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Résumé. Soit P un noyau markovien sur un espace mesurable E muni d’une tribu à base dénombrable,

soit w : E→[1,+∞[ tel que Pw ≤ C w, avec C ≥ 0, et soit Bw l’espace des fonctions f mesurables

de E dans C telles que ‖f‖w = sup{w(x)−1 |f(x)|, x ∈ E} < +∞. Nous démontrons que P est

quasi-compact sur (Bw, ‖ · ‖w) si et seulement si, pour tout f ∈ Bw, ( 1

n

∑n

k=1
P kf)n contient une

sous-suite convergeant dans Bw vers Πf =
∑

d

i=1
µi(f)vi, où vi est une fonction mesurable positive

bornée sur E et µi une probabilité sur E. En particulier, quand le sous-espace de Bw constitué des

fonctions P -invariantes est de dimension finie, la convergence uniforme des moyennes est équivalente

à la convergence ponctuelle.

Abstract. Let P be a Markov kernel on a measurable space E with countably generated σ-algebra,

let w : E→[1,+∞[ such that Pw ≤ C w with C ≥ 0, and let Bw be the space of measurable functions

on E satisfying ‖f‖w = sup{w(x)−1 |f(x)|, x ∈ E} < +∞. We prove that P is quasi-compact on

(Bw, ‖ · ‖w) if and only if, for all f ∈ Bw, ( 1

n

∑
n

k=1
P kf)n contains a subsequence converging in Bw

to Πf =
∑

d

i=1
µi(f)vi, where the vi’s are non-negative bounded measurable functions on E and the

µi’s are probability distributions on E. In particular, when the space of P -invariant functions in Bw

is finite-dimensional, uniform ergodicity is equivalent to mean ergodicity.

I. Introduction

Let (E, E) be a measurable space with countably generated σ-algebra, let (B̃, ‖ · ‖) denote
the space of complex-valued bounded measurable functions on E, equipped with the supre-
mum norm, and let P be a Markov kernel on (E, E). Under some irreducibility conditions, P
is quasi-compact on B̃ if and only if P is mean ergodic with one-dimendional limit projection
defined by the unique P -invariant distribution. This result was proved in [1] under the Harris
condition (see also [11]), and in [8] under the ergodicity condition 1. See also [6].

Now let w : E→[1,+∞[, and let (Bw, ‖ · ‖w) denote the Banach space of complex-valued
measurable functions on E satisfying ‖f‖w := sup{w(x)−1 |f(x)|, x ∈ E} < +∞. Assum-
ing Pw ≤ C w, with C ∈ IR∗

+, P acts continuously on Bw. This work extends to Bw the
equivalence between mean ergodicity with finite rank limit projection and quasi-compactness.

Theorem. P is quasi-compact on Bw if and only if there exist d ∈ IN∗, linearly indepen-

dent non-negative functions v1, . . . , vd in B̃, and P -invariant distributions µ1, . . . , µd on E

1The equivalence between mean ergodicity and quasi-compactness is not mentionned in [1], but it is an
easy consequence of Theorem II.2 in [1]. In [8] E is not supposed to be countably generated.
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satisfying µi(w) < +∞ such that, for all f ∈ Bw, the sequence ( 1
n

∑n
k=1 P

kf)n contains a

subsequence converging in Bw to
∑d
i=1 µi(f)vi.

Observe that the naive idea which consists in applying the similarity transformation
P̃ : f 7→ w−1P (w f) in order to deduce the theorem from [1] [8] does not work because P̃ is
not markovian when ‖Pw‖w > 1 (ie. when w is not sub-invariant). The proof of Theorem is
actually based on a recent work of H. Hennion [3], which gives criteria for quasi-compactness
of kernels acting on Bw, on spectral theory [2], and on positive operator theory [13] [12].
As in [3], the above theorem does not require any irreducibility or aperiodicity conditions ;
in this sense, when applied with w = 1E , it improves [1] [8]. This theorem shows too that
a quasi-compact Markov kernel on Bw is necessarily power-bounded. This fact was already
proved in [4] (§ IV.3), together with the equivalence between quasi-compactness and uniform
ergodicity, which also follows from [9].

The above theorem does not hold when Bw is replaced with continuous function spaces.
For instance, if E is a compact metric space and P is uniquely ergodic on the space C(E) of
all complex-valued continuous functions on E, then P is mean ergodic [7], but in general P
is not quasi-compact on C(E) (consider irrational rotations of the circle). 2

We shall present in Section III (Corollary 1) a direct application to w-geometrically ergodic
Markov chains [10] whose transition probability is, by definition, quasi-compact on Bw, with
λ = 1 as a simple eigenvalue and the unique peripheral eigenvalue. Many examples of such
Markov chains, with unbounded functions w, are presented in [10].

A simple example is provided by the linear model Xn = αXn−1 + εn, with α ∈] − 1, 1[,
where (εn)n≥1 is a i.i.d sequence of real-valued random variables, independent of X0, such
that m = IE[ |ε1| ] < +∞. In this case the state space is E = IR with its Lebesgue sets,
and P (x,A) = IE[1A(αx + ε1)], which yields Pf(x) = IE[f(αx + ε1)]. Let w(y) = 1 + |y|
(y ∈ IR). Then, for any x ∈ IR, we have Pw(x) = IE[w(αx + ε1)] ≤ 1 + |α| |x| + m, so
Pw ≤ |α|w + L, with L = 1 − |α| + m. From this inequality, called drift condition, one
can deduce that, if ε1 has an everywhere positive density, then (Xn)n is w-geometrically
ergodic [10] (§ 15.5.2). Observe that w is not sub-invariant. Indeed, Pw(0) = 1 +m > w(0),
so ‖Pw‖w > 1. Obviously, this conclusion extends to any function w(y) = a + b|y|, with
constants a, b > 0. Actually, in most of the examples of w-geometrically ergodic Markov
chains, w is not sub-invariant when it is unbounded.

Finally we shall see in Corollary 2 that, in the special case of denumerable Markov chains,
the above theorem enables us to obtain an elementary proof of the above mentioned well-
known fact that geometric ergodicity is equivalent to some drift condition.

II. Proof of Theorem.

Proof of ⇒. Suppose P is quasi-compact on Bw. It is proved in [4] (§ IV.3) that ( 1
n

∑n
k=1 P

k)n
converges in the operator norm topology to a finite dimensional projection Π of the form :
Πf =

∑d
i=1 φi(f)fi, where the fi’s are linearly independent functions in B̃ and the φi’s are

bounded complex measures on E such that |φi|(w) < +∞, with |φi| the total variation of φi.
It remains to prove that one can choose fi and φi such that fi ≥ 0 and φi is a probability

2Also consider E = [0, 1] and Pf(x) = 1

2
[f(x

2
) + f(x+1

2
)]. P is quasi-compact on the space of Lipschitz

functions on [0, 1], so P is mean ergodic on the space of continuous functions on [0, 1], but is not quasi-compact
on this space : indeed, for |z| < 1, fz =

∑
n≥1

zn−1 cos(2nπ·) is a continuous function satisfying Pfz = zfz.
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measure on E. Notice that Π(Bw) ⊂ B̃, Π ≥ 0 and Π1E = 1E .
Let BIR be the subspace of Bw composed of real-valued functions. Then Π(BIR) is a Banach
lattice which is isomorphic to IRd with the preservation of the order relation [13]. Con-
sequently there exist non-negative functions g1, . . . , gd in Π(Bw) and positive linear form
e∗1, . . . , e

∗
d on Π(Bw) such that g =

∑d
i=1 e

∗
i (g)gi for all g ∈ Π(Bw). Let ψj = e∗j ◦ Π. The

ψj’s are positive continuous linear forms on Bw, and ψj =
∑d
i=1 e

∗
j (fi)φi. Thus the ψj ’s are

positive bounded measures on E such that ψj(w) < +∞. Set µj = 1
ψj(E)ψj and vj = ψj(E)gj .

Then Πf =
∑d
i=1 ψi(f)gi =

∑d
i=1 µi(f)vi, and the µi’s are P -invariant (use ΠP = Π).

Proof of ⇐ . We shall denote by (ME) the mean ergodicity (subsequential) condition of
Theorem. We set Πf =

∑d
i=1 µi(f)vi. If T is a continuous linear operator on Bw, we denote

by ‖T‖w its operator norm, and by r(T ) its spectral radius. We denote by I the identity
operator on Bw. Given a ∈ C and ρ > 0, we set D(a, ρ) = {z : z ∈ C , |z − a| ≤ ρ}.
Since P1E = 1E , we have r(P ) ≥ 1. Besides, by hypothesis, there exists nk ր +∞ such that
supk ‖n

−1
k

∑nk
j=1 P

jw‖w < +∞, thus supk n
−1
k ‖Pnkw‖w < +∞. Since ‖Pn‖w = ‖Pnw‖w, one

gets r(P ) = limn ‖P
n‖

1

n
w = 1. In particular this yields

∑
n≥0 2−(n+1)‖Pn‖w < +∞, so we can

define the following bounded operator on Bw, which is obviously Markovian :

Q =
∑

n≥0

2−(n+1)Pn = (2I − P )−1.

Proposition 1. Q is quasi-compact on Bw.

Proof. Let ν = 1
d

∑d
i=1 µi. Since the σ-algebra E is countably generated, there exist a non-

negative measurable function α on (E×E, E ⊗ E) and a positive kernel S on E such that we
have Q(x, dy) = α(x, y)dν(y) + S(x, dy), with S(x, ·) ⊥ ν, for each x ∈ E [11]. For p ∈ IN∗,
set αp = min{α, p}, and

Tp(x, dy) = αp(x, y)dν(y), Sp(x, dy) = Q(x, dy) − Tp(x, dy).

If f ∈ Bw, then |Tpf | ≤ ‖f‖w Tpw ≤ pν(w) ‖f‖w, so Tp(Bw) ⊂ B̃. Besides Tp acts continuously
on Bw, and so is Sp. In order to apply [3], observe that, for each p ∈ IN∗, the functions

α
(w)
p (x, ·) = w(x)−1αp(x, ·)w(·), x ∈ E, are uniformly ν-integrable (use α

(w)
p (x, y) ≤ pw(y),

ν(w) < +∞ and Lebesgue’s theorem).
Finally, sinceQ = φ(P ) with φ(z) =

∑
n≥0 2−(n+1)zn and φ is analytic on D(0, 3

2), the spectral
mapping theorem [2] yields r(Q) = φ(r(P )) = φ(1) = 1. Proposition 1 then follows from [3]
[4] (§ IV) via the following lemma. 2

Lemma 1. There exists p ≥ 1 such that r(Sp) < 1.

Proof of Lemma 1. Suppose that r(Sp) = 1 for all p ≥ 1. Since Sp ≥ 0, there exists a positive
continuous linear form, ηp, on Bw such that ηp = ηp ◦ Sp and ηp(w) = 1, see [12] p. 267. Let
P̃ , Q̃, T̃p, S̃p, η̃p be the restriction to B̃ of P , Q, Tp, Sp, ηp. Since ηp = ηp ◦ Sp ≤ ηp ◦Q and
(ηp ◦Q− ηp)(1E) = 0, we have η̃p = η̃p ◦ Q̃, thus η̃p ◦ P̃ = η̃p. Moreover we have :

(a) η̃p 6= 0. Indeed, if η̃p = 0, then, from ηp ◦ Q = ηp ◦ Tp + ηp ◦ Sp and Tp(Bw) ⊂ B̃, one
would get ηp ◦Q = ηp ◦ Sp = ηp, thus ηp ◦ P = ηp. Then, by (ME), ηp =

∑d
i=1 ηp(vi)µi would

be a positive measure on E such that ηp(B̃) = {0}, so ηp = 0, which is impossible.
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(b) ∀f ∈ B̃, ηp(f) =
d∑

i=1

ηp(vi)µi(f). This follows from η̃p ◦ P̃ = η̃p and (ME).

Now, from (a) (b), there exist j ∈ {1, . . . , d} and pk ր +∞ such that we have ηpk
(vj) 6= 0.

Besides ηpk
(vj)µj(Tpk

1E) ≤ ηpk
(Tpk

1E) = ηpk
(Q1E −Spk

1E) = 0, thus µj(Tpk
1E) = 0. When

k→+∞, this gives
∫ ∫

α(x, y)dν(y)dµj(x) = 0, hence
∫
α(x0, y)dν(y) = 0 for a x0 ∈ E. So

Q(x0, ·) = S(x0, ·) ⊥ ν : there exists A ∈ E such that Q(x0, A) = 0 and ν(A) = 1.
But : Q(x0, A) = 0 ⇒ ∀n ≥ 1, Pn1A(x0) = 0 ⇒

∑d
i=1 µi(A)vi(x0) = 0 (by Cond. (ME)).

While : ν(A) = 1
d

∑d
i=1 µi(A) = 1 ⇒ µi(A) = 1, i = 1, . . . , d.

Thus
∑d
i=1 vi(x0) = 0 : this is impossible because (ME) gives 1E =

∑d
i=1 vi. 2

We shall denote by σ(Q) and σ(P ) the spectrum of Q and P when acting on Bw.

Lemma 2. We have σ(Q) \ {1} ⊂ D(2
3 ,

1
3) ∩D(0, 1 − ε) for a certain ε ∈]0, 1[.

Proof. We have Q = φ(P ) with φ(z) = 1
2−z , thus σ(Q) = φ(σ(P )) [2]. Since r(P ) = 1, we

get σ(Q) ⊂ φ(D(0, 1)) = D(2
3 ,

1
3). So λ = 1 is the unique peripheral spectral value of Q, and

Lemma 2 then follows from Proposition 1. 2

Lemma 3. λ = 1 is a first order pole for P , with a corresponding finite-rank residue.

Proof. Set ψ(z) = 2 − 1
z
, z ∈ C ∗. Lemma 2 yields 0 /∈ σ(Q), so Q is invertible on Bw, ψ is

analytic on a neighborhood of σ(Q), and P = 2I −Q−1 = ψ(Q). Thus σ(P ) = ψ(σ(Q)), and

σ(P ) \ {1} = ψ(σ(Q) \ {1}) ⊂ ψ(D(2
3 ,

1
3)) ∩ ψ(D(0, 1 − ε)) = D(0, 1) ∩ D(2, 1

1−ε)
c.

Thus λ = 1 is an isolated point in σ(P ). Let AP and AQ be the residue of the resolvent
functions of P and Q at λ = 1. Let χ be an analytic function on a neighborhood of σ(P ) such
that χ(V0) = {0} and χ(V1) = {1}, where V0 and V1 are disjoint neighborhoods of the sets
σ(P ) \ {1} and {1} respectively. We know that AP = χ(P ) [2], thus AP = χ(ψ(Q)). Besides
W0 = ψ−1(V0) and W1 = ψ−1(V1) are disjoint neighborhoods of respectively σ(Q) \ {1} and
{1}, and χ◦ψ is an analytic function on W0∪W1 such that χ◦ψ(W0) = {0}, χ◦ψ(W1) = {1}.
Thus AQ = χ ◦ ψ(Q), so AP = AQ. Since the Markov kernel Q is quasi-compact on Bw
(Prop. 1) and Q is power-bounded [4] (Th. IV.3(i)), λ = 1 is a first order pole for Q, and
AQ(Bw) = Ker(Q− I) is finite-dimensional by [2] (Th. VIII.8.3 and Coro. VIII.8.4). By the
definition of Q as a series, Pf = f implies Qf = f (f ∈ Bw), and the converse holds by using
P = 2I −Q−1. Finally AP (Bw) = AQ(Bw) = Ker(Q− I) = Ker(P − I) is finite-dimensional,
so λ = 1 is a first order pole for P (use the arguments of [2], Th. VII.4.5). 2

Lemma 4. {λ ∈ σ(P ), |λ| = 1} is composed of a finite number of first order poles.

Proof. From Lemma 3 and a classical result concerning the peripheral spectrum of positive
operators on Banach lattice [13] [Th. 5.5 p. 331], the set of peripheral spectral values of P is
composed of a finite number of poles for P . Using the Laurent expansions, Lemma 3 implies
that they are first order poles. 2

Lemma 5. For any peripheral pole λ of P , we have dimKer(P−λI) ≤ dimKer(P−I) < +∞.

Proof. We have dimKer(P−I) < +∞ by (ME). Let λ1 = 1, λ2, . . . , λm be the peripheral poles
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of P . The previous results show that Bw = Ker(P−I)⊕F⊕H, where F = ⊕m
i=2 Ker(P−λiI),

and H is a P -invariant closed subspace of Bw such that r(P|H) < 1, with P|H the restriction

of P to H. Thus ( 1
n

∑n
k=1 P

k)n converges in the operator norm topology to the projection
onto Ker(P − I). Then Lemma 5 follows from [9] (Th. 2). 2

The quasi-compactness of P on Bw follows from Lemmas 4-5. 2

III. Applications to geometrically ergodic Markov chains.

Let (Xn)n≥0 be a Markov chain with state space E and transition probability P . Recall that
(Xn)n≥0 is said to be w-geometrically ergodic if there exist an invariant distribution ν on E
such that ν(w) < +∞, and some constants r < 1 and D ∈ IR+ such that for every f ∈ Bw
we have

‖Pnf − ν(f) 1E‖w ≤ D rn ‖f‖w.

Corollary 1. Assume that (Xn)n≥0 is an aperiodic positive Harris Markov chain with sta-

tionary distribution ν. Then (Xn)n≥0 is w-geometrically ergodic if and only if one of the two

next conditions holds :

(a) ∀f ∈ Bw, P
nf→ ν(f) 1E in Bw when n→+∞.

(b) For all f ∈ Bw, ( 1
n

∑n
k=1 P

kf)n contains a subsequence converging in Bw to ν(f) 1E.

Corollary 1 is an easy consequence of Theorem in § I. (When (b) is assumed, the aperiodicity
condition ensures that λ = 1 is the unique peripheral eigenvalue of P .)

The reader will find in [10] many examples of geometrically ergodic Markov chains. Geomet-
ric ergodicity with a bounded function w corresponds to an aperiodic Markov chain satisfying
Doeblin’s condition.
When w is unbounded and (Xn)n≥0 is aperiodic and ψ-irreducible w.r.t to some σ-finite posi-
tive measure ψ on E, w-geometric ergodicity is equivalent to the following drift condition [10]
(Chap. 16) : there exist ρ < 1, L > 0, and a petite set A in E such that Pw0 ≤ ρw0 +L 1A,
where w0 is a function on E such that d−1w ≤ w0 ≤ dw for some constant d > 0. Corollary
1 sheds new light on this fact, at least for countable Markov chains, and as an illustration,
let us present a simple proof of the well-known next statement proved in [5].

Corollary 2. Let (Xn)n≥0 be an aperiodic and irreducible Markov chain with state space

E = IN , and suppose limk w(k) = +∞. Then (Xn)n≥0 is w-geometrically ergodic iff there

exist ρ < 1 and C > 0 such that Pnw ≤ Cρnw + C for all n ≥ 1.

By using the basic arguments of [10] (§ 16.1.1), one can easily see that the condition in
Corollary 2 is equivalent to : ∃ρ < 1, ∃L > 0, Pw0 ≤ ρw0 + L, with w0 equivalent to w.

Proof of Corollary 2. If (Xn)n≥0 is w-geometrically ergodic, then Pnw ≤ D rnw + ν(w).
Conversely, suppose Pnw ≤ Cρnw + C with ρ < 1, C > 0, independent of n. Then we have
supn≥1 ‖P

n‖w ≤ 2C, and there exists an invariant distribution ν such that ν(w) < +∞ 3.
Set Πn = 1

n

∑n
k=1 P

k, and let ℓ1(ν) be the space of C-valued sequences (x(n))n∈IN such that∑
n ν(n) |x(n)| < +∞. P is a contraction of ℓ1(ν), so for any f ∈ ℓ1(ν), (Πnf)n converges in

3This is a classical fact : consider the distributions µn(A) = 1

n

∑n

k=1
(P k1A)(x0) (x0 ∈ E is fixed). From

P nw ≤ Cρnw+C, we easily obtain supn≥1 µn(w) ≤ 2C w(x0) < +∞, so (µn)n is tight (use limk w(k) = +∞),

and one can select a subsequence converging to an invariant distribution ν such that ν(w) < +∞.
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ℓ1(ν), use e.g. [2] (VIII.5). The limit α = limn Πnf is P -invariant, and by irreducibility, it is
constant : ∀i ∈ IN, α(i) = ν(f). Thus limn Πnf(i) = ν(f) for all i ∈ IN .
Now let f ∈ Bw, and for convenience assume ‖f‖w = 1 (ie. |f | ≤ w). We have

∀i ∈ IN, |P kf(i) − ν(f)| ≤ P kw(i) + ν(|f |) ≤ Cρkw(i) + C + ν(w).

Let ε > 0. Then there exist i0 ≥ 1, N0 ≥ 1 such that w(i)−1|P kf(i)− ν(f)| ≤ ε for all i > i0
and k > N0. By using the fact that supk≥1 ‖P

kw‖w < +∞ and

Πnf(i) − ν(f) =
1

n

N0∑

k=0

(P kf(i) − ν(f)) +
1

n

n∑

k=N0+1

(P kf(i) − ν(f)),

we easily deduce that there exists N1 ≥ N0 such that w(i)−1|Πnf(i)−ν(f)| ≤ 2ε for all i > i0
and n > N1. Finally let N2 ≥ N1 be such that w(i)−1|Πnf(i)−ν(f)| ≤ 2ε for all i = 0, . . . , i0
and n > N2. Then ‖Πnf − ν(f)‖w ≤ 2ε for all n > N2, and Corollary 1 then applies. 2
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Poincaré, Sect. B 11, 345-354 (1975).

[9] Lin M. Quasi-compactness and uniform ergodicity of positive operators. Israel J. Math.
Vol. 29, 309-311 (1978).

6



[10] S.P. Meyn and R.L. Tweedie. Markov chains and stochastic stability. Springer Ver-
lag, New York, Heidelberg, Berlin (1993).

[11] Revuz D. Markov chains. North-Holland, (1975).

[12] Schaefer H. H. Topological vector spaces. Springer-Verlag Berlin Heidelberg New York
1970.

[13] Schaefer H. H. Banach Lattices and positive operators. Springer-Verlag Berlin Heidel-
berg New York 1974.

7


