \tag{14}$$

(which can be considered as a $L \times L$ matrix with L = (2N + 1)d(d+1)/2). For every eigenvalue η of P_N , we denote by $\nu_N(\eta)$ the index of η —the smallest integer $l \ge 1$ such that $\text{Ker}(P_N - \eta)^l = \text{Ker}(P_N - \eta)^{l+1}$. Then

Theorem 4.2. The spectral radius ρ_N of P_N is equal to ρ , and it is the largest positive eigenvalue of P_N . For every eigenvalue η_0 of modulus ρ_N , we have $\nu_N(\eta_0) \leq \nu_N(\rho_N)$. Finally, there exists a matrix function $\Gamma \geq 0$ in \mathcal{F}_d^N such that $P_N\Gamma = \rho_N\Gamma$.

Proof. The space \mathcal{F}_d^N being equipped with the norm $||\cdot||_{\infty}$, we denote by $|\cdot|_{\infty}$ the associated operator norm. Because $I \in \mathcal{F}_d^N$ and P, P_N are positive operators, we obtain $|P_N^n|_{\infty} = ||P_N^n I||_{\infty} = ||P_H^n I||_{\infty}$, hence $\rho_N = \rho$.

Let η_0 be an eigenvalue of P_N such that $|\eta_0| = \rho_N$, and consider a non-increasing sequence $(t_n)_{n\geq 1}$ of reals such that $\lim_{n\to +\infty} t_n = 1$. Define

$$\Gamma_n = (\rho_N t_n - P_N)^{-1} I.$$

Since $(\beta - P_N)^{-1} = \sum_{k \ge 0} \beta^{-(k+1)} P_N^k$ for $|\beta| > \rho_N$, it follows that

$$-\|G\|_{\infty} \Gamma_n(\lambda) \leq (\eta_0 t_n - P_N)^{-1} G(\lambda) \leq \|G\|_{\infty} \Gamma_n(\lambda),$$

$$\forall \lambda \in [0, 1], \quad \forall G \in \mathcal{F}_d^N.$$

This yields

$$\left\| \left(\eta_0 t_n - P_N \right)^{-1} G \right\|_{\infty} \leq \|G\|_{\infty} \|\Gamma_n\|_{\infty}.$$

We have $\lim_{n\to+\infty} |(\eta_0 t_n - P_N)^{-1}|_{\infty} = +\infty$, because η_0 is an eigenvalue. Hence $\lim_{n\to+\infty} ||\Gamma_n||_{\infty} = +\infty$. Since the sequence $\{||\Gamma_n||_{\infty}^{-1}\Gamma_n, n \ge 1\}$ is uniformly bounded in \mathcal{F}_d^N , and $\dim \mathcal{F}_d^N < +\infty$, we may pass to the limit and obtain

a function $\Gamma \in \mathcal{F}_d^N$ satisfying $\Gamma \ge 0$ and $||\Gamma||_{\infty} = 1$. From $(\rho_N t_n - P_N)(||\Gamma_n||_{\infty}^{-1}\Gamma_n) = ||\Gamma_n||_{\infty}^{-1}I$, it follows that $P_N \Gamma = \rho_N \Gamma$.

The index $\nu(\eta_0)$ is also defined by the condition

$$\lim_{n \to +\infty} (t_n - 1)^{\ell} \left| (\eta_0 t_n - P_N)^{-1} \right|_{\infty} = +\infty,$$

$$\forall \ell = 0, \dots, \nu (\eta_0) - 1.$$

Using the above inequality, we obtain that $\lim_{n\to+\infty} (t_n-1)^l |(\rho_N t_n - P_N)^{-1}|_{\infty} = +\infty$ for $l=0,\ldots,\nu(\eta_0)-1$. But this means that $\nu_N(\rho_N) \ge \nu(\eta_0)$.

5. CHARACTERIZATION OF SCALING MATRIX FILTERS

5.1. Infinite Matrix Product

The following lemma, which is proved in Appendix A, provides a simple and general condition for (P1).

LEMMA 5.1. Let H be a function of \mathcal{M}_d^n , and assume that there is an invertible $d \times d$ matrix M such that $M^{-1}H(0)M = \operatorname{diag}(1, \mu_2, \dots, \mu_d)$ with $|\mu_i| < 1$ or $\mu_i = 1$. Then the sequence of matrix functions $\{H(\cdot/2) \cdots H(\cdot/2^n), n \geq 1\}$ converges uniformly on all compact set of \mathbb{R} to a matrix function Π_∞ that is continuous on \mathbb{R} . Moreover, if $\mu_i \neq 1$, then $\Pi_\infty(\lambda)M\vec{e_i} = \vec{0}$.

Remarks. Let us consider $H \in \mathcal{M}_d^{\alpha}$ satisfying the assumptions of Lemma 5.1. Let $\vec{x} \in \mathbb{R}^d$, and define, by (4), $\hat{\Phi} = {}^t[\hat{\phi}_1, \dots, \hat{\phi}_d]$. Note that $\hat{\Phi}$ is continuous on \mathbb{R} . In addition:

(a) the growth of $\hat{\phi}_1, \dots, \hat{\phi}_d$ is at most polynomial on \mathbb{R} . Indeed we can write

$$\left\| \left\| \hat{\Phi}(\lambda) \right\|_{2} \leq \prod_{k=1}^{n} \left| H\left(\frac{\lambda}{2^{k}}\right) \right|_{2} \left\| \hat{\Phi}\left(\frac{\lambda}{2^{n}}\right) \right\|_{2},$$

$$\forall \lambda \in \mathbb{R}, \forall n \geq 1.$$

Define $M = \|H\|_{\infty} = \sup_{\lambda \in [0,1]} |H(\lambda)|_2$ and $c = \sup_{\lambda \in [-1,1]} \|\hat{\Phi}(\lambda)\|_2$ ($c < +\infty$ because $\lambda \to \hat{\Phi}(\lambda)$ is continuous). For fixed λ , consider the smallest integer $l(\lambda)$ such that $|\lambda/2^{l(\lambda)}| \leq 1/2$. The above inequality applied with $n = l(\lambda) - 1$ shows that $||\hat{\Phi}(\lambda)||_2 \leq cM^{l(\lambda)-1} \leq c'|\lambda|^{\log_2 M}$.

(b) If H satisfies (13), then the distributions ϕ_1, \ldots, ϕ_d , defined as the inverse Fourier transforms of $\hat{\phi}_1, \ldots, \hat{\phi}_d$, have compact support in [p,q]. Indeed let T be the map defined on $L^2(\mathbb{R}, \mathbb{C}^d)$ by

$$TF(x) = 2\sum_{n=0}^{q} H_n F(2x + n).$$

We obtain $\widehat{TF}(\lambda) = H(\lambda/2)\widehat{F}(\lambda/2)$, and $\widehat{T^nF}(\lambda) = H(\lambda/2)$

 $\cdots H(\lambda/2^n)\hat{F}(\lambda/2^n)$. Assume, for convenience, that $\vec{x} = \vec{e_1}$ in (4), and consider a continuous function F in $L^2(\mathbb{R}, \mathbb{C}^d)$, whose support is in [p,q], and such that \hat{F} is continuous with $\hat{F}(0) = \vec{e_1}$. First it is clear that TF, and more generally T^nF , $n \ge 1$, are compactly supported in [p,q]. Otherwise we have $\lim_{n \to +\infty} \widehat{T^nF}(\lambda) = \hat{\Phi}(\lambda)$. Consequently the sequence $(T^nF)_{n \ge 1}$ converges, in the sense of distributions, to the vector-valued function $\Phi = {}^t[\phi_1, \dots, \phi_d]$, which has compact support in [p,q].

5.2. Characterization of Holderian Scaling Matrix Filters

Let us first define periodic points, and extend to the vector case the notions of orbit and trajectory developed in [7, 17]. We consider the maps S_0 and S_1 defined from [0, 1] to [0, 1] by

$$S_i: \lambda \to \frac{1}{2}(\lambda + i), \quad i = 0, 1.$$

DEFINITIONS. Let $m \in \mathbb{N}^*$. We say that a real λ in [0, 1] is an *m-periodic point* if there exists a sequence of m elements $\sigma_1, \ldots, \sigma_m$ in $\{S_0, S_1\}$, such that $\sigma_m \cdots \sigma_1 \lambda = \lambda$, and if m is the smallest integer for which this equality holds. The family $\{\sigma_1, \ldots, \sigma_m\}$ is then unique. Define

$$\mathscr{C}_{\lambda} = \{ \sigma_k \cdots \sigma_1 \lambda, k = 1, \dots, m \}.$$

Remarks. The following properties are proved in [17]. (1) Let $m \in \mathbb{N}^*$. The p-periodic points, such that $p \le m$, are the reals $k/(2^p - 1)$, where $p \in \{1, ..., m\}$ and $k \in \{0, 1, ..., 2^p - 1\}$.

- (2) If $\lambda \in [0, 1]$, we let $\tilde{\lambda} = \{\lambda + 1/2\} = \lambda + 1/2 [\lambda + 1/2]$. Then λ and $\tilde{\lambda}$ cannot be simultaneously periodic points.
- (3) If λ is not periodic, the reals $\sigma_n \cdots \sigma_1 \lambda$, where $n \in \mathbb{N}^*$ and $\sigma_1, \ldots, \sigma_n \in \{S_0, S_1\}$, are mutually distinct, and are not periodic.

DEFINITIONS. Let H be a function in \mathcal{M}_d satisfying (9), and consider $\lambda \in [0,1], \vec{v} \in \mathbb{C}^d, \vec{v} \neq \vec{0}$. Any subset of the form $\{\sigma_n \cdots \sigma_1 \lambda, n \geq 1, \sigma_n \in \{S_0, S_1\}\}$, where $(\sigma_n)_{n \geq 1}$ is such that $H(\sigma_n \cdots \sigma_1 \lambda)^* \cdots H(\sigma_2 \sigma_1 \lambda)^* H(\sigma_1 \lambda)^* \vec{v} \neq \vec{0}$ for all $n \geq 1$, is called a *trajectory of* λ , with respect to H and \vec{v} . The *orbit of* λ , with respect to H and \vec{v} , is the closure of the set of all the trajectories of λ with respect to H and \vec{v} .

HYPOTHESIS (Z). Let $H \in \mathcal{M}_d$ satisfying (9). We shall say that H verifies condition (Z) if, for all $\vec{v} \in \mathbb{C}^d, \vec{v} \neq \vec{0}$, and all $\lambda \in [0, 1]$, the orbit of λ , with respect to H and \vec{v} , contains 0.

Using the above remarks (2) and (3), we easily prove that a sufficient condition for (Z) is that det $H(\cdot)$ has a finite

number, Q, of zeros, and that every m-periodic point λ , with $\lambda \neq 0$ and $m \leq Q$, verifies the following assumption:

$$\exists y \in \mathscr{C}_{\lambda} \text{ such that } \det H\left(y + \frac{1}{2}\right) \neq 0.$$
 (15)

Resolution of (P2). Let α be a real such that $0 < \alpha \le 1$. We assume here that $H \in \mathcal{M}_d^{\alpha}$, and that there exists an invertible $d \times d$ matrix M such that

$$M^{-1}H(0)M = \operatorname{diag}(1, \mu_2, \dots, \mu_d),$$

where $|\mu_i| < 1, \forall i \in \{2, \dots, d\},$ (16)

and

$$H\left(\frac{1}{2}\right)^* \left(M^{-1}\right)^* \vec{e}_1 = \vec{0}. \tag{17}$$

Note that the assumptions of Lemma 5.1 hold, and that (17) is a necessary condition for H to be a scaling $d \times d$ matrix filter (see Lemma 3.2, in which we assumed $M = I_d$). Let us recall that the operator P_H is defined by (10), and that its spectral radius ρ , given by (11), is an eigenvalue on \mathcal{H}_d^{α} which admits a finite index, $\nu(\rho)$.

THEOREM 5.2. If $\rho = 1$ and $\nu(\rho) = 1$, then the functions $\hat{\phi}_1, \ldots, \hat{\phi}_d$ defined by (4) with $\vec{x} = M\vec{e}_1$, belong to $\mathbb{L}^2(\mathbb{R})$. Moreover, if Θ_{Φ} , defined by (5), is continuous, and if H verifies (9) and (Z), then $\{\phi_i(\cdot - k), k \in \mathbb{Z}, i = 1, \ldots, d\}$ is a Riesz family if, and only if, $\det \Theta_{\Phi}(0) \neq 0$.

Proof. Without loss of generality, we may suppose $M = I_d$ in (16) and (17). Let $F \in \mathcal{M}_d$. It is straightforward to check that

$$\int_0^1 (P_H F)(\lambda) d\lambda = 2 \int_0^1 H(\lambda) F(\lambda) H(\lambda)^* d\lambda,$$

and by induction that

$$\int_{0}^{1} (P_{H}^{n}F)(\lambda) d\lambda = 2^{n} \int_{0}^{1} H(2^{n-1}\lambda) \cdots \times H(\lambda) F(\lambda) H(\lambda)^{*} \cdots H(2^{n-1}\lambda)^{*} d\lambda, \quad \forall n \geq 1.$$

Because H and F are periodic, we may replace \int_0^1 with $\int_{-1/2}^{1/2}$, and we conclude that

$$\int_{-2^{n-1}}^{2^{n-1}} \Pi_n(\lambda) F\left(\frac{\lambda}{2^n}\right) \Pi_n(\lambda)^* d\lambda$$

$$= \int_0^1 (P_H^n F)(\lambda) d\lambda, \quad \forall n \ge 1, \quad (18)$$

where $\Pi_n(\lambda) = H(\lambda/2) \cdots H(\lambda/2^n)$. Since $\rho = 1$ and $\nu(\rho) = 1$, it results from theorem 4.1 that $M = \sup_{n \ge 1} ||P_H^n I||_{\infty} < +\infty$. Taking F = I in (18), we have

$$\int_{-2^{n-1}}^{2^{n-1}} \left\langle \Pi_n(\lambda)^* \vec{e_i}, \Pi_n(\lambda)^* \vec{e_i} \right\rangle d\lambda \leq M, \quad \forall i = 1, \dots, d,$$

and by Fatou's lemma,

$$\int_{\mathbb{R}} \left\langle \Pi_{\infty} \left(\lambda \right)^* \vec{e_i}, \Pi_{\infty} \left(\lambda \right)^* \vec{e_i} \right\rangle d\lambda \leq M,$$

where $\Pi_{\infty}(\lambda) = \lim_{n \to +\infty} \Pi_n(\lambda)$. Lemma 5.1 and (16) imply that $\Pi_{\infty}(\lambda)^* \vec{e_i} = \hat{\phi}_i(\lambda) \vec{e_1}$ for every $i \in \{1, ..., d\}$. Thus $\hat{\phi}_1, ..., \hat{\phi}_d \in \mathbb{L}^2(\mathbb{R})$.

Now let us prove the second statement. We know that Θ_{Φ} is a non-negative matrix function that is P_H -invariant, and we have to check that $\Theta_{\Phi} > 0$ (that is, $\Theta_{\Phi}(\lambda)$ is definite for all λ). Suppose that there exist $\lambda \in]0, 1[$ and $\vec{v} \in \mathbb{C}^d, \vec{v} \neq \vec{0},$ such that $\Theta_{\Phi}(\lambda)\vec{v} = \vec{0}$. Then it results from (8) that det $\Theta_{\Phi}(\cdot)$ vanishes on the orbit of λ with respect to H and \vec{v} . From (Z), we conclude that det $\Theta_{\Phi}(0) = 0$.

Remarks. (a) We investigate in Section 7 the regularity of scaling functions.

(b) By Theorem 4.1, if $\rho = 1$ and $\nu(\rho) = 1$, then $M = \sup_{n \ge 1} ||P_H^n I||_{\infty} < +\infty$. Conversely, suppose $M < +\infty$. Then we have $\rho \le 1$. From (16) and (17), it follows that, for all $F \in \mathcal{M}_d$, $\langle P_H^n F(0) \vec{x}_1, \vec{x}_1 \rangle = \langle F(0) \vec{x}_1, \vec{x}_1 \rangle$, where $\vec{x}_1 = (M^{-1})^* \vec{e}_1$. Thus we have $\rho = 1$, and $\nu(\rho) = 1$. Consequently, if (16) and (17) hold, the conditions $[\rho = 1, \nu(\rho) = 1]$ and $\sup_{n \ge 1} ||P_H^n I||_{\infty} < +\infty$ are equivalent.

(c) In particular, if H satisfies

$$H(\lambda)H(\lambda)^* + H\left(\lambda + \frac{1}{2}\right)H\left(\lambda + \frac{1}{2}\right)^* \le Id,$$

$$\forall \lambda \in \left[0, \frac{1}{2}\right], \quad (19)$$

then $\hat{\phi}_1, \ldots, \hat{\phi}_d \in \mathbb{L}^2(\mathbb{R})$.

(d) Suppose that H is a scaling matrix filter. By (6), we have $\Theta_{\Phi}(\lambda) \ge cI_d$ almost everywhere, with c > 0. From (8), it follows that $(P_H^n I)(\lambda) \le 1/c\Theta_{\Phi}(\lambda)$ a.e. Thus $\sup_{n\ge 1}||P_H^n I||_{\infty} < +\infty$. In particular, if (16) and (17) hold, the conditions $\rho=1$ and $\nu(\rho)=1$ are necessary for H to be a scaling matrix filter.

(e) Let $\hat{\phi}_1, \ldots, \hat{\phi}_d$ be defined by (4). Suppose that $\hat{\phi}_1, \ldots, \hat{\phi}_d \in \mathbb{L}^2(\mathbb{R})$, and that their inverse Fourier transforms ϕ_1, \ldots, ϕ_d are such that

$$\sum_{i=0}^{d} |\phi_j(x)| \le C (1+|x|)^{-1-\varepsilon}, \quad \forall x \in \mathbb{R}, \quad (20)$$

where c>0 and $\epsilon>0$ are independent of x. Then the Fourier series

$$b_{i,j}(\lambda) = \sum_{\ell \in \mathbb{Z}} \langle \phi_i, \phi_j(\cdot - \ell) \rangle e^{2i\pi\ell\lambda}, \quad i, j = 1, \ldots, d$$

are absolutely convergent, and from Poisson's formula, it follows that

$$\sum_{\ell \in \mathbb{Z}} \left\langle \phi_i, \phi_j(\cdot - \ell) \right\rangle e^{2i\pi\ell\lambda} = \sum_{k \in \mathbb{Z}} \hat{\phi}_i(\lambda + k) \overline{\hat{\phi}_j(\lambda + k)} \quad \text{a.e.}$$

Define $\Theta_0(\lambda) = [b_{i,j}(\lambda)]_{i,j=1,\dots,d}$. We have $\Theta_0 \in \mathcal{M}_d$, and $\Theta_0(\lambda) = \Theta_{\Phi}(\lambda)$ almost everywhere. Thus $\Theta_0 \ge 0$, and by (8), $P_H\Theta_0 = \Theta_0$. The Riesz family property in (P2) holds if and only if (6) is satisfied with Θ_0 instead of Θ_{Φ} . In particular, if the ϕ_i satisfy (20), then Theorem 5.2 holds with Θ_0 instead of Θ_{Φ} . Furthermore, we have $\Theta_{\Phi}(0) = \Theta_0(0)$; that is,

$$b_{i,j}(0) = \sum_{\ell \in \mathbb{Z}} \left\langle \phi_i, \phi_j(\cdot - \ell) \right\rangle = \sum_{k \in \mathbb{Z}} \hat{\phi}_i(k) \, \overline{\hat{\phi}_j(k)},$$
$$i, j = 1, \dots, d. \quad (21)$$

To see (21), observe that the functions $h_m(x) = \sum_{\ell \in \mathbb{Z}} \phi_m(x + \ell)$ are periodic, continuous, and that $b_{i,j}(0) = \int_0^1 h_i(x)h_j(x)dx$. Since $(\hat{\phi}_m(k))_{k \in \mathbb{Z}}$ is the sequence of Fourier coefficients of h_m , we conclude by Parseval's identity.

5.3. Scaling Matrix Filters of Finite Length

We assume here that H is of the form $H(\lambda) = \sum_{k=p}^{q} e^{-2i\pi k\lambda}$ H_k , where $p, q \in \mathbb{Z}$, p < q, and $H_k \in \mathcal{M}(d, \mathbb{C})$. Let N = q - p.

Let us denote by Q the number of zeros of det $H(\cdot)$. We assume that every m-periodic point λ , with $\lambda \neq 0$ and $m \leq Q$, verifies (15), and that there exists a $d \times d$ invertible matrix M satisfying (16) and (17). Recall that P_N denotes the restriction of P_H to \mathcal{T}_d^N , that ρ_N is the largest positive eigenvalue of P_N , and $\nu_N = \nu_N(\rho_N)$ is the index of ρ_N (see Theorem 4.2).

THEOREM 5.3. Let $\hat{\phi}_1, \ldots, \hat{\phi}_d$ be defined by (4) with $\vec{x} = M\vec{e}_1$. A necessary and sufficient condition for H to be a scaling matrix filter is that $\rho_N = 1, \nu_N = 1, H$ verifies (9) and det $\Theta_{\Phi}(0) \neq 0$. Then, the functions ϕ_1, \ldots, ϕ_d are compactly supported in [p,q].

Proof. First, observe that, if $\hat{\phi}_1, \ldots, \hat{\phi}_d \in \mathbb{L}^2(\mathbb{R})$, then their inverse Fourier transforms ϕ_1, \ldots, ϕ_d are compactly supported in [p,q] (see Section 5.1). From the above re mark, it follows that $\Theta_0 = \Theta_{\Phi}$ almost everywhere, and that $\Theta_0(0) = \Theta_{\Phi}(0)$. By checking supports, we obtain $\langle \phi_i, \phi_j(\cdot - \ell) \rangle = 0$ if $|\ell| \ge N$. Thus $\Theta_0 \in \mathcal{F}_d^N$. Now let us prove Theorem 5.3:

If H is a scaling matrix filter, then we have (9), and $\Theta_0 \ge cI$, where c > 0. Thus det $\Theta_{\Phi}(0) = \det \Theta_0(0) \ne 0$. By (8), we obtain $P_N\Theta_0 = \Theta_0$. We conclude that $\sup_{n\ge 1} ||P_N^nI||_{\infty} < +\infty$, and using (16) and (17), that $\rho_N = 1$, $\nu_N = 1$ (see Remarks (d) and (b) above).

Conversely, if $\rho_N = 1$ and $\nu_N = 1$, then, applying Theorem 4.2 and the arguments used in the previous theorem (with P_N and Θ_0 instead of P_H and Θ_{Φ}), we prove that $\hat{\phi}_1, \dots, \hat{\phi}_d \in \mathbb{L}^2(\mathbb{R})$, and that $\Theta_0 > 0$.

5.4. Examples

EXAMPLE 3. Let $b, c \in \mathbb{C}$ and $e, f \in \mathbb{R}$ such that $|e + f| < 1, \bar{c} + 2bf = 0, |b| \le 1/2$ and $e^2 + f^2 \le 1/2$. Let

$$H(\lambda) = \begin{pmatrix} \cos^2 \pi \lambda & b \sin 2\pi \lambda \\ c \sin 2\pi \lambda & e + f \cos 2\pi \lambda \end{pmatrix}.$$

H satisfies (16) and (17), with $M = I_d$, and (19) (by using the above assumptions on b, c, e, f). Therefore the functions $\hat{\phi}_1, \hat{\phi}_2$ given by (4) with $\vec{x} = \vec{e}_1$ are in $\mathbb{L}^2(\mathbb{R})$. For instance if b = 1/2, c = 1/4, e = 1/2, and f = -1/4, we have $\det H(\lambda) = 1/4\cos^2\pi\lambda$. Thus H satisfies (9) and (15). Otherwise we can show, by an approximation, that $\hat{\phi}_2(1) \neq 0$. Using Lemma 3.2, we conclude that $\det \Theta_{\Phi}(0) \neq 0$. It results from Theorem 5.3 that H is a scaling matrix filter.

Let $(\mathcal{V}_n)_{n\in\mathbb{Z}}$ be a Multi-Resolution Analysis of multiplicity 2 (we choose d=2 for convenience). It is worth noticing that \mathcal{V}_0 may also constitute the set V_1 of a Multi-Resolution Analysis $(V_n)_{n\in\mathbb{Z}}$ of multiplicity 1. For instance, if we take in the previous example b=c=1/2 and e=-f=1/2, then the space \mathcal{V}_0 , spanned by the integer translates of ϕ_1,ϕ_2 , is the set V_1 of the scalar Multi-Resolution Analysis with respect to the Haar basis. More precisely, let $\phi_0=1_{[0,1]}$ and $\psi_0=1_{[0,1/2]}-1_{[1/2,1]}$. The wavelet ψ_0 generates the Haar basis and ϕ_0 is the associated scaling function (the integer translates of these two functions form an orthonormal basis for V_1). Then an easy computation yields

$$\begin{pmatrix} \hat{\phi}_{1}(\lambda) \\ \hat{\phi}_{2}(\lambda) \end{pmatrix} = e^{-i\pi\lambda} R(\lambda) \begin{pmatrix} \hat{\phi}_{0}(\lambda) \\ \hat{\psi}_{0}(\lambda) \end{pmatrix},$$

where $R(\lambda)$ is the rotation by $\pi\lambda$. The matrix function Θ_{Φ} associated to ϕ_1, ϕ_2 verifies $\Theta_{\Phi}(\lambda) = R(\lambda)R(\lambda)^* = I_d$. Therefore the integer translates of ϕ_1 and ϕ_2 form an orthonormal basis for V_1 .

EXAMPLE 4. Hermite Interpolation, r = 2 (See Example 2 of Section 2). For i = 0, 1, we obtain

$$\phi_i(x) = (-1)^i r_i(-x) \mathbf{1}_{[-1,0]}(x) + r_i(x) \mathbf{1}_{[0,1]}(x),$$

where $r_0(x) = (x-1)^2(2x+1)$ and $r_1(x) = (x-1)^2x$. The Fourier transforms

$$\hat{\phi}_0(\lambda) = -12\left[(2\pi\lambda)^{-3} \sin 2\pi\lambda + 2(2\pi\lambda)^{-4} (\cos 2\pi\lambda - 1) \right]$$

$$\hat{\phi}_1(\lambda) = 4i\left[(2\pi\lambda)^{-3} (2 + \cos 2\pi\lambda) - 3(2\pi\lambda)^{-4} \sin 2\pi\lambda \right],$$

satisfy $\hat{\phi}(\lambda) = H(\frac{\lambda}{2})\hat{\phi}(\frac{\lambda}{2})$ with

$$H(\lambda) = \begin{pmatrix} \cos^2 \pi \lambda & -\frac{3}{4}i\sin 2\pi \lambda \\ \frac{i}{8}\sin 2\pi \lambda & \frac{1}{4} - \frac{1}{8}\cos 2\pi \lambda \end{pmatrix}.$$

Note that $\det H(\lambda) = 1/8\cos^4\pi\lambda$. Thus H verifies (9) and (15). Consequently, using Theorem 5.3, we again show that the integer translates of ϕ_0 and ϕ_1 form a Riesz basis for $V_0(2)$.

EXAMPLE 5. Hermite Interpolation, r = 3. We have, for i = 0, 1, 2,

$$\phi_i(x) = p_i(x) 1_{[0,1]}(x) + (-1)^i p_i(-x) 1_{[-1,0]}(x),$$

where

$$p_0(x) = -6x^5 + 15x^4 - 10x^3 + 1,$$

$$p_1(x) = -3x^5 + 8x^4 - 6x^3 + x,$$

$$p_2(x) = -\frac{1}{2}x^5 + \frac{3}{2}x^4 - \frac{3}{2}x^3 + \frac{1}{2}x^2.$$

The Fourier transforms $\hat{\phi}_0$, $\hat{\phi}_1$, $\hat{\phi}_2$ satisfy $\hat{\phi}(\lambda) = H(\frac{\lambda}{2})\hat{\phi}(\frac{\lambda}{2})$ with

$$H(\lambda) = \begin{pmatrix} \cos^2 \pi \lambda & -\frac{15}{16}i \sin 2\pi \lambda & 0\\ \frac{5i}{32}\sin 2\pi \lambda & \frac{1}{4} - \frac{7}{32}\cos 2\pi \lambda & -\frac{3}{8}i \sin 2\pi \lambda\\ \frac{1}{64}\cos 2\pi \lambda & -\frac{i}{64}\sin 2\pi \lambda & \frac{1}{8} - \frac{1}{16}\cos 2\pi \lambda \end{pmatrix}.$$

Since $\det H(\lambda) = 5 \cdot 2^{-9} \cos^6 \pi \lambda$, H verifies (9) and (15). Otherwise, we obtain

$$\Theta_{\Phi}(0) = \begin{pmatrix} 1 & 0 & \frac{1}{60} \\ 0 & a & 0 \\ \frac{1}{60} & 0 & \frac{144}{9!} \end{pmatrix}$$

with a > 0, hence $\det \Theta_{\Phi}(0) \neq 0$. Therefore we find again the fact that ϕ_0, ϕ_1 , and ϕ_2 generate by integer translates a Riesz basis for $V_0(3)$.

6. ORDER r DYADIC INTERPOLATION

Consider a family $(G_s)_{s\in\mathbb{N}}$ of discrete subgroups of \mathbb{R}^n , $n \ge 1$, such that $G_s \subset G_{s+1}$ and $G_\infty = \bigcup_{s\ge 0} G_s$ is dense in \mathbb{R}^n . Let f be a real-valued function defined on G_0 . The interpolating subdivision scheme allows to extend f, by iterative rule, to $G_1, G_2, \ldots, G_n, \ldots$; we obtain, therefore, an interpolating function defined on G_∞ . One of the important questions is to characterize the schemes, called continuous, such that every interpolating function has a continuous extension defined on \mathbb{R}^n (see [10]). The notion of interpolating

subdivision schemes, which is prior to the development of wavelet theory, arises in several fields of pure and applied mathematics [4, 11, 9, 23].

Let $r \in \mathbb{N}^*$. The order r interpolating schemes [21] are a natural generalization of the previous ones: starting from real-valued functions a_{α} , defined on G_0 and indexed by the multi-indexes α , $|\alpha| \le r$, one wishes to construct a function f on G_{∞} , which admits an extension \tilde{f} of class \mathscr{C}^r defined on \mathbb{R}^n such that every $\partial^{\alpha} \tilde{f}/\partial x^{\alpha}$ coincides with a_{α} on G_0 .

In this paper, we consider n = 1 and $G_s = 2^{-s}\mathbb{Z}, s \in \mathbb{N}$, that is, dyadic interpolating schemes. Let us recall that, in this case, a continuous interpolating scheme (i.e., r = 0) yields a Multi-Resolution Analysis of multiplicity 1. We start by giving definitions and simple properties relative to order r interpolating schemes. Then we study the connection with the Multi-Resolution Analyses of multiplicity r + 1.

6.1. Definitions

Let $r \in \mathbb{N}^*$. We denote by $\vec{e_0}, \dots, \vec{e_r}$ the canonical basis for \mathbb{R}^{r+1} , and by D the set of all dyadic reals. Provided we use vector notations, the results of this section can be proved as in the case r = 0. Let us start by defining the dyadic vector interpolation scheme.

DEFINITION. Consider $p, q \in \mathbb{Z}$, with p < q, and a family $\{C(s,k), s \in \mathbb{N}, k \in \mathbb{Z}\}$ of matrices in $\mathcal{M}(r+1,\mathbb{R})$ such that C(s, k) = 0 if $k \notin [p, q]$. The associated dyadic vector interpolation scheme (\mathcal{D}) is defined as follows: given any sequence $\{\tilde{A}(n), n \in \mathbb{Z}\}\$ of vectors in \mathbb{R}^{r+1} , we construct the vector function \vec{F} defined on D by the iterative process:

- $\vec{F}(n) = \vec{A}(n)$, if $n \in \mathbb{Z}$, $\vec{F}(2^{-s}n + 2^{-(s+1)}) = \sum_{k \in \mathbb{Z}} C(s, n-k) \vec{F}(2^{-s}k)$, $n \in \mathbb{Z}$, s = $0, 1, 2, \ldots$

 \vec{F} is called the vector interpolating function (by (\mathcal{D}) and from $(\vec{A}(n))_{n\in\mathbb{Z}}$), and we write $\vec{F} = \mathcal{D}(\vec{A})$. Let δ_0 be the sequence defined by $\delta_0(0) = 1$ and $\delta_0(n) = 0$ if $n \in \mathbb{Z}, n \neq 0$ 0. For i = 0, ..., r, we easily prove that the r + 1 vector functions $\mathcal{D}(\delta_0 \vec{e_i})$ have bounded support in $D \cap [2p +$ 1, 2q + 1, and that every vector interpolating function $\vec{F} =$ $[f_0, \ldots, f_r]$ can be expressed as

$$\vec{F}(x) = \sum_{i=1}^{r} \sum_{k \in \mathbb{Z}} f_i(k) \mathcal{D} \left(\delta_0 \vec{e_i} \right) (x - k), \quad x \in D.$$

In order to define the order r dyadic interpolation scheme, we use the notation

$$\overrightarrow{\Delta f} = \left(\begin{array}{c} f \\ f' \\ \vdots \\ f^{(r)} \end{array} \right).$$

DEFINITIONS. We say that (\mathcal{D}) is of order r if there exist r+1 real-valued functions ϕ_0,\ldots,ϕ_r , at least of class \mathscr{C}^r on \mathbb{R} , such that, for every integer i = 0, ..., r and all $x \in D$, the equality $\mathcal{D}(\delta_0 \vec{e_i})(x) = \overline{\Delta \phi_i}(x)$ holds. The functions ϕ_i , called fundamental interpolating functions with respect to (\mathcal{D}) , are compactly supported in [2p+1, 2q+1], and verify

$$(\phi_i)^{(\ell)}(n) = \delta_{0,n} \cdot \delta_{i,\ell}, \quad \forall n \in \mathbb{Z}, \forall \ell = 0, \dots, r.$$
 (22)

Let

$$\Phi_C = \begin{pmatrix} \phi_0 \\ \vdots \\ \phi_r \end{pmatrix}, \quad \text{and} \quad \hat{\Phi}_C = \begin{pmatrix} \hat{\phi}_0 \\ \vdots \\ \hat{\phi}_r \end{pmatrix}.$$

If (\mathcal{D}) is of order r, then, for all vector interpolating function \vec{F} , there exists a real-valued function f of class \mathscr{C}^r on \mathbb{R} such that $\overrightarrow{\Delta f}(x) = \overrightarrow{F}(x)$ for all $x \in D$, and

$$f(x) = \sum_{i=0}^{r} \sum_{k \in \mathbb{Z}} f^{(i)}(k) \phi_i(x-k), \forall x \in \mathbb{R},$$

the successive derivatives of f (up to r) being computed by termwise differenciation. For convenience f is still called interpolating function with respect to (\mathcal{D}) . Note that f only depends on the values of its r first derivatives on \mathbb{Z} .

Due to the dyadic character of (\mathcal{D}) , it is natural to require that, if f is an interpolating function, the same holds for the function $x \to f(x/2)$. We easily check that a necessary and sufficient condition for this requirement is that

$$C(s,k) = A_r^{-s}C(0,k)A_r^s, \quad \forall k = p, \dots, q, \forall s \in \mathbb{N}, \quad (23)$$

where $A_r = \text{diag}(1, 2^{-1}, \dots, 2^{-r})$.

6.2. Connection with Scaling Matrix Filters

Let us consider a family $\{C(s,k), s \in \mathbb{N}, k = p, ..., q\}$ of matrices in $\mathcal{M}(r+1,\mathbb{R})$, satisfying (23), and let (\mathcal{D}) be the associated dyadic interpolation scheme. We define

$$H_C(\lambda) = \frac{1}{2}A_r + \frac{1}{2}\sum_{k=p}^q e^{-2i\pi(2k+1)\lambda}C(k)^* A_r.$$

THEOREM 6.1. If (\mathcal{D}) is of order r, then the vector function $\hat{\Phi}_C$ satisfies the equation $\hat{\Phi}_C(\lambda) = H_C(\lambda/2)\hat{\Phi}_C(\lambda/2)$. Conversely if H_C is a scaling matrix filter and if its r+1scaling functions τ_0, \ldots, τ_r are at least of class \mathscr{C}^r , and such that

$$(\tau_i)^{(\ell)}(n) = \delta_{0,n} \cdot \delta_{i,\ell}, \quad \forall n \in \mathbb{Z}, \forall \ell = 0, \dots, r,$$
 (24)

then (\mathcal{D}) is of order r, and its fundamental interpolating functions are τ_0, \ldots, τ_r .

Proof. Let us set, for all $n \in \mathbb{Z}$, $H_{2n} = \delta_{0,n}A_r$, $H_{2n+1} =$ $C(n)^*A_r$, and $H_n = [h_n(i,j)]_{i,j=1,\dots,d}$. Suppose that (\mathcal{D}) is of order r. We show the equality

$$\Phi_C\left(\frac{x}{2}\right) = \sum_{n \in \mathbb{Z}} H_n \Phi_C(x - n), \quad x \in \mathbb{R},$$
 (25)

which, by Fourier transform, is equivalent to the equation of the theorem. It suffices to check that

$$A_{r}\overrightarrow{\Delta\phi}_{i}\left(\frac{x}{2}\right) = \sum_{k\in\mathbb{Z}}\sum_{j=0}^{r}h_{k}\left(i,j\right)\overrightarrow{\Delta\phi}_{j}\left(x-k\right), \quad \forall i=0,\ldots,r.$$
(26)

Indeed the (r + 1) equalities given by every first line of the vector identities in (26) give (25). Let $i \in \{0, ..., r\}$, and denote by $\vec{F}_i(x)$ and $\vec{G}_i(x), x \in \mathbb{R}$, respectively, the left and the right term of (26). Using the definition of a vector interpolating scheme, we easily prove that $\vec{F}_i = \vec{G}_i$ on \mathbb{Z} . Since \vec{F}_i and \vec{G}_i are both vector interpolating functions, \vec{F}_i and \vec{G}_i are equal on D, and by a continuity argument, equal on \mathbb{R} .

Conversely, suppose that H_C is a scaling matrix filter such that its r+1 scaling functions τ_0, \ldots, τ_r are of class \mathscr{C}^r and satisfy (24). Then we obtain

$$2^{-\ell s} \tau_i^{(\ell)} \left(2^{-s} n + 2^{-(s+1)} \right) = \sum_{j=0}^r \sum_{k \in \mathbb{Z}} 2^{-js}$$
$$\tau_j^{(\ell)} \left(\frac{2(n-k)+1}{2} \right) \tau_i^{(j)} (2^{-s} k), \quad \forall s \in \mathbb{N}.$$

Denoting by W(x) the $(r+1)\times(r+1)$ matrix, whose column of index j, for i = 0, ..., r, is given by $\Delta \tau_i(x)$, the previous identities are equivalent to the following vector equality:

$$A_r^s \overrightarrow{\Delta \tau}_i \left(2^{-s} n + 2^{-(s+1)} \right)$$

$$= \sum_{k \in \mathbb{Z}} W \left(\frac{2(n-k)+1}{2} \right) A_r^s \overrightarrow{\Delta \tau}_i (2^{-s} k), \quad i = 0, \dots, r.$$

Since τ_0, \ldots, τ_r verify equation (1) with respect to $m_{i,j}(k) =$ $h_k(i, j)$, it follows that $W(x/2)^*A_r = \sum_{k \in \mathbb{Z}} H_k W(x - k)^*$, hence, by (24), $W((2l+1)/2)^*A_r = H_{2l+1} = C(l)^*A_r$. This ensures that τ_0, \ldots, τ_r are the fundamental interpolating functions associated to the scheme (\mathcal{D}) , which is, therefore, of order r.

Remark. Let $I \in \mathcal{M}_{r+1}$, given by $I(\lambda) = I_{r+1}$, and let Q_C be the operator defined on \mathcal{M}_{r+1} by

$$Q_{C}F(\lambda) = \left(H_{C}\left(\frac{\lambda}{2}\right)F\left(\frac{\lambda}{2}\right) + H_{C}\left(\frac{\lambda}{2} + \frac{1}{2}\right)F\left(\frac{\lambda}{2} + \frac{1}{2}\right)\right)A_{r}^{-1}.$$

Suppose that H_C is a scaling matrix filter such that its scaling functions τ_0, \ldots, τ_r are at least of class \mathscr{C}^r , and suppose that I is the unique Q_C -invariant function in \mathcal{M}_{r+1} (modulo a complex factor). Then the τ_i satisfy (24).

Indeed, we have $Q_CI = I$, and using Poisson's formula, we easily check that the matrix function Γ given by

$$A_{r}\overrightarrow{\Delta\phi_{i}}\left(\frac{x}{2}\right) = \sum_{k\in\mathbb{Z}}\sum_{j=0}^{r}h_{k}\left(i,j\right)\overrightarrow{\Delta\phi_{j}}\left(x-k\right), \quad \forall i=0,\ldots,r. \quad \Gamma(\lambda) = \begin{pmatrix} \sum_{n\in\mathbb{Z}}\tau_{0}\left(n\right)e^{2i\pi n\lambda} & \ldots & \sum_{n\in\mathbb{Z}}\tau_{0}^{(r)}\left(n\right)e^{2i\pi n\lambda} \\ \vdots & & \vdots \\ \sum_{n\in\mathbb{Z}}\tau_{r}\left(n\right)e^{2i\pi n\lambda} & \cdots & \sum_{n\in\mathbb{Z}}\tau_{r}^{(r)}\left(n\right)e^{2i\pi n\lambda} \end{pmatrix},$$

$$(26)$$

 $\lambda \in [0,1]$.

is invariant by Q_C . More precisely, since Γ is of finite length, Q_C acts on a finite dimensional space, and the action of Q_C in this space can be represented by a matrix Q_0 . Consequently, in order to prove that $\Gamma = I$, it suffices to check that $\dim \text{Ker}(Q_0 - Id) = 1$.

6.3. Examples

EXAMPLE 6. The following family of order 1 interpolating schemes is drawn from [21]. For all real μ , we set $\mu' = (1 - \mu)/2$, and we consider the family $\{C_{\mu}(s, k), s \in A\}$ $\mathbb{N}, k \in \mathbb{Z}$ of 2×2 matrices defined by (23) with $C_{\mu}(0, k) = 0$ for $k \neq -1, 0$, and

$$C_{\mu}(0,-1) = \begin{pmatrix} \frac{1}{2} & -\frac{1}{8} \\ \mu & \mu' \end{pmatrix}$$
$$C_{\mu}(0,0) = \begin{pmatrix} \frac{1}{2} & \frac{1}{8} \\ -\mu & \mu' \end{pmatrix}$$

We denote by (\mathcal{D}_{μ}) the associated vector dyadic interpolating scheme. It is shown in [21] that, if $|2 - \mu| < 1$, then (\mathcal{D}_{μ}) is of order 1. More precisely, in this case, the fundamental interpolating functions $\phi_{0,\mu}$ and $\phi_{1,\mu}$ are of class \mathscr{C}^{β} for all real $\beta < 2$ (the derivatives of $\phi_{0,\mu}$ and $\phi_{1,\mu}$ are $(\beta - 1)$ -Holderian). Examples of interpolating functions are given in appendix B. The Fourier transforms $\hat{\phi}_{0,\mu}$ and $\hat{\phi}_{1,\mu}$ satisfy the scaling matrix equation with

$$H_{\mu}(\lambda) = \begin{pmatrix} \cos^2 \pi \lambda & -\frac{i\mu}{2} \sin 2\pi \lambda \\ \frac{i}{8} \sin 2\pi \lambda & \frac{1}{2} \left(\frac{1}{2} + \mu' \cos 2\pi \lambda \right) \end{pmatrix}.$$

If $\mu = 3/2$, we find again example 2 of section 2. The value $\mu = 2$ corresponds to the quadratic splines (see Example 1 in Sect. 2). For these two cases the integer translates of the fundamental interpolating functions form a Riesz family. This property generalizes as follows: If $|2 - \mu| < 1$, then $\phi_{0,\mu}$ and $\phi_{1,\mu}$ are the scaling functions of a Multi-Resolution Analysis of multiplicity 2 (see [14]).

EXAMPLE 7. Let us return to Example 5 of Section 5.4: the scaling functions ϕ_0, ϕ_1, ϕ_2 also constitute the fundamental interpolating functions of the order 2 dyadic interpolation scheme (\mathscr{D}) associated to the family $\{C(s,k), s \in \mathbb{N}, k \in \mathbb{Z}\}$ of 3×3 matrices defined by (23) with C(0,k) = 0 for $k \neq -1, 0$, and

$$C(0,0) = \begin{pmatrix} \frac{1}{2} & \frac{5}{32} & \frac{1}{64} \\ -\frac{15}{8} & -\frac{7}{16} & -\frac{1}{32} \\ 0 & -\frac{3}{2} & -\frac{1}{4} \end{pmatrix}$$

$$C(0,-1) = \begin{pmatrix} \frac{1}{2} & -\frac{5}{32} & \frac{1}{64} \\ \frac{15}{8} & -\frac{7}{16} & \frac{1}{32} \\ 0 & \frac{3}{2} & -\frac{1}{4} \end{pmatrix}.$$

Remark. We may consider, more generally, the p-adic interpolating schemes with $p \ge 3$. For example, in the triadic case, the scheme is given by the two following iterative formulae:

$$\begin{cases} F\left(3^{-r}n + 3^{-(r+1)}\right) &= \sum_{k \in \mathbb{Z}} C_1(r, n-k) F(3^{-r}k) \\ F\left(3^{-r}n + 2 \cdot 3^{-(r+1)}\right) &= \sum_{k \in \mathbb{Z}} C_2(r, n-k) F(3^{-r}k). \end{cases}$$

The Multi-Resolution Analysis of multiplicity 1, associated to the cubic splines, yields this type of interpolation. ■

7. CONCLUSION

We conclude this work by dealing with some additional questions on Multi-Resolution Analysis of multiplicity $d \ge 2$. In particular we show that the wavelet bases (for $d \ge 2$) also provide unconditional bases for many other spaces than $L^2(\mathbb{R})$, and we present a simple computation of Sobolev (integer) coefficients of the scaling functions associated to scaling matrix filters of finite length.

7.1. Asymptotic Conditions for Multi-Resolution Analyses

Let H be a scaling $d \times d$ matrix filter, and ϕ_1, \dots, ϕ_d the associated scaling functions. We set, as usual,

$$V_0 = \overline{span\{\phi_1(\cdot - k), \dots, \phi_d(\cdot - k), k \in \mathbb{Z}\}},$$

and $V_n = D^n V_0$ for every $n \in \mathbb{Z}$. As it was mentioned in remark (d) of section 3, we may suppose that $\{\phi_1(\cdot - k), \ldots, \phi_d(\cdot - k), k \in \mathbb{Z}\}$ is an orthonormal basis for V_0 . The family $(V_n)_{n \in \mathbb{Z}}$ satisfies the statements 2, 3, 4 of the

Multi-Resolution Analysis definition. Condition 1 can be rewritten in this way:

$$\lim_{n \to -\infty} R_n f = 0 \quad \text{and} \quad \lim_{n \to +\infty} R_n f = f$$

$$\text{in } \mathbb{L}^2(\mathbb{R}), \, \forall f \in \mathbb{L}^2(\mathbb{R}), \quad (27)$$

where R_n is the orthogonal projection on V_n . It is straightforward to check that the kernel of R_n is: $A_n(x, y) = 2^n \sum_{i=1}^d \sum_{k \in \mathbb{Z}} \phi_i(2^n x - k) \overline{\phi_i(2^n y - k)}$. By using classical arguments on approximations of identity, it is proved in [22] that (27) holds if the functions ϕ_j are continuous on \mathbb{R} , and verifies (20). In this case $(V_n)_{n \in \mathbb{Z}}$ forms a Multi-Resolution Analysis of multiplicity d. If the functions ϕ_i are supposed more regular and localized, then (27) remains valid in others spaces (Sobolev spaces for instance) (see [22]).

7.2. Wavelets Basis Properties

Let $(V_n)_{n\in\mathbb{Z}}$ be a Multi-Resolution Analysis of multiplicity d. We denote by ψ_1, \ldots, ψ_d (simply ψ if d=1) the associated wavelets (see Section 2). It is shown in [18] that, in most of cases, the wavelets ψ_i have the same regularity and the same localization as the ϕ_i . From Theorem 2.1, it follows that

$$f(x) = \lim_{n \to +\infty} \sum_{j,k=-n}^{n} \sum_{i=1}^{d} 2^{j} \langle f, \psi_{i} (2^{j} \cdot -k) \rangle \psi_{i} (2^{j} x - k)$$
$$\text{in } \mathbb{L}^{2}(\mathbb{R}), \forall f \in \mathbb{L}^{2}(\mathbb{R}).$$

When d=1, this convergence, and more generally, the unconditional basis property, extend to a lot of spaces [22] (Sobolev spaces, Holderian functions spaces, ...). In order to prove these statements, one considers the kernel K_n of the operator defined by the above sum, that is, $K_n(x, y) = \sum_{j,k=-n}^{n} 2^{j} \psi(2^{j}x - k) \overline{\psi(2^{j}y - k)}$, and one uses the theory of Zygmund-Calderon's operators, which rests on the following properties of K_n :

$$\left|K_{n}(x,y)\right| \leq C |x-y|^{-1},$$

$$\left|\frac{\partial K_{n}(x,y)}{\partial x}\right| + \left|\frac{\partial K_{n}(x,y)}{\partial y}\right| \leq C |x-y|^{-2}, \quad x \neq y.$$

Recall that these inequalities hold from the moment that the wavelet ψ is sufficiently regular and localized. It is straightforward to check that these tools remain valid for $d \ge 2$ if every ψ_i satisfies the same conditions as ψ . Consequently the properties of unconditional wavelet basis generalize to $d \ge 2$.

7.3. Algebraic Properties for Scaling Matrix Filters

Let H be a 1-periodic continuous complex-valued function. An algebraic assumption is a necessary condition

for H to be a scaling filter such that the associated scaling function ϕ satisfies a given property. For example the Riesz family property in (P2) implies that H(1/2) = 0, and $|H(\cdot)|^2 + |H(\cdot + 1/2)|^2 > 0$ (see Section 3). If we want $\{\phi(\cdot -k), k \in \mathbb{Z}\}$ to constitute an orthonormal family, then H must verify the QMF condition: $|H(\cdot)|^2 + |H(\cdot + 1/2)|^2 = 1$. On the same way, if it is required that $\phi(n) = \delta_{0,n}$ for every integer n (interpolating condition), then H must be chosen such that $H(\cdot) + H(\cdot + 1/2) = 1$.

The converse problem is to check if the previous conditions on H yield the desired requirements on ϕ . This is done in [5, 7] for the QMF case, in [15, 24] for the Riesz basis property, and in [25, 16] for the interpolating condition. For instance, suppose that H is a regular QMF, and consider the operator P defined in Section 1. We have P1 = 1. It is proved in [7] that a necessary and sufficient condition for $\{\phi(\cdot - k), k \in \mathbb{Z}\}$ to constitute an orthonormal family is that the constant functions are the only 1-periodic continuous P-invariant functions. Moreover this statement is equivalent to a simple condition on the set Z of zeros of H (if Z is finite in number, this condition is given by (15) with d = 1).

Let us consider the corresponding question for $d \ge 2$. If H is a scaling matrix filter of \mathcal{M}_d such that the scaling functions ϕ_1, \ldots, ϕ_d generate by integer translates an orthonormal family, then we have $\Theta_{\Phi}(\cdot) = I_d$. Using (8), this implies the necessary condition

$$H(\cdot)H(\cdot)^* + H\left(\cdot + \frac{1}{2}\right)H\left(\cdot + \frac{1}{2}\right)^* = I_d.$$
 (28)

We have the following converse result: let $H \in \mathcal{M}_d^{\alpha}$ satisfying (28), (16), and (17) with $M = I_d$. Consider the functions $\hat{\phi}_1, \ldots, \hat{\phi}_d$ defined by (4) with $\vec{x} = \vec{e}_1$. That $\hat{\phi}_1, \ldots, \hat{\phi}_d$ are in $\mathbb{L}^2(\mathbb{R})$ results from (19). If, in addition, det $H(\cdot)$ has a finite number, Q, of zeros, and if H satisfies (15), then $\{\phi_i(\cdot - k), i = 1, \ldots, d, k \in \mathbb{Z}\}$ constitutes an orthonormal family if and only if $\Theta_{\Phi}(0) = I_d$.

To see that, it suffices to prove that, if F, G are P_{H} -invariant and such that F(0) = G(0), then F = G (see [14, Sect. 5.2]).

7.4. Sobolev Integer Coefficients for Scaling Functions

Let us first focus on the case d=1 by considering a scaling filter H and the scaling function ϕ defined by $\hat{\phi}(\lambda)=\Pi_{k\geqslant 1}H(\lambda/2^k)$. The study of regularity of ϕ is based on the condition H(1/2)=0. This implies that H is of the form $H(\lambda)=(1+e^{2i\pi\lambda})/2)^rv(\lambda)$, where $r\in\mathbb{N}^*$ and $v(1/2)\neq 0$, and that $\hat{\phi}(\lambda)=e^{i\pi r\lambda}(\sin\pi\lambda)/\pi\lambda)^r\Pi_{k\geqslant 1}v(\lambda/2^k)$. Therefore, the problem amounts to studying the growth of this infinite product (see [8, 24, 15]).

Now let H be a scaling $d \times d$ matrix filter of the form (13), satisfying (16) and (17), and assume that the scaling

functions ϕ_1, \ldots, ϕ_d are defined by (4) with $\vec{x} = \vec{e_1}$. Of course, since the matrix product in $\mathcal{M}(d, \mathbb{C})$ is not commutative, the above statements don't extend to $d \ge 2$. However we show that a more precise spectral study of P_H provides conditions for $\phi_1, \ldots, \phi_d \in H^p, p \in \mathbb{N}^*$, and where H^p denotes the usual Sobolev space defined by the condition $(1 + |\lambda|^p)\hat{f}(\lambda) \in \mathbb{L}^2(\mathbb{R})$. Let us recall that P_N is the restriction of P_H to the finite-dimensional space \mathcal{F}_d^N .

We proved in section 5 that the matrix function Θ_{Φ} , defined by (5), is almost everywhere equal to $\Theta_0 \in \mathcal{T}_d^N$, which is a positive P_N -invariant function. We generalize this remark by considering the matrix-valued function $\tilde{\Theta}_p$ formally defined, for $p \in \mathbb{N}^*$, by

$$\tilde{\Theta}_{p}(\lambda) = \sum_{k \in \mathbb{Z}} |\lambda + k|^{2p} \hat{\Phi}(\lambda + k) \hat{\Phi}(\lambda + k)^{*}.$$

If $\phi_1, \ldots, \phi_d \in H^p$, then $\tilde{\Theta}_p(\lambda)$ is well defined for almost all $\lambda \in \mathbb{R}$. By Poisson's formula, $\tilde{\Theta}_p$ is almost everywhere equal to a function of \mathcal{T}_d^N , which we denote by Θ_p . Moreover, we obtain by using the matrix scaling equation

$$\tilde{\Theta}_{p}(\lambda) = \sum_{k \in \mathbb{Z}} \left| \frac{\lambda}{2} + \frac{k}{2} \right|^{2p} H\left(\frac{\lambda}{2} + \frac{k}{2}\right) \times \hat{\Phi}\left(\frac{\lambda}{2} + \frac{k}{2}\right) \hat{\Phi}\left(\frac{\lambda}{2} + \frac{k}{2}\right)^{*} H\left(\frac{\lambda}{2} + \frac{k}{2}\right)^{*}.$$

Separating the even and odd indeces, it follows that $P_N\Theta_p = 2^{-2p}\Theta_p$. We have the following converse result.

PROPOSITION 7.1. Let $p \in \mathbb{N}^*$. Suppose that there exists a non-negative function Γ of \mathcal{T}_d^N satisfying $P_N\Gamma = 2^{-2p}\Gamma$ and $\Gamma(\lambda) \ge C|\lambda|^{2p}I_d$ for all λ in some neighborhood of 0, C being a positive constant independant of λ . Then, $\phi_1, \ldots, \phi_d \in H^p$.

Proof. From (18) applied with $F = \Gamma$, it follows that

$$\int_{-2^{n-1}}^{2^{n-1}} \Pi_n(\lambda) \Gamma\left(\frac{\lambda}{2^n}\right) \Pi_n(\lambda)^* d\lambda$$

$$= 2^{-2np} \int_0^1 \Gamma(\lambda) d\lambda = 2^{-2np} M,$$

hence, for each $i \in \{1, \dots, d\}$,

$$\int_{-2^{n-1}}^{2^{n-1}} |\lambda|^{2p} \left\langle \left(\left| \frac{2^n}{\lambda} \right|^{2p} \Gamma\left(\frac{\lambda}{2^n}\right) \right) \Pi_n(\lambda)^* \vec{e_i}, \Pi_n(\lambda)^* \vec{e_i} \right\rangle d\lambda$$

$$= M,$$

Using Fatou's lemma, the assumption on Γ , and the fact that $\lim_{n\to+\infty}\Pi_n(\lambda)^*\vec{e_i}=\hat{\phi_i}(\lambda)\vec{e_1}$ (lemma 5.1), it follows that $\int_{\mathbb{R}}|\lambda|^{2p}|\hat{\phi_i}(\lambda)|^2d\lambda \leqslant C^{-1}M$.

Remark. Suppose d=2. If $\phi_1, \phi_2 \in H^p$, $p \in \mathbb{N}^*$, then there exists an integer $\ell \ge p$ such that $\Theta_p(\lambda) \ge C|\lambda|^{2l}I_d$ for all λ in some neighborhood of 0, C being a positive constant.

Indeed, using Lemma 3.2, we obtain

$$\Theta_{p}(0) = \tilde{\Theta}_{p}(0) = \begin{pmatrix} 0 & 0 \\ 0 & \beta \end{pmatrix}$$

with $\beta = \sum_{k\neq 0} |k|^{2p} |\hat{\phi}_2(k)|^2 > 0$ (if $\beta = 0$, then det $\Theta_{\Phi}(0) = 0$, but this is forbidden by the Riesz basis property). For $\lambda \in [0,1]$, we define $a(\lambda)$ and $b(\lambda)$, respectively, as the smallest and the largest eigenvalue of the non-negative Hermitian matrix $\Theta_p(\lambda)$. We have $a(\lambda)b(\lambda) = \det\Theta_p(\lambda)$, hence $a(\lambda) \approx \beta^{-1}\det\Theta_p(\lambda)$ at 0. Note that det $\Theta_p(\cdot)$ is a \mathbb{R}^+ -valued trigonometric polynomial equal to 0 at 0. Thus there exist C > 0 and $\ell \in \mathbb{N}^+$ such that det $\Theta_p(\lambda) \approx C\lambda^{2\ell}$ at 0.

Suppose $\ell < p$. Then the above identity applied with Θ_p instead of Γ implies that

$$\int_{-2^{n-1}}^{2^{n-1}} |\lambda|^{2\ell} \left\langle \left(\left| \frac{2^n}{\lambda} \right|^{2\ell} \Theta_p \left(\frac{\lambda}{2^n} \right) \right) \Pi_n(\lambda)^* \vec{e_i}, \Pi_n(\lambda)^* \vec{e_i} \right\rangle \times d\lambda = 2^{-2n(p-\ell)} N,$$

N being a positive constant. We conclude that $\int_{\mathbb{R}} |\lambda|^{2\ell} |\hat{\phi}_i(\lambda)|^2 d\lambda = 0$ for i = 1, 2. This is, of course, impossible. Thus $\ell \ge p$.

APPENDIX A: PROOF OF LEMMA 5.1

Define $G(\lambda) = M^{-1}H(\lambda)M$. We have $\prod_{k=1}^{n}H(\lambda/2^{k}) = M[\prod_{k=1}^{n}G(\lambda/2^{k})]M^{-1}$. It is, therefore, sufficient to prove the lemma with $M = I_d$. We let $\mu_1 = 1$.

Note that $|H(0)|_2 = 1$, and $||H(\lambda)|_2 - 1| \le C|\lambda|^{\alpha}$. Consider a real number A > 0. We obtain for all $\lambda \in [-A, A]$,

$$\left| \ln \left| H\left(\frac{\lambda}{2^k}\right) \right|_2 \right|_{k \to +\infty} \left| \left| H\left(\frac{\lambda}{2^k}\right) \right|_2 - 1 \right| \leq C \frac{A^{\alpha}}{2^{\alpha k}}.$$

This implies the uniform convergence on [-A, A] of the series $\sum_{k\geq 1} |\ln|H(\lambda/2^k)|_2|$, and thus of the sequence $\{\prod_{k=1}^n |H(\lambda/2^k)|_2, n \geq 1\}$ which is, therefore, uniformly bounded on [-A, A] by a constant D > 0. Define, for $n \geq 1$ and i, j = 1, ..., d,

$$\alpha_{i,j}^n(\lambda) = \left\langle \prod_{k=1}^n H\left(\frac{\lambda}{2^k}\right) \vec{e_j}, \vec{e_i} \right\rangle.$$

For q > p, we write

$$\alpha_{i,j}^q(\lambda) = \left\langle \prod_{k=1}^q H\left(\frac{\lambda}{2^k}\right) \vec{e_j}, \left(\prod_{k=1}^p H\left(\frac{\lambda}{2^k}\right)\right)^* \vec{e_i} \right\rangle,$$

and

$$\alpha_{i,j}^{p}(\lambda) = \left\langle \vec{e_{j}}, \left(\prod_{k=1}^{p} H\left(\frac{\lambda}{2^{k}}\right) \right)^{*} \vec{e_{i}} \right\rangle.$$

From Cauchy-Schwarz's inequality in \mathbb{C}^d , it follows that

$$\begin{aligned} \left| \alpha_{i,j}^{q}(\lambda) - \mu_{j}^{q-p} \alpha_{i,j}^{p}(\lambda) \right| &\leq \left\| \left(\prod_{k=1}^{p} H\left(\frac{\lambda}{2^{k}}\right) \right)^{*} \vec{e_{i}} \right\|_{2} \\ &\times \left\| \prod_{k=p+1}^{q} H\left(\frac{\lambda}{2^{k}}\right) \vec{e_{j}} - \mu_{j}^{q-p} \vec{e_{j}} \right\|_{2} \\ &\leq D \left\| \prod_{k=p+1}^{q} H\left(\frac{\lambda}{2^{k}}\right) \vec{e_{j}} - \mu_{j}^{q-p} \vec{e_{j}} \right\|_{2}. \end{aligned}$$

We have

$$\begin{split} \prod_{k=p+1}^{q} H\left(\frac{\lambda}{2^{k}}\right) \vec{e_{j}} - \mu_{j}^{q-p} \vec{e_{j}} &= \prod_{k=p+1}^{q} H\left(\frac{\lambda}{2^{k}}\right) \vec{e_{j}} \\ - \mu_{j} \prod_{k=p+1}^{q-1} H\left(\frac{\lambda}{2^{k}}\right) \vec{e_{j}} \\ + \mu_{j} \left(\prod_{k=p+1}^{q-1} H\left(\frac{\lambda}{2^{k}}\right) \vec{e_{j}} - \mu_{j} \right) \\ & \times \prod_{k=p+1}^{q-p-2} H\left(\frac{\lambda}{2^{k}}\right) \vec{e_{j}} \\ & \vdots \\ + \mu_{j}^{q-p-2} \\ & \times \left(H\left(\frac{\lambda}{2^{p+1}}\right) H\left(\frac{\lambda}{2^{p+2}}\right) \vec{e_{j}} - \mu_{j} \vec{e_{j}} \right) \\ & + \mu_{j}^{q-p-1} \left(H\left(\frac{\lambda}{2^{p+1}}\right) \vec{e_{j}} - \mu_{j} \vec{e_{j}} \right) \\ & = \left(\prod_{k=p+1}^{q-1} H\left(\frac{\lambda}{2^{k}}\right) \right) \\ & \times \left(H\left(\frac{\lambda}{2^{q}}\right) \vec{e_{j}} - \mu_{j} \vec{e_{j}} \right) \\ & + \mu_{j} \left(\prod_{k=p+1}^{q-2} H\left(\frac{\lambda}{2^{k}}\right) \right) \\ & \times \left(H\left(\frac{\lambda}{2^{q-1}}\right) \vec{e_{j}} - \mu_{j} \vec{e_{j}} \right) \\ & \vdots \\ & + \mu_{j}^{q-p-2} H\left(\frac{\lambda}{2^{p+1}}\right) \end{split}$$

FIG. 1.

$$\times \left(H\left(\frac{\lambda}{2^{p+2}}\right) \vec{e}_j - \mu_j \vec{e}_j \right)$$

$$+ \mu_j^{q-p-1} \left(H\left(\frac{\lambda}{2^{p+1}}\right) \vec{e}_j - \mu_j \vec{e}_j \right).$$

Let $H(\lambda) = [h_{i,j}(\lambda)]_{i,j=1,\dots,d}$. Then

$$\begin{split} & \left\| \prod_{k=p+1}^{q} H\left(\frac{\lambda}{2^{k}}\right) \vec{e}_{j} - \mu_{j}^{q-p} \vec{e}_{j} \right\|_{2} \\ & \leq D \sum_{k=p+1}^{q} \left\| H\left(\frac{\lambda}{2^{k}}\right) \vec{e}_{j} - \mu_{j} \vec{e}_{j} \right\|_{2} \\ & \leq D \sum_{k=p+1}^{q} \sqrt{\left| h_{j,j} \left(\frac{\lambda}{2^{k}}\right) - \mu_{j} \right|^{2} + \sum_{\substack{i=1\\i\neq j}}^{d} \left| h_{i,j} \left(\frac{\lambda}{2^{k}}\right) \right|^{2}}. \end{split}$$

We know that $h_{i,j}(0) = \mu_j \delta_{i,j}$, and that $h_{i,j}$ is α -Holderian. Thus,

$$\left|h_{j,j}\left(\frac{\lambda}{2^k}\right)-\mu_j\right|^2+\sum_{\substack{i=1\\i\neq j}}^d\left|h_{i,j}\left(\frac{\lambda}{2^k}\right)\right|^2\leqslant \frac{CA^{2\alpha}}{2^{2\alpha k}},$$

 $\forall \lambda \in [-A, A]$.

Consequently, for all real $\epsilon > 0$, we may choose a sufficiently large integer N so that

$$\forall q > p \geqslant N, \forall \lambda \in [-A, A],$$

$$\left| \alpha_{i,j}^q(\lambda) - \mu_j^{q-p} \alpha_{i,j}^p(\lambda) \right| \leqslant \varepsilon.$$

If $\mu_j = 1$, then Cauchy's property in \mathbb{C} involves that $(\alpha_{i,j}^n)_{n \ge 1}$ converges uniformly on [-A,A]. Because the sequence $(\alpha_{i,j}^n)_{n \ge 1}$ is uniformly bounded on [-A,A], if $|\mu_j| < 1$, then $(\alpha_{i,j}^n)_{n \ge 1}$ converges uniformly to 0 on [-A,A] (for every $i = 1, \ldots, d$), which ends the proof of the lemma.

APPENDIX B: ILLUSTRATIONS OF ORDER 1 INTERPOLATING SCHEMES

In Fig. 1 we give, for the values $\mu = 1.5, 2, 1.1$, and 2.9 of Example 6 (see Section 6.3), the interpolating function and its derivative on [0, 1], obtained from the initial conditions on \mathbb{Z} : f(0) = f'(0) = 0, f(1) = 2, f'(1) = 0, and f(n) = f'(n) = 0 if $n \neq 0$, $n \neq 1$. These examples are derived from [21].

ACKNOWLEDGMENTS

I would like to thank Jean-Pierre Conze for his support during these last years. I am also grateful to Pascal Auscher, Jean-Louis Merrien, and Paul Sablonniére for stimulating discussions, and to I. Daubechies for suggesting useful remarks and references. Finally, I would like to thank J. L. Merrien for providing illustrations of order I interpolating schemes.

REFERENCES

- B. Alpert, Wavelets and other bases for fast numerical linear algebra, in "Wavelets—A Tutorial in Theory and Applications" (C. K. Chui, Ed.), pp. 181-216.
- P. Auscher, Solution of two problems on wavelets, preprint, Universit
 è de Rennes I, Janvier 1993.
- P. Auscher, Wavelets with boundary conditions on the interval, in "Wavelets—A Tutorial in Theory and Applications" (C. K. Chui, Ed.), pp. 217–236.
- A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc. 93 (1991), 1–186.
- A. Cohen, "Ondelettes, analyses multirésolutions et traitement numérique du signal," Masson, Paris, 1992.
- J.-P. Conze, "Sur la régularité des solutions d'une équation fonctionnelle," Laboratoire de Probabilités, Université de Rennes I, Juin 1989.
- J.-P. Conze, and A. Raugi, Fonctions harmoniques pour un opérateur de transition et applications, *Bull. Soc. Math. France* 118 (1990), 273-310.
- I. Daubechies, "Ten Lectures on Wavelets," CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1992.
- G. Deslauriers and S. Dubuc, Interpolation dyadique, in "Fractals, dimensions non entières et applications," Publié par G. Cherbit, Masson, Paris, 1987.
- G. Deslauriers, J. Dubois, and S. Dubuc, "Multidimensional Iterative Interpolation," Rapport technique 41, Univ. de Sherbrooke, 1988.
- N. Dyn and D. Levin, Interpolating subdivision schemes for the generation of curves and surfaces in "Multivariate Interpolation and Approximation" (W. Haussman and K. Jeller, Eds.), pp. 91–106, Bikhäuser, Bassel, 1990.

- T. N. T. Goodman, S. L. Lee, and W. S. Tang, Wavelets in wandering subspaces, *Trans. Amer. Math. Soc.* 338, No. 2 (1993).
- H. Hennion, Sur un thèoréme spectral et son application aux noyaux lipschitziens, Proc. Amer. Math. Soc. 118, No. 2 (1993), 627–634.
- L. Hervè, "Etude d'une équation fonctionnelle matricielle," Publications de l'Institut de Recherche Mathèmatique de Rennes, Annèes 1989–1990, Fascicule 1: Probabilitès.
- L. Hervè, Règularitè et conditions de bases de Riesz pour les fonctions d'èchelle, C. R. Acad. Sci. Paris Ser. I 315 (1992), 1029–1032.
- L. Hervè, Construction et règularité des fonctions d'èchelle, SIAM J. Math. Anal., to appear.
- L. Hervè, Etude d'opèrateurs quasi-compacts et positifs. Applications aux opèrateurs de transfert, Ann. Inst. H. Poincarè Probab. Statist., to appear.
- P. G. Lemariè-Rieusset, Ondelettes gènèralisèes et fonctions d'èchelle à support compact, Rev. Math. Iberoamericana, to appear.
- P. G. Lemariè-Rieusset, Fonctions d'èchelle pour les ondelettes de dimension n, preprint, Université de Paris-Sud.
- S. Mallat, Multiresolution approximations and wavelet orthonormal bases of L²(R), Trans. Amer. Math. Soc. 315, No. 1 (1989), 69–88.
- 21. J. L. Merrien, A family of Hermite interpolants by bisection algorithms *Numer. Algorithms* 2 (1992), 187-200.
- 22. Y. Meyer, "Ondelettes et opèrateurs I," Hermann, Paris, 1990.
- C. A. Micchelli, and H. Prautzsch, Refinement and subdivision for spaces of integer translates of a compactly supported function in "Numerical Analysis" (D. F. Griffith and G. A. Watson, Eds.), pp. 192-222, Academic Press, New York, 1987.
- L. F. Villemoes, Energy moments in time and frequency for two-scale difference equation solutions and wavelets, SIAM J. Math. Anal. 23 (1992), 1519–1543.
- L. F. Villemoes, Wavelets analysis of refinement equations, SIAM J. Math. Anal., to appear.